УДК 691.327:624.01

ИССЛЕДОВАНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ ПЕНОБЕТОНА, ОБЕСПЕЧИВАЮЩЕГО ВЫСОКУЮ ЗВУКО- И ТЕПЛОИЗОЛЯЦИЮ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ

Макаров С.В., Макаревич П.Л. (Одесская государственная академия строительства и архитектуры, г. Одесса)

Приведены результаты исследований прочностных и деформативных свойств ячеистого пенобетона, отвечающего современным теплоизоляционным требованиям.

Повышенные требования к теплоизоляционным материалам для ограждающих конструкций, вызывают необходимость поиска материалов, позволяющих соответствовать требованиям норм Украины по теплотехническим характеристикам.

В Одесской государственной академии строительства и архитектуры, начиная с 1998 г. проводятся исследования пенобетонов на различных видах пенообразователях. Целью исследований помимо подбора оптимальных составов ячеистого бетона, было изучение его физикомеханических свойств. Исследования проводились в творческом союзе с кафедрой «Производство строительных изделий и конструкций» ОГАСА (доц. Мартынов В.И. и аспирант Орлов Д.А.). На основе подбора оптимальных составов пенобетона на кафедре ПСК были изготовлены опытные образцы для изучения физикомеханических свойств в виде кубов с размерами кубов 100х100х100 мм и призм размерами 100х100х400 мм. Для изготовления опытных образцов использовался портландцемент М 400, морской песок с модулем крупности 1.94 и вода, отвечающие требованиям нормативных документов. В качестве пенообразователя использовался ПО «Юган» и ПБ «2000». Опытные образцы изготавливались в лаборатории кафедры «Производство строительных изделий и конструкций». Для изготовления смеси использовался двухстадийный метод. Отдельно затворялись вяжущее и пена, после чего смешивались. Целью исследований было изучение физико-механических свойств пенобетона для использования его в стеновых конструкциях.

Прочностные и деформативные показатели пенобетона определялись в соответствии с действующими нормативными документами.

Контрольные характеристики по прочности на сжатие определялись испытанием кубов-образцов, высушенных до постоянного веса при температуре 100-105°C. Образцы изготавливались в металлических формах и в них же проводили тепловую обработку.

Прочность ячеистого пенобетона связана с его объемной массой. Объемная масса устанавливалась взвешиванием контрольных образцов-кубов. Анализ показывает, что при постоянной плотности структура бетона зависит от размера пор. Прочность при сжатии пенобетона при средней плотности 600, 800 и 1000 кг/м³ в зависимости от толщины и протяжности межпоровых перегородок может изменяться в значительных пределах.

Образцы бетона испытывались в 28 и 180 дневном возрасте, результаты испытаний приведены в таблице 1.

Таблица 1

AL REPORTED IN

Средняя плотность		при сжатии цам, кгс/см ²
$\gamma_{\rm cvx}, {\rm K}\Gamma/{\rm M}$	D	D

Кубиковая прочность бетона.

	K28	K180
600	25	26.6
800	32.7	35.8
1000	72.4	76.1

Отклонение от средней прочности составляет от 8 до 20 %. Это еще раз подтверждает, что прочность зависит от плотности пенобетона. призменная прочность определялась испытанием призм на осевое сжатие размером 100х100х400 мм. На основании обработки опытных данных, призменная прочность составила 0.75-0.8 R.

Помимо прочностных характеристик, было изучение свойств пенобетона по водопоглощению и коэффициенту размягчения, как одних из факторов целесообразности использования его в ограждающих конструкциях.

В таблице 2 приведены данные по полному водопоглощению.

Таблица 2

Водопоглощение пенобетона

№ п/п	Плотность в сухом со- стоянии	Плотность в во- донасыщенном состоянии	% водопогло- щения	Среднее значение
1	960	1180	22.9	
2	965	1195	23.8	25.8
3	930	1200	29.0	
4	930	1110	27.6	
5	1070	1330	21.4	
6	1080	1350	23.6	22.2
7	1100	1360	20.0	
8	1060	1310	23.5	

Как видно из табл.2 при полном погружении образцов в оду и выдержки в течении 4 суток, водопоглощение при плотности 900 кг/м³ водопоглощение составляет 25.8 %, а при плотности 1000 кг/м³ оно 22.2 %.

Результаты испытаний по определению коэффициента размягчения представлены в таблице 3.

Таблица 3

Коэффициент размягчения пенобетона

№ п/п	Плотность в сухом состоянии, кг/м ³	Плотность в насыщенном состоянии, кг/м ³	Прочность в сухом состоянии, кгс/см ²	Прочность в насыщенном состоянии, кгс/см ²	Коэф. розмя- гчения
1	960	1180	50.0	37.0	0.74
2	965	1195	45.4	32.68	0.72
3	930	1200	48.9	36.2	0.74
4	930	1110	42.4	30.0	0.70
5	1070	1330	64.6	47.8	0.74
6	1080	1350	71.0	54.0	0.76
7	1100	1360	68.8	51.0	0.75
8	1060	1310	72.4	56.5	0.78

Коэффициент размягчения для образцов прочностью 50 кгс/см² составил 0.72, а для образцов прочностью75 кгс/см² – 0.75. деформатив-

ные свойства пенобетона определялись путем испытания призм размером 100x100x400 мм.

При испытании призм нагрузка на образец подавалась ступенями, равными примерно 0.1 призменной прочности. В результате обработки экспериментальных данных получена величина модуля упругости для марки бетона 25 (B2) она составляет 18.5 МПа и для бетона марки 50 (B3.5) $E_b = 26$ МПа. Кривые деформаций имеют выгиб в сторону оси напряжений, что объясняется наличием пластических свойств. Величина относительных деформаций при $\sigma = 0.5$ R_b для бетона B2 составляет 0.50·10⁻³ при $\sigma = 0.8$ R_b $\xi = 1.2 \cdot 10^{-3}$. Для бетона класса B 3.5 (марка 50) соответственно $\xi = 0.38 \cdot 10^{-3}$ и $\xi = 0.74 \cdot 10^{-3}$.

Кривые деформаций имеют почти прямолинейную зависимость деформаций от напряжений до 0.45 от R_b. Наклон кривых в дальнейшем связан с ростом пластических деформаций и смятием наиболее слабых прослоек бетона.

Приведенные исследования позволяют сделать следующие выводы:

1. Пенобетон, полученный на основе пенообразователя ПО «Юган», ПБ2000, обладает выгодными теплотехническими характеристиками в отличие от традиционных материалов, применяемых в ограждающих конструкциях.

2. Призменная прочность пенобетона составляет 0.75-0.8 R.

3. Полученные значения модуля упругости и деформаций характерны для других видов ячеистых бетонов.

4. Прочность бетона зависит от его плотности и ее следует назначать в зависимости от назначения конструкции.

Литература

1. Александров Г.Г. Повышение эксплуатационных качеств ячеистобетонных ограждающих конструкций. В кн. Качество и долговечность ограждающих конструкций из ячеистого бетона. – Харьков, Вища школа, 1978. – С. 183-196.

2. Кривицкий М.Я., Левин Н.И., Макаричев В.В. Ячеистые бетоны (технология, свойства и конструкции). – М., Стройиздат, 1972.

3. Мартынов В.И., Орлов Д.А. Исследование характеристик пенообразователя с целью применения его в технологии пенобетона. – Одеса, Вісник ОДАБА, №15, 2004. – С. 196-202.

4. Макаров С.В., Столевич А.С. Фізико-механічні властивості пінобетону. – Рівне, Науково-технічний збірник, 1998.