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PREFACE 
 

 

The development of new composite materials is one of the important 

tasks of materials science. The growth in the number of applications of 

composite materials is the reason for an intensive study of their physical 

properties. Composites are used in numerous industrial processes that 

involve heating or cooling. This raises the need for the manufactoring of 

composite materials with high and low thermal conductivity, respectively. 

Theoretical homogenization methods allow one to predict the thermal 

conductivity of composites. However, the effect of the placement 

parameters of inclusions on the thermal properties of the composite 

requires additional consideration. The random nature of the placement of 

inclusions in the matrix is the reason for using statistical methods of 

investigation. This book deals with the study of effective thermal 

conductivity and local heat fluxes in composites using numerical methods.  

The plan of the book is as follows. Introduction and second sections 

present the wide variety of theoretical and empirical models for heat 

transport in two-component composites and their governing scientific 

principles. The third section is devoted to the numerical methods in heat 

conduction processes in composites. It covers finite difference method, 

finite element method, Monte Carlo and multi-scale methods. In this 

section we give justifications for the choice of the finite difference method 
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and the Monte Carlo method for numerical experiments on the study of 

heat transfer in two-component composites.  

The fourth section describes the computational model for two-

component composite material with differ values of matrix and filler 

thermal conductivity. The model geometry which includes rectangular 

matrix, inclusions and grid cells has been chosen to define the density and 

direction of the local heat fluxes through the local grid cell. The study 

assumes a random placement of inclusions in the composite matrix with 

the following parameters: the concentration and size of inclusions, the 

minimum distance between the inclusions.  

The fifth section deals with the distribution statistics of the effective 

heat conductivity. General forms of the effective thermal conductivity 

distributions and their transformation have been obtained when the 

parameters of the placement of heat-insulating inclusions have been 

changed. Moreover, the influence of the placement heat-insulating 

inclusions on the parameters of the effective thermal conductivity 

distributions has also been discussed. The effective thermal conductivity 

dependence on the direction of temperature gradient leads to a fruitful 

concept of the effective anisotropy of thermal conductivity. The Monte 

Carlo simulation has been used to obtain the statistics of the effective 

anisotropy of the thermal conductivity distributions and its relationship to 

the effective thermal conductivity distributions statistics.  

The local heat fluxes statistics and pattern maps of local heat fluxes 

through a randomly inhomogeneous two-phase medium with a heat-

conducting matrix and heat-insulating inclusions have been analyzed in the 

sixth section. Numerical experiments reveal the influence of the number 

and extent of induced heat-conducting channels on the effective thermal 

conductivity of the material. The heat fluxes maps analyse allows 

considering the groups of heat-insulating inclusions in the form of thermal 

lenses that focus local heat fluxes into induced heat-conducting channels. 

Special attention has been paid to an area with a shortage of induced heat-

conducting channels, so-called dark matrix. Multimodal distributions of the 

local heat fluxes density, as well as the binding of two distribution modes 

to heat-insulating inclusions and induced thermal conductive channels have 
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been described. The third mode of distribution was tied to a dark matrix on 

the heat-insulating inclusions map. Numerical results allow to describe the 

analytical dependences of the log-normal modes parameters of the local 

heat fluxes density distribution on the parameters of the heat-insulating 

inclusions placement. Section also presents the statistical distributions of 

angles between the direction of local heat fluxes and the temperature 

macro gradient as well as the transformation of the character of distribution 

when changing the parameters of placement of inclusions. 

Finally, we would like to thank our wives, Tatyana and Oksana, for 

their unwavering support, patience, and understamding. Without their 

support, this book would never have been finished. 

 

 

Alexander Pysarenko, 

Igor Zaginaylo 
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LIST OF SYMBOLS 
 

 

Notation that is largely confined to sections is mostly excluded from 

the list below. 

 

a   Inclusion radius 

a1, a2 Coefficients, Wm-1K-1 

b  Inclusion size 

c  Concentration of inclusions 

d  Minimum distance 

h   Grid step 

i  Computational grid cell number along y-coordinate 

J  Local heat flux 

j   Computational grid cell number along x-coordinate  

F1, F2 Functions 

f1, f2 Probability density distribution functions 

N   Number of inclusions 

Pw  Mode power 

p   Probability  

s  Spatial component 

s   Standard deviation of <e> distributions 

s  Standard deviation of e distribution 

T   Absolute temperature, K 
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Chapter 1 

 

 

 

INTRODUCTION 
 

 

The development of new high quality and cost-efficient materials is of 

great interest for the enhancing the modern industry. These materials have 

to comply with the requirements for the performance characteristics of 

finished products. 

The variety of properties of composite materials achieved by varying 

the types of components, their volume fractions, shape, and the nature of 

the distribution of the filler particles in the matrix material makes them 

quite competitive in comparison with traditional materials. Therefore, the 

development of new composite materials is one of the important tasks of 

materials science. It should be noted that the technical and economic 

efficiency of the use of new materials largely depends on the ability to 

predict their performance properties. 

The thermal conductivity of a composite material is of great 

importance in a wide range of applications. Thermal insulation plays an 

important role in contributing to the energy savings in the building by heat 

gains and losses through the building envelope. At the same time, noise 

pollution is increasingly getting more attention amongst the construction 

industry as it is a major health concern. Special composite materials are 

applied as noise and heat insulators in the enclosing structures of buildings 

and structures [1–8]. 
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However, a lot of effort is put in order to improve composite material 

properties and especially thermal conductivity. Microelectronic devices 

with high thermal conductivity are desirable in order for heat to be 

efficiently dissipated. In this way, the operating temperature can be kept 

low, avoiding dielectric failures due to overheating. In many publications, 

improvement in the thermal conductivity of polymers when fillers are 

included has been reported [9–16]. The development of composites with 

low electrical conductivity and high thermal conductivity significantly 

affects the miniaturization, reliability and lifetime of electronic devices. 

Composite materials are used in the construction of heat shields and heat 

exchangers (evaporators, condensers, heat pump systems, gas coolers, tube 

banks and so on) [17–32]. The major properties in this case are 

mechanical/structural stability and resistant to aggressive influences, 

including chemical and radiation. Thus, the physical properties of the 

various composites must be carefully studied to predict their behavior and 

thereby optimize their use in real applications. 

Composites, in the form of a matrix with polyhedral solid inclusions, 

are widely used as technical constructional, construction and functional 

materials in various devices. The study of the thermal behavior of such 

composites, which include two or more components with different thermal 

properties, has been conducted for more than 100 years. In order to predict 

their thermal behavior, a concept of effective thermal conductivity was 

developed. This concept significantly simplifies the work of the designer in 

many technical applications and technological developments. 

Numerous theoretical and empirical models have been proposed to 

predict effective thermal conductivity. However, despite the importance of 

this property and the significant amount of studies that has been carried 

out, the determination of the effective thermal conductivity of the 

composite is only partially understood. The reason is that the effective 

thermal conductivity is a complex function of the thermal conductivity of 

the various components of the composite material, their geometry, the 

distribution of fillers within the matrix material, and the contact between 

the components. 
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Analytical methods for solving heat conduction problems can be 

applied to a finite number of problems in which the geometry of the object 

is represented only by the simplest forms (circle, rectangle, etc.). An 

additional factor that complicates the theoretical description of heat 

transfer in composites is the random spatial distribution of the filler 

particles.  

The spatially-graded composites have a wide range of applications. 

Such composites consist of two or more components in which the relative 

volume fractions of the components or the dimensions of the filler particles 

vary in space according to a fixed law [33–38]. The space-graded 

composites due to their thermal anisotropy can form effective thermal 

barriers and heat flow routers.  

The calculation of the thermal conductive properties of materials with 

randomly inhomogeneous spatial distribution of filler particles, with 

complex shape, as well as the thermal conductive properties of spatially-

graded materials, is possible using numerical methods. The calculation of 

the temperature profiles in such materials requires the use of the concept of 

effective thermal conductivity and the study of the distribution of local 

heat fluxes in inhomogeneous systems with complex geometry. 

Our work is devoted to numerical modeling of heat transfer processes 

in two-component materials with randomly inhomogeneous spatial 

distribution of filler particles. Such a choice of the research object allows 

us to use a statistical approach to the modeling and analysis of material 

properties. In addition, the results of the study will highlight those physical 

laws that play an important role in the formation of thermal properties of 

spatially-graded composites.  

 

 





 

 

 

 

 

 

Chapter 2 

 

 

 

MODELS FOR THERMAL CONDUCTIVITY  

OF COMPOSITES 
 

2.1. HOMOGENIZATION METHODS 

 

Numerous models have been proposed to predict macroscopic 

properties of the heterogenic medium, knowing the properties and volume 

fractions of the constituents. These are known effective medium theories. 

In these models, heterogenic materials are considered as being 

macroscopically homogenized. Due to their nature, effective medium 

approximations are unable to accurately predict the properties of 

heterogenic material. 

Early Maxwell and Rayleigh works [39, 40] based on mathematically 

analogy of electrical and heat conductivity presented analytical expressions 

for effective conductivity of heterogenic medium. These authors 

considered the problem of spherical particles (filler) of conductivity f 

embedded in a continuous matrix of conductivity m. Rayleigh’s model 

assumes the thermal interaction between the embedded spheres. The 

Maxwell and Rayleigh expressions for effective thermal conductivity e of 

heterogenic medium have the same form  
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Are the Maxwell and Rayleigh model coefficients. Both formulae are 

applicable only in the case of low φ (φ   25%). 

Hamilton and Crosser [41] modified Maxwell’s model. They studied 

the influence of included particle shape, composition, and pure component 

conductivity upon the thermal conductivity of heterogeneous two-

component media consisting of a continuous and a discontinuous phase. 

The definition for the mixture thermal conductivity given by authors is: 

 

     
   fmmHCf

fmHCmHCf

m

e
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










1

11
, (4) 

 

where  is sphericity; HC = 3/ . 

The authors proposed that the effect of particle shape should not be 

important when the ratio of conductivities of the two phases is below about 

100. The results of study pointed on a strong shape effect in the case then 

discontinuous phase has the higher conductivity: f >> m. The authors 

pointed out that additional compound can be formed at the interfaces 

between the two phases as well as the shape of the particles may be 

indeterminate in the case of in the case of zero distance between the 
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particles. All these complications will have a large effect on the mixture 

conductivity in cases where the phases have widely different conductivity. 

Experimental results and theoretical analyze indicated that the effective 

thermal conductivity of composites can be affected by a thermal barrier 

resistance at the interface between the individual components [42–50]. 

Hasselman and Johnson [51] examined the influence of particle size 

and interfacial gaps between filler and matrix on the composite materials 

effective thermal conductivity. They proposed modification of Maxwell 

and Rayleigh expressions for effective thermal conductivity of composites 

with nonzero interfacial thermal resistance. Hasselman-Johnson formulae 

based on the dependence of the effective thermal conductivity on the 

particle radius af and the boundary conductance hc. The authors examined 

the thermal conduction in continuous matrix phase with inclusions of 

spherical, cylindrical and flat plate geometry. The formulae for effective 

thermal conductivity are 

 









12

21

5.0 HJHJ

HJHJ

m

e




   (Spherical geometry) (5) 
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f
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and 
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cf

f

m

f

HJ
ha






 

2
12 . (9)  

 

Inclusions with flat plate geometry (last expression) are oriented 

perpendicular to the heat flux. 

The derivation of the effective thermal conductivity of the composite 

relied on assessing the cumulative effect of small spheres of radius af 

within a large sphere with the effective thermal conductivitye. Analogous 

arguments were used to calculate the effective thermal conductivity for the 

case of the cylindrical geometry of inclusions. Hasselman and Johnson 

examined thermal conductivity of composite with flat plate inclusions 

oriented perpendicular to heat flow. The effective thermal resistivity of 

composite was obtained by the addition of the thermal resistivity of each 

component plus the sum of all the interfacial thermal resistances.  

The above results indicate that the effect of the interfacial thermal 

barrier resistance on the effective thermal conductivity is controlled by the 

non-dimensional parameter  cff ha/ , and its value relative to the ratio

 mf  / . For   cff ha/  the effective thermal conductivity 

corresponds to the value for a matrix with a dispersed pore phase, 

irrespective of the absolute value of f. The results of the study indicate 

that the effective thermal conductivity for any value of hc, not equal to 

infinity, depends on the size (and size distribution) of the dispersed phase 

particles. 

Tavangar et al. [52] considered the factors that limit Maxwell mean-

field scheme usage, including the popular Hasselmann-Johnson model, for 

estimating the effective thermal conductivity of composite, especially in 

the case of a high effective phase contrast between composite constituents. 

Predictive schemes [53–56] for thermal conductivity of composites are 

assessed in the range of intermediate effective phase contrast against 

experimental values on diamond particle-reinforced Ag-Si alloy 

composites. The two composites were reinforced with synthetic diamond 

particles of different size in order to vary the effective thermal conductivity 
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of the inclusion phase due to the presence of a finite interface thermal 

conductance. Tavangar and his co-authors used the following formulas for 

particulate composites to confront experimental data with the Maxwell 

mean-field approach and differential effective medium, respectively 

 

   
   


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1221
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e

A , and   3/1

1
1






 A

A
e

e




 ,  (10) 

 

where A = c/m is conductivity amplification factor, c is thermal 

conductivity of the composite,  

 

  cfff
e ha/1/   .  (11) 

 

An intrinsic thermal conductivity of the two diamond sizes was 

deduced in study. While the interface thermal conductance hc remains 

roughly constant for the data sets deduced from differential effective 

medium scheme, the interface thermal conductance diverges from the data 

analyzed by the Maxwell mean-field scheme, requiring even negative 

values at very high effective phase contrast. For low effective phase 

contrast (small diamond particles and low matrix heat treatment 

temperature) the interface thermal conductance deduced based on the 

Maxwell mean-field scheme is similar to that found by the differential 

effective medium scheme for all conditions. 

Their study shows that the results obtained with differential effective 

medium scheme were close to experimental in the whole examined range 

of effective phase contrast  

 

 ]8;2[/  cm
e

c  , (12) 

 

whereas the Hasselmann-Johnson model failed above c = 4. 

Bruggeman [57] and Landauer [58] proposed mathematical formalism 

which allows one to estimate effective properties of heterogeneous 
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materials, such as thermal conductivity, and thermal diffusivity. This 

theory is called the differential affective medium theory and assumes that a 

composite material may be constructed gradually by introducing 

infinitesimal changes to an already existing material. The scheme 

presented by Bruggeman and Landauer gives formulae for multi-

component systems, in addition to the classical case of two components. 

One of the advantages is the high accuracy results for high filler volume 

fractions. Using Bruggeman’s approach, Every and Tzou [59] obtained an 

expression for effective thermal conductivity of particulate composites 
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where  

 

f

mbr

a

R 
   (14) 

 

is a dimensionless parameter depending on interfacial thermal resistance 

between filler and matrix, Rbr is specific boundary resistance, and 

 

   1fET . (15) 

 

Assuming in particular case that filler conductivity is much greater 

than that of the matrix, Every and Tzou approach may be simplified to 

formula [60]:  

 

    



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

21/3
1 fET

f
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The radius af boundary value for ZnS/diamond composite was 

estimated in study. The case of smaller particle sizes leads to mismatch 
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between the experimental results and theoretical predictions. This 

inconsistency may be caused by the non-spherical shape of diamond 

particles while the theoretical formula is for spheres. Authors observed that 

the thermal conductivity of ZnS/D composite is increased by adding large 

particles of highly conducting diamond, but lowered by the addition of 

sub-micron size particles of diamond. This effect is explained in terms of 

the interfacial thermal resistance which becomes increasingly dominant as 

the particles becomes smaller (because that increases their surface to 

volume ratio). A phenomenological model in which the interface resistance 

is expressed as an effective Kapitza radius is presented. Every, and Tzou 

applied Maxwell and Bruggeman models for low and high volume fraction 

composites, correspondingly. Both results, Maxwell and Bruggeman, 

predict that the effective thermal conductivity of the composite will be 

unchanged by the particles if the radius of the dispersed particles is the 

same as the Kapitza radius. The effective conductivity of the composite is 

lowered by the particles with radius smaller than the Kapitza radius, even 

if the particles themselves have a higher conductivity than that of the 

matrix. The conducting limit reached when the particles are about 10 times 

the Kapitza radius. 

Thus the Kapitza radius becomes a physically important parameter in 

the design of composites where the objective is to change the thermal 

conductivity by mixing two different constituents. 

Lewis and Nielsen semi-theoretical model provides reliable evaluation 

of thermal conductivity for a wide range of particle shapes and patterns. 

The Nielsen model formulation [61] for evaluating thermal conductivity is 

defined as  
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where  

 

11  ELN k  (18) 
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The value φmax is the maximum packing fraction in the aggregates. The 

constant kE represents the Einstein coefficient, which takes into account the 

geometry and orientation of the particles dispersed within the polymer 

matrix. The factor φmax represents the maximum packing fraction of filler, 

which is the fraction of the true volume of the filler to the volume of the 

filler when packed to its maximum capacity. The constant LN1 depends 

primarily upon the shape of the dispersed particles and how they are 

oriented with respect to the direction of heat flux. The constant LN1 is 

related to the generalized Einstein coefficient kE. The factor LN2 is a 

constant which takes into account the relative conductivity of the two 

components. The study results indicate that equation (17) for composite 

systems is a very good approximation in most cases. Equations (17) 

predicts values of thermal conductivity which are somewhat too high when 

φ = φmax if the discontinuous dispersed phase is the more conducting of the 

two phases. However, at lower concentrations, theory and experiment 

generally agree very well. The effect of particle packing can be taken care 

of by the value φmax, which can be experimentally measured in many cases 

and calculated in other cases. The Nielsen model is inconsistent with the 

experimental results for high values volume fraction of the filler. 

Using variation principles Donea [62] obtained upper, +, and lower, 

, bound for the effective thermal conductivity of composite material 

which is statistically homogeneous and contains two phases each having 

isotropic and uniform thermal conductivity 
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For spherical inclusions 
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where amax is the radius of the larges possible spherical shell surrounding 

the inclusion for random dispersion of spheres, 

 

mfp  /  and  3
max/ aas f .  (24) 

 

Equality  
  corresponds to a matrix with a random 

dispersion of inclusions with varying sizes. 

The effective thermal conductivity of materials reinforced by parallel 

circular fibers has also been investigated in [62]. The fibers were assumed 

to be of identical cross section and to be located at the vertices of a square 

or a hexagonal lattice. Exact bounds for the thermal conductivity in the 

transverse direction were obtained by using a concentric-cylinders model 
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From the geometry of the hexagonal array 32/  , and for a 

square array φ = /4. Donea compared the upper and lower bounds for a 

hexagonal, a square, and a random array of circular fibers. The bounds for 

specified packing geometry are seen to be very close together except near 

the maximum theoretical volume fraction. 

Benveniste [63] considered the effective thermal conductivity of a 

particulate composite exhibiting a thermal contact resistance at interphase 

boundaries. The study is concerned with the effective thermal conductivity 
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of composites containing spherical inclusions at non-dilute concentrations. 

The influence of the interfacial thermal resistance on the value of the 

effective thermal conductivity of composite was considered following 

methods considered in [64–67]. Two different micromechanical models are 

presented which take approximately into account the interaction between 

the particles: the generalized self-consistent scheme, and Mori-Tanaka 

theory [68]. Both methods, distinctly different in their approach, result in 

the same closed-form simple expression for the effective thermal 

conductivity.  

Benveniste defined for homogeneous composite average quantities 

with imperfect interfaces: intensity H and flux j fields. The equality for 

flux field follows under the assumption of steady conditions and no heat 

sources.  

At the interface S12, the normal component of the heat flux is 

continuous, that is 

 

      iiii nSjnSj 12

2

12

1  , i = 1, 2,  (26) 

 

where ni denotes the normal to S12 and is defined from the inclusion to the 

matrix. The study based on two fundamental equations necessary for the 

determination of the effective thermal conductivity 
*

ij  and thermal 

resistivity 
*

ijR  tensors:  
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where , φr, and Rr (r = 1, 2) denote, respectively, the thermal conductivity, 

volume fraction, and thermal resistivity of the isotropic and homogeneous 

constituents; the intensity components 
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T (xi) stands for the temperature field; ji = ijHj are heat flux 

components;  

0
iH and 

0

ij  are constant intensity and heat flux components at the surface 

S. The total flux is 
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The average intensity H contains an integral involving the jump in the 

temperature field across S12. The thermal contact resistance between the 

constituents is presented by third-type boundary conditions. The volume 

fraction of the composite sphere is chosen in [63] such that Bof aa 33 / , 

where 
fa  denotes the radius of the particle core and aor is the outside 

radius. The normal component of the heat flux in the generalized self-

consistent scheme is continuous at r = af, and r = ao. The temperature field 

is continuous at r = ao, but at r = af third-type boundary condition prevails. 

Author mentioned, that the solution for the effective conductivity is valid 

for equal size inclusions of radius af and the maximum volume fraction of 

the particles need, in this case, be lower than B = /6. 

The Mori-Tanaka theory applied in the present paper to the 

conductivity problem of a particulate composite exhibiting a thermal 

contact resistance between the constituents. Benveniste used the dilute 

approximation, so average heat intensity H , and heat flux J  would have 

been approximated by embedding a single inclusion in an all matrix 

medium. The heat intensity H  depends on the average perturbed intensity 

in the matrix due to the presence of all the inclusions, and perturbed part of 

the same quantity in the inclusions with respect to the matrix. Author 

pointed out, that a coincidence between the Mori-Tanaka and generalized 
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self-consistent approaches does not exist for an imbedding with 

Bfo aa 33 /  and is not to be expected a priori for inclusion shapes other 

than spheres.  

Most homogenization models take into account only the volume 

content of additives in the composite and do not consider possible changes 

in their mutual arrangement. The estimation of transverse thermal 

conductivity of continuous fiber reinforced composites containing a 

random fiber distribution with imperfect interfaces was performed in [69] 

using finite element analysis. Study results were compared with the 

classical solution of Hasselman and Johnson to determine limits of 

applicability. The results show that for the f /m > 1, the effective thermal 

conductivity solutions converge at a single Biot number Bi = hcaf /f , 

irrespective of the volume fraction φ. This value of interfacial thermal 

conductance will be referred to as the homogenizing value. It can be 

postulated for all f /m > 1, there exist an imperfect interfacial condition 

which balances out the effects of the higher fiber conductivity and causes 

the material to behave homogeneously globally and locally.  

For f /m > 1, the Hasselman-Johnson model under predicts thermal 

conductivity for conditions of nearly perfect interfacial bonding  

(Bi = 10000). For all f/m, the model over predicts the value of thermal 

conductivity for conditions of nearly insulated interfaces (Bi = 0.001). 

Significant differences of up to 10 percent exist between the model and 

finite element data for conditions of perfect interfacial bonding and  

f /m > 1. These differences vanish as the interfacial thermal conductance 

approaches the homogenizing value. Decreasing Bi results in increased 

differences between the model and results as the material begins to 

simulate a material containing voids. This can be seen since the differences 

between the model and numerical results converge to a value on the order 

of 15 percent (for a fixed volume fraction) once Bi is less than 

homogenized value. The study results show that the description of dilute 

fiber reinforcement should be based not on the fiber volume fraction φ and 

fiber distribution alone, but also include the boundary condition at the 
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reinforcement interface which controls the level of interaction between the 

constituents. 

 

 

2.2. REPRESENTATIVE VOLUME ELEMENT 

 

Homogenization methods are used to extract thermal effective 

properties of heterogeneous materials from the knowledge of the spatial 

distribution of their components. Numerical techniques and simulations on 

samples of the composite microstructure can be applied to solve 

homogenization problems. In this case, the concept of a representative 

volume element (RVE) is of paramount importance. RVE is usually 

considered as the volume V of a heterogeneous material that is large 

enough to be statistically representative of the composite, i.e., to efficiently 

include in the element all the microstructure heterogeneities that occur in 

the composite.  

An algorithm of effective thermal conductivity evaluation is based on 

sequential solution of boundary problems of thermal conductivity with 

different boundary conditions (in the form of the temperature on the 

boundary) on RVE of composite with subsequent averaging of the 

resulting vector field of heat flux. 

There are a few issues that need to be carefully considered when 

carrying out the RVE analyze. The correct RVE corresponding to the 

assumed fiber distribution must be isolated. Secondly, correct boundary 

conditions need to be applied to the chosen RVE to model different loading 

situations. Proper consideration must be given to the periodicity and 

symmetry of the model in arriving at the correct boundary conditions. 

Under longitudinal and transverse normal loading, a typical RVE can 

deform in such a way that it remains a right parallelepiped. 

Kanit et al. [70] proposed quantitative definition of the RVE, which is 

based on statistical arguments. The methodology is applied to a specific 

random microstructure, namely a two-phase three-dimensional Voronoï 

mosaic. Three-dimensional Voronoï cells are simple representations of 

grains in a polycrystalline. A volume V of two-phase heterogeneous 
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material is considered. Hard phase (respectively highly conductive) has 

volume fraction φh and thermal conductivity h. The soft one (respectively 

less conductive) has volume fraction φs and thermal conductivitys. Three 

types of boundary conditions are used in the study of the effective thermal 

conductivity:  

 

a) Uniform gradient of temperature at the boundary: T = Gx, x  V, 

where average temperature gradient is 

 

 
V

GTdV
V

T
1

,  (31) 

 

b) Uniform heat flux at the boundary: jn = Jx, x  V, where average 

flux is 
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,  (32) 

 

where n is the modulus of a vector perpendicular to V, 

 

c) periodic boundary conditions:  

 

VxTGxT fl  , ,  (33) 

 

where the fluctuation temperature Tfl is periodic.  

Finite element simulations of volumes of different sizes are performed 

in the case of linear elasticity and thermal conductivity. The multi-phase 

element technique and technique of free meshing with tetrahedral elements 

were compared in the case of the Voronoï mosaic. Authors defined an 

integral range A3 in the space R3 which gives information on the domain 

size of the structure for which the parameters measured in this volume 

have a good statistical representatively. In the case of 3D Voronoï mosaic 

model the integral range is  
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}{/}{ 2
3 VEVEA  ,  (34) 

 

where E {Z} is the mathematical expectation of property Z. The value of 

the integral range is deduced from the variance of the volume of the 

random cell: A3 = 1.17. 

The thermal conductivity of the considered material, as a function of 

the size of the domain is estimated. The macroscopic linear properties of 

composites are available. They include the Wiener bounds that take only 

the volume fraction of the components into account.  

It shows that the dispersion of results decreases when the size of the 

volume increases. The mean value of effective thermal conductivity given 

by the periodic boundary conditions does not vary very much, as compared 

to the other boundary conditions. For small volume elements, the average 

thermal conductivity obtained by simulations depends on the boundary 

conditions: uniform gradient of temperature gives results close to the upper 

Wiener bound W+ = φhh + φss , and uniform heat flux produces results 

close to the lower Wiener bound  
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The self-consistent scheme, presented by Beran, gives the overall 

thermal conductivity e as the solution of the equation 
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3D Voronoï mosaic model is relevant for poly-crystals but also for 

two-phase materials in which both phases percolate. The fluctuations of 

modules on small domains can be attributed to the percolation level of the 

hard phase for the fixed realization. The results of the study indicate that 
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the increase in the contrast of properties leads to an increase of the integral 

range and of the RVE size.  

Kamiński [71] propose the homogenization-based finite element 

method algorithm for computational analysis [72, 73] of transient heat 

transfer processes in composite materials. For this purpose, the additional 

1D, 2D and 3D composites homogenization models are collected and 

tested numerically in terms of deterministic as well as stochastic 

sensitivity. Two essentially different FEM formulations are obtained in 

study. Numerical results obtained by the use of both symbolic 

computations and the standard FEM program are related to general 

deterministic and probabilistic sensitivity of homogenized coefficients. The 

main purpose of numerical tests was to verify the efficiency of transient 

heat transfer homogenization procedure using the example of a three 

component layered composite. 

The effective heat conductivity for periodic fiber-reinforced composite 

in 2D problem where the fiber has the round cross-section and the total 

composite volume is relatively large in comparison to the single inclusion 

can be approximated using cylinder assemblage model or, using the 

spherical inclusion model for spherical inclusions, distributed periodically 

in 3D composite, in the form of 

 






























1

21

2

2

)( 1
1






i

iD

e , 3,2i   (37) 

 

where 1, 2 are thermal conductivities of composite components. The 

following assumptions are made in [71]: a) there is no mechanical 

deformation accompanying thermal process, b) material parameters are 

independent from the temperature field, c) there are no phase changes and 

latent heat effects. 

Computational experiments performed using symbolic mathematics 

show the variability of effective heat conductivity for 2D and 3D 

composites as a function of the reinforcement volume ratio, of composite 

components conductivity coefficients as well as of the probabilistic 
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moments of material properties versus volume ratio. The results of 

particular computational tests indicate that the heat transfer history is not 

sensitive to the interrelation between heat capacities of the constituents. 

The steady-state temperature function tends to that obtained for the 

homogenized composite, while 2/1 1. The difference of composite 

thermal behavior within the second component region starts to be 

significant for increasing values of the ratio 2/1. 

All the FEM-based results generally confirm the usefulness of the 

homogenization method presented above to the transient heat transfer 

analysis of layered composites [74–85]. The authors point out that the 

presented homogenization method can be efficiently extended on the 

stochastic finite element computational modeling, where some of material 

properties are treated as random variables or fields. The results obtained 

for deterministic and probabilistic computations of effective heat 

conductivity show almost the same sensitivity of 1D, 2D and 3D 

composites to geometrical and material parameters. However the values of 

this coefficient obtained for the same reinforcement ratio are the largest for 

the 3D composite with spherical inclusion, next for the 2D fiber-reinforced 

composite, and the smallest for the 1D case. 

The size of a RVE can be defined for a given physical property, a 

given contrast and, above all, a given precision in the estimation of the 

effective properties and given number of realizations that one is ready to 

generate. For the same absolute error on the mean value, the periodic 

boundary conditions require the largest domain size compared to the other 

boundary conditions [86–96]. The uniform gradient of temperature at the 

boundary conditions gives a smaller domain size than the uniform heat flux 

for the same absolute error. For a given precision, the required number of 

realizations decreases when the volume increases. The periodic boundary 

conditions require the largest number of realizations, as compared to other 

boundary conditions. A scale-dependent comparative study of the different 

criteria which characterize the finite RVE size is performed in [97]. The 

effective properties, the Hill condition, the mean and the variance of the 

stress and strain components in the fiber and the typical inter-fiber distance 

distributions criteria are analyzed with the aim of defining a statistical 
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representative volume element. This element should reproduce the same 

statistics relating to stress and strain fields as all material, as well as 

statistical data related to the distribution of fibers. Trias et al. defined the 

dimensionless variable  = LS/Rf for fiber-reinforced composites. This 

variable relates the side length of the statistical representative volume 

element LS and the fiber radius Rf. The work established the size of a 

statistical representative volume element for a typical carbon fiber 

reinforced polymer. It is concluded that the minimum size is  = 50.  

Concerning the RVE determination in practical cases, two main 

approaches can be distinguished which are based on: 1) experimental 

observations [98–106] by combining basic morphological tools with 

stereological and image analysis techniques in order to describe the 

geometrical dispersion of the medium; 2) effective properties by means of 

analytical approaches or numerical analysis [107–116]. Shan et al. [98] 

developed methodology to arrive at a sufficiently small micro-structural 

window that can be regarded as a RVE of a non-uniform micro-structure of 

a ceramic matrix composite containing a range of fiber sizes, and fiber-rich 

and -poor regions at the length scale of about 100 m. Authors presented 

methodology involves quantitative characterization of microstructure, 

micro-structure modeling, finite element-based simulations on computer 

simulated micro-structural widows of different sizes containing 60–2000 

fibers, and finite element simulations on large-area high resolution digital 

image of the composite microstructure containing about 2000 fibers. 

Forest et al. [107] used Cosserat modeling to study the size effects in 

the mechanical behavior of poly-crystals and multi-phase materials. Three-

dimensional finite element calculations of periodic Cosserat multi-

crystalline aggregates of different grain sizes are provided in this study. 

The mechanics of generalized continua has been shown to be an 

appropriate tool to account for size effects in poly-crystal and multi-phase 

materials. Analysis of study results leads to the necessity of formulating an 

initial boundary value problem of Cosserat plasticity with periodicity 

conditions for both the micro-structure and the mechanical fields. 

Original statistical-numerical RVE determination method has been 

developed by Pellisou et al. [117]. The aim of this work was the 
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determination of RVE size of quasi-brittle random metal matrix composite. 

Authors developed statistical-numerical RVE determination technique that 

guarantees, for given RVE size and precision, a sufficient number of 

realizations while offering a good compromise between the RVE size and 

the total CPU time. This technique is based on the statistical framework 

previously used in [63] and on stopping criterion to build the initial 

samples. Criterion construction relies on: 1) the integration of estimation 

uncertainty (related to variance and mean) in the identification of the 

crucial integral range; 2) a sampling strategy that is adapted to the accuracy 

(i.e., relative error). Connection between linear and non-linear RVE sizes is 

provided by aspect ratio of energy and elastic integral ranges

3
,, / CirEir AA , where integral range equals 
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where N   is the space dimension. The covariance function associated to 

an ergodic and stationary random medium Xm and denoted C (Xm, hp) is the 

two-point probability function, i.e., the probability for two points with the 

separation hp to be in the set  
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For hp = 0, the covariance is the volume fraction of Xm: C (Xm, 0) = φ 

(Xm). It was shown that integral range depends on the studied property. The 

integral range is large for non-linear property than for elastic one.  

Authors studied the effect of the volume fraction on the RVE size and 

on the fracture energy accuracy. Particular attention was focused on the 

volume fraction of the inclusions that gives the maximal standard deviation 

of the fracture energy. The mean value of the fracture energy converges 

when the domain size increases. For the intermediate and large domain 

sizes, the relative error range includes the stabilized value of the mean 

fracture energy. 
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The methodology has been successfully to the RVE determination of 

quasi-brittle random metal matrix composites for linear and no-linear 

properties. In the case of quasi-brittle fracture properties, the RVE size is 

found to be about 8–10 times the linear RVE size. The approach is flexible 

enough to be applied to linear and non-linear properties allowing one to 

exhibit a correlation factor between linear and non-linear RVE.  

The numerical estimates of the effective linear properties of random 

composites are more accurate in the case of small volumes subjected to 

periodic boundary conditions, if a sufficient number of realizations are 

considered. Sab and Nedjar [118] proposed a qualitative convergence 

criterion for the numerical finite element simulation of a two-phase 

composite. This type of numerical estimates requires statistical methods to 

analyze the results, such as: 2 criterion [119], and the two-point 

probability [120].  

Sab and Nedjar determined the homogenized elasticity tensor C hom, 

associated with each periodic realization L. Tensor C hom has ensemble 

average C hom, L and can be classically obtained with the standard periodic 

homogenization. The analysis is restricted to two-phase composites, for 

which VL is the cube centered at the origin with sides of length L > 0 

parallel to the canonical basis. The rate of convergence of C hom, L to C hom 

depends on the adopted periodization sequence and convergence up to a 

given relative error may occur for unit cell size larger than the minimum 

RVE size. Numerical estimates for ensemble average of matrix volume 

fraction φ are also provided.  

An L –periodized sample of the above described inclusions-matrix 

composite is generated as follows: first, the number N of inclusions centers 

in VL is generated according to the Poisson integer random variable. Then, 

N centers are uniformly distributed in VL and they are extended to the 

whole space by L –periodicity. It can be proved that the L –periodized 

medium is statistically invariant. 

The convergence of C hom, L to C hom is slower for phase contrast 100. In 

this case, the overall shear modulus is twice the Hashin-Shtrikman lower 

bound and one fifth the upper bound. Analysis of numerical calculations 

indicates that the normalized correlation function for L/RRVE = 10 is very 
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small outside a circular domain of radius RRVE. Similar result is obtained 

for phase contrast 10. This plaids for a minimum RVE size equal to 2RRVE 

in agreement with the two-probability function estimation. 

Marcos-Gómez et al. [121] compare the predicted values of the 

thermal conductivity of composite made using the differential effective 

approach, mean field approach, and the finite element method. The effects 

of inclusion anisotropy, inclusion orientation distribution, thermal interface 

conductance, and inclusions dimensions have been considered. The 

objective of study has been to use a range of modeling methods to evaluate 

the effect of fiber anisotropy and interfacial thermal contact resistance into 

the global thermal properties of a Cu matrix composite reinforced with 

carbon nanofibers.  

The results have been contrasted with results, obtained through 

mentioned homogenization methods for RVE. Comparisons have been 

made for cylindrical and spherical inclusions.  

The thermal interface conductance is implemented by replacing the 

inclusion with a non-ideal interface by an effective inclusion with thermal 

conductivity 
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In order to separate the influence of the different parameters involved 

(size of reinforcement, volume fraction, phase contrast, interface thermal 

conductance, anisotropy of the reinforcements), the comparison has been 

made first with spherical inclusions and then with short fibers represented 

by cylinders.  

The composite thermal conductivity c given by mean field approach 

for a spherical inclusion is the same as that derived by [51]: 
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where m
e
f

e  /  . 

The differential effective approach counterpart is given by 
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Isotropic spherical inclusions with different thermal conductivities 

have been considered as a function of the thermal conductivity of the Cu  

matrix. Three different phase contrasts of 0.1, 1 and 10 have been studied, 

corresponding to 
f  values of 38.5, 385 and 3850 W/ (mK), respectively. 

The length of RVE considered was 10 times the inclusion diameter which 

is enough to obtain representative results.  

The finite element method tools were used to carry out a complete 

parametric study as a function of a thermal anisotropy of the inclusion and 

the interface conductance to identify the most important factors limiting 

the real thermal conductivity of Cu matrix composite reinforced with 

carbon nanofibers. The study compares the predicted thermal 

conductivities by finite element method and mean field approach for the 

three possible architectures (3D-random, planar-random and uniaxial) of a 

fiber reinforced composite for a fiber volume fraction of 0.28. 

The predictions of the different approaches for spherical inclusions 

match perfectly at low volume fractions and begin to deviate at φ  0.3. 

The differential effective approach consistently predicts higher values of 

thermal conductivity than the mean field approach, where the greatest 

relative difference (~18%) is observed at φ ~ 0.7. The values of φ, 

predicted by mean field approach tend to be lower than other prediction 

schemes. 

The fiber length was fixed at 500 nm and the diameter at 100 nm. The 

RVE considered were cubes of side 900 nm. In the case of spherical 

inclusions their size is not relevant since the thermal contact at the 

interface is perfect. The predictions of the different calculation models 



Models for Thermal Conductivity of Composites 27 

(differential effective approach, mean field approach, and the finite 

element method) match perfectly at low volume fractions and begin to 

deviate at an inclusion volume fraction of 0.3.  

The effect of interface thermal conductance on the composite thermal 

conductivity observed for volume fractions φ = 0.2 and φ = 0.4, 

considering f = 3850 W/(mK). The conductivity shows an asymptotic 

behavior both for low and high conductance. Therefore, three regions can 

be identified; two plateaus for high and low values of hc and a transition 

zone. For low hc the composite behaves as a porous material whereas for 

high hc the composite material with a perfect interface. The position of 

transition zone depends strongly on the inclusion size, with smaller 

inclusions showing more interface dominated behavior.  

The predictions of mean field approach and finite element method 

match within 3%, except in the directions where there is a substantial 

fraction of fibers in the direction of the heat flow, in which case the finite 

element method predicts lower values (12% and 14% lower in the planar 

and uniaxial cases, correspondingly). In the case of short fiber reinforced 

composite the most important parameters controlling the thermal 

conductivity are the interface thermal conductance and preferred 

orientation of the fibers.  

A procedure for predicting the thermal conductivities of composites 

through a combined approach of the RVE method and heat transfer 

analyses via finite element is presented in [122–138]. 

Insufficiently investigated aspects of the influence of the arrangement 

of inclusions on the thermo-physical characteristics of composites lead to a 

considerable spread in the estimates of the effective thermal conductivity 

of the composite in different directions, especially in the presence of 

elongated inclusions (fibers) and with a large difference in the thermal 

conductivity of the inclusions and the matrix [139–154]. 

The value of the effective thermal conductivity of a composite can 

vary over a wide range for different spatial distributions of the filler in the 

matrix, even at the same concentration [155–160]. 

Yang et al. [161] applied the inverse algorithm based on conjugate 

gradient method and discrepancy principle to estimate the unknown time-
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depended heat flux and temperature distribution for the system composed 

of a multi-layer composite strip and semi-infinite foundation, from the 

knowledge of temperature measurements. The direct problem, concerned 

with the determination of the medium temperature when the heat flux, 

thermos-physical properties of the multi-layer composite strip with 

periodically repeated cells, and initial and boundary conditions are known 

[162–166], considered in study. Ching et al. provided the inverse analysis 

to predict the unknown time-depended function of intensity of the heat 

flux, merely from the knowledge of medium and boundary temperature.  

Numerical results confirm that the proposed method can accurately 

estimate the time-depended heat flux and temperature distributions for the 

problem even involving the inevitable measurement errors. For the cases 

considered in this study, an increase in measurement error does not cause 

the obvious deterioration on the accuracy of the inverse solution. The 

results of calculations indicate that the temperature rises rapidly at the 

outer surface of the composite strip as a consequence of the rapid rise of its 

internal energy by heat flux, but it drops sharply as the distance from the 

outer surface increases.  

Gori et al. [167] employed a theoretical model to evaluate the thermal 

conductivity of fiber reinforcement composite with ceramic-silica matrix 

under two thermal assumptions which allow to solve the heat conduction 

equation. This theoretical approach employs the cubic cell model with 

parallel isothermal and heat flux lines. The elementary cubic cell of the 

material is presented in three dimensions with fiber reinforcement in the 

middle and the ceramic-matrix around. Authors explored the heat 

conduction equation in the three dimensions for a non-isotropic material  

 

zyxiTj kiki ,,,   .  (43) 

 

The heat conduction equation was solved under the two thermal 

assumptions of parallel isothermal lines, and parallel flux lines. The 

assumption of parallel isothermal lines means that the thermal conductivity 

in the transversal directions, i.e., on the isothermal plane, is infinitively 

high. The assumption of parallel flux lines means that the thermal 
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conductivity in the transversal direction, i.e., orthogonal to the heat flux is 

zero. A mathematical expressions for the total heat transfer in x, y, and z 

directions of composite sample, as well as the effective thermal 

conductivities were derived.  

The theoretical model and numerical simulations include the values of 

the thermal conductivity of the fiber which differ by several orders of 

magnitude. This allows studying the effect of the ratio between the thermal 

conductivities of the fiber and the matrix. Experimental results indicate 

that the effective thermal conductivity in x -direction has higher values for 

parallel isothermal lines, while the numerical simulations are intermediate 

between the two thermal assumptions. Gori et al. defined the anisotropy 

degree as the ratio x/z, and anisotropy efficiency as the ratio between the 

fiber and matrix conductivities. The anisotropy degree increases with the 

consumption of the layer of silica, reaching the maximum at the complete 

consumption of the upper layer. The anisotropic efficiency of the 

composite linearly decreases with the increase of the potential anisotropy 

of the two materials. The anisotropic efficiency reaches a minimum for 

f/m > 100, which is dependent only on the geometrical parameters of the 

composite. 

The foregoing is the reason for the transition in the study from 

averaged macro thermos-physical characteristics to local characteristics of 

composites. Local heat fluxes that are associated with individual inclusions 

and regions between them are an example of such micro characteristics. 

It is obvious that the description of heat transfer by means of local heat 

flux (LHF) in a randomly inhomogeneous medium can only be statistical. 

At the initial stage of developing this approach, it is required to study the 

statistical characteristics of various parameters of LHF. 

Heat conduction management for composites is still in its infancy. The 

influence of heat fluxes in the inner regions of the composite on the effects 

of heat transfer is obvious. The possibility to take into account the 

influence of the local heat fluxes spatial distribution on the average 

thermos-physical characteristics of the composite is important both for 

applied aspects and for the development of analytical models of heat 

transfer in composite media.  





 

 

 

 

 

 

Chapter 3 

 

 

 

NUMERICAL METHODS  

IN HEAT CONDUCTION 
 

3.1. MESH METHODS 

 

Numerical methods for finding the effective thermal conductivity of a 

composite material can be conditionally divided into two large groups. The 

first group of methods involves a numerical solution of the heat equation 

for fixed boundary conditions, as a result of which the temperature field is 

located. The finite difference method (FDM) [168–181] and the finite 

element method (FEM) [182–198] are the most popular in the whole 

variety of numerical methods for solving partial differential equations of 

the heat conduction type [199–211]. The major advantage of the first 

method is the simplicity of implementation, but the solution of the equation 

is performed on a uniform rectangular grid, which leads to a large amount 

of computation, and unrecoverable errors in the case of the non-rectangular 

shape of the filler particles of the composite or the counting area itself. The 

above is the reason for using the finite element method in technical 

applications.  

There are no restrictions on the geometry of objects for the finite 

element method [212]. However, in the case of the rectangular shape of all 

objects in the countable domain, both methods lead to equivalent results. 
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The simplicity of obtaining exact solutions in the case of anisotropic 

media and media with variable thermal conductivity is additional important 

advantage of the method of finite differences.  

James et al. [213] modified the finite difference method to calculate the 

thermal conductivity of a composite in which the fibers can be at any angle 

to the faces of the sample. Authors calculated heat fluxes in regions, 

remote from boundaries, where the temperature gradient is uniform over an 

appreciable volume of material for the case of known thermal 

conductivities and temperature gradient. FDM can be also applying to 

study the media with variable thermal conductivity [214–228].  

Elbarbary et al. [229] studied the effects of variable thermal 

conductivity on heat transfer from moving surfaces in a micro polar fluid 

through a porous medium with radiation. The governing fundamental 

equations of the thermal conductivity are solved numerically by using 

Chebyshev finite difference method [230–242]. The numerical results 

show that variable thermal conductivity has significant influences on the 

temperature profiles in cases of plane surface moving in parallel with the 

free stream and in the opposite direction to the free stream. The numerical 

results indicate that in the first case the temperature increases also as a 

variable conductivity parameter increases bat it decreases with 

permeability, variable viscosity and radiation increasing.  

A hybrid numerical technique which combines the differential 

transformation ad finite difference method is utilized in [243] to investigate 

the annular fin with temperature-depended thermal conductivity. The 

results of calculations indicate that the increase in thermal conductivity 

leads to more uniform temperature distribution in the medium. The results 

reveal that convective heat transfer is the main effective heat dissipation 

mechanism under the convection-radiation condition. Thus, in spite of the 

above advantages of the finite element method, the finite-difference 

method has its own specific field of application. 

Thus, the finite element method is more often used to numerically 

solve the heat conduction equation in composite materials with an arbitrary 

shape of the filler particles [244–256]. 
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Islam et al. [257] systematically studied the applicability of FEM in 

predicting the effective transverse thermal conductivity of fiber reinforced 

composites. The numerical research was applied for the cases of square 

and circle cross-section fiber. Authors pointed out the next ideal model 

assumptions: the composites are macroscopically homogeneous; locally 

both the matrix and the filament are homogeneous and isotropic; the 

thermal contact resistance between the filament and matrix is negligible; 

the filaments are arranged in a square periodic array, i.e., they are 

uniformly distributed in the matrix. The last assumption implies that the 

filaments are equal and uniform in shape and size and are symmetrical 

about the x - and y -axes. Four boundary conditions to calculate by FEM 

the effective transverse thermal conductivities of the RVE were employed 

in study: 1) prescribed constant boundary temperature on both vertical 

boundaries; 2) prescribed constant temperature and prescribed constant 

heat flux at the vertical boundaries; 3) prescribed constant heat fluxes at 

both vertical boundaries; 4) prescribed constant vertical boundary 

temperatures and a linearly varying temperature on the horizontal 

boundaries. All the boundary conditions yield about the same results up to 

the fiber volume fraction 0.5 and thereafter first condition gives the highest 

thermal conductivity and thirst condition the lowest one.  

The comparison with experimental results showed clearly higher 

thermal conductivity in the case of fiber volume fraction below 0.67. 

Authors pointed out the uneven distribution if fibers in the cross-section 

involving, e.g., contact of fibers leading to higher conductivity of the 

composite. 

In composites with interfacial thermal barrier resistance the effective 

conductivity varies in a wide range depending on the interfacial 

conductance between fiber and matrix. The maximum reduction of the 

effective thermal conductivity may be as large as 50% then the interfacial 

conductance is reduced by two decades. Best fit with available 

experimental results was obtained for both circular and fibers when the 

dimensionless interfacial conductance is about 30.  

Comparison of FEM results with available analytical and experimental 

results revealed that the effective conductivity of composites varies in a 
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wide range depending on the interfacial conductance between fiber and 

matrix. It was found that matrix crack parallel to the direction of heat flux 

would have no effect on thermal conductivity.  

Song et al. [258] calculated the effective thermal conductivity of 

polymer composites filled with randomly disposed non-interacting carbon 

nanotubes. The RVE was constructed by assuming that the carbon 

nanotubes are dispersed homogeneously in the polymer matrix. It was 

assumed that the RVE contains a single nanotube. The calculation of the 

heat transfer through the RVE assumes the applying of finite element 

method. In this case, the asymptotic expansion homogenization method 

was used, with the help of which the transition from a heterogeneous 

medium to an effective homogeneous medium at the macro and micro 

scale of RVE is carried out. The reason for using this procedure is that the 

ratio of the length of a carbon nanotube to its outer and internal diameters 

was of the order of 103 and 3103, correspondingly. 

 

 

3.2. STATISTICAL METHODS 

 

The second group of numerical methods for solving the heat transfer 

problem is represented by Monte Carlo methods [259–271]. The idea of 

using Monte Carlo methods for solving differential equations is to find a 

random process for which the numerical procedure of the solution 

coincides with the numerical procedure for solving a given equation [272–

275]. An example of such a random process for the heat equation is the 

random walk of a Brownian particle. 

We consider the Dirichlet problem for the temperature field T(x, y) in 

some two-dimensional region without sources of internal heat release. In 

this case, the application of finite-difference approximation on a uniform 

orthogonal grid with step h reduces the problem to the calculation of 

temperatures at internal nodes Ti,j, where i, j are the indices of the internal 

nodes of the countable domain. The finite differences method provides the 

following value for the temperature Ti,j of a homogeneous material  
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The modification of the random walk method allows one to solve the 

Dirichlet problem. Haji-Sheikh and Sparrow [276, 277] considered the 

methods of a fixed and floating random walks. 

A uniform orthogonal grid is superposed on the arbitrarily shaped two-

dimensional region in the method of fixed random walks. This procedure is 

also applied to the finite differences method. All transition probabilities 

between nodes in a homogeneous material are considered to be 1/4. The 

boundary of the region is considered as an absorbing screen. The process 

stops when random-walking particle reaches a boundary of the region. The 

values of the function φb (x, y) at the boundary are equal to φb;p,q where p, q 

are the indexes of boundary nodes. The function φb (x, y) can be considered 

as a random variable. Then the relation between the mathematical 

expectation vi,j of the function φb (x, y) for all trajectories of particles 

starting the walk from the inner node of the region with the numbers i, j 

and the mathematical expectations obtained for all trajectories of particles 

starting the walk from the neighboring inner nodes of the countable 

domain, can be represented as 
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It is obvious that formulas (44) and (45) have a similar form. 

Consequently, the quantities Ti,j can be considered as the mathematical 

expectations vi,j of the function φb (x, y). 

For the case of a sufficiently large number Np of particles whose 

trajectories begin at a fixed internal node (xi, yj) and terminate at the 

boundary, the value of Ti,j can be estimated as 
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where  )()( , k

q

k

p yx  is the exit point to the boundary of the particle with 

index k emitted from the node (xi, yj). Using formula (46), one can find a 

solution of the Dirichlet problem at a single point (xi, yj) without knowing 

solutions for the remaining points of the grid. 

It should also be noted that each particle emitted from point (xi, yj) and 

passing through some nodе (xm, yn) can be viewed as a particle emitted 

from point (xm, yn). Thus, one can obtain solutions to the Dirichlet problem 

for all internal nodes of the grid through which a large number of random 

walking particles passed. In addition, the resulting set of trajectories of a 

walk can be used in accordance with (21) to obtain a solution with any set 

of boundary conditions φb;p,q. 

Both FDM and the method of fixed random walks are difficult to apply 

for an arbitrary shape of the boundary.  

The method of floating random walks is free from this shortcoming. 

The initial point of the walk for this method is chosen arbitrarily. The next 

point of the trajectory is chosen on a circle whose radius is equal to the 

smallest distance from the initial point to the boundary of the region. The 

process is repeated until the particle is at a distance equals to the capture 

section from the boundary of the region. It is important to note that for  

N  ∞ the solution obtained by the floating random walk method tends to 

an exact solution, while the solution obtained by the fixed random walk 

method tends to a finite-difference solution, which in itself is approximate. 

Zinsmeister and Pan [278] developed the inscribed figure method. The 

basic concept of the inscribed figure method involves dividing the 

conduction region into standard shapes, for which analytical solutions are 

known. Along the dividing lines of standard shapes and inside areas that do 

not have a standard shape, the Monte Carlo method is applied. Standard 

shapes would include squares, rectangles, triangles, and circles for which 

Green’s function is known or could be calculated numerically. Thus the 

initial boundary value problem is reduced to a number of smaller problems 

in regions of standard shape. 

In the case of an anisotropic material or an inhomogeneous material 

with inclusions scattered in the matrix, a method of floating random walk 
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creates difficulties in determining the probability of a particle jumping to 

the next point of the trajectory. In order to overcome these difficulties, in 

the method of fixed random walks it is assumed that the probabilities of 

jumps from a given node to adjacent ones are inversely proportional to the 

thermal resistance between them, and their sum should be equal to 1.  

Cruz and Patera [279] presented a new first-principle framework for 

the prediction of effective properties and statistical correlation lengths for 

multi-component random media. The methodology is based upon a 

variation hierarchical decomposition procedure which recasts the original 

multi-scale problem as a sequence of three scale-decoupled sub-problems. 

The study is devoted to the computationally intensive mesoscale sub-

problem, which comprises: Monte Carlo acceptance-rejection sampling; 

domain generation and parallel partition based on Voronoi tessellation; 

parallel Delaunay mesh generation; homogenization-theory formulation of 

the governing equations; and finite-element discretization. 

Kowsary and Arabi [280] presented a Monte Carlo algorithm for the 

anisotropic heat conduction calculating, based on the fixed-step random 

walk. 

Heat transfer in composites was studied by Fiedler et al. [281–283] 

using Einstein relation for thermal diffusion 
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where De is effective thermal diffusivity, dS is dimensional structure, <R2 > 

is the average mean square displacement of random-walking particles that 

occurred over the time t. The effective thermal conductivity e is then 

obtained using the formula 
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where   is the average density, Ce is the effective specific heat of the 

multiphase material. The values   and Ce can be chosen arbitrarily in the 

case of a stationary transfer problem. 

The probabilities of a walking particle jumps between nodes of a 

uniform orthogonal grid are determined on the basis of the diffusion 

coefficients given in the source nodes and receiver nodes. The authors 

compared the solutions obtained in this modification of the Monte Carlo 

method and analytical methods for materials with a regular structure and 

found that these solutions are in good agreement. 

Reza Bahadori et al. [284, 285] developed this diffusion approach and 

modified the floating random walk method to analyze heat transfer in a 

composite material. The modified floating random method allows 

parallelization of calculations and gives a significant gain in comparison 

with the standard FEM. The modified floating random method and the 

standard finite element method are in quite good agreement. 

Grove [286] modeled transverse thermal conductivity in continuous 

unidirectional fiber composite materials by combining finite element 

analysis and spatial statistical techniques. Author proposed the statistical 

model of composite which based on the concept of Voronoï cells. 

Composite was modeled as a collection of these cells. For a given fiber 

volume fraction, the composite was regarded as comprising many unit 

cells, each with different dimensions. Grove proposed mathematical 

expression for the squared coefficient of variation of the cell dimensions 
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The constant K is defined by the probability density function of the 

distance from a fiber center to the boundary of the Voronoï cell. The 

function υ is associated with the 'excluded region' around each fiber center 

which can contain no other centers. The mathematical validity of the model 

was confirmed to volume fractions less than about 0.5. As the volume 

fraction increases, there is progressively less possibility for random 



Numerical Methods in Heat Conduction 39 

distribution of fibers, value of 
2

VC  decreases, and necessarily reach zero 

for hexagonal close packing.  

The finite element model was used to solve the temperature 

distribution within the cell. Heat flux and the effective thermal 

conductivity of the primary cell is calculated by applying the finite element 

model. Calculations were made for fiber volume fractions φ  [0.05 – 0.5]. 

The numerical calculation then yielded a value for the effective thermal 

conductivity of the primary cell, and was repeated over a wide range of 

values for f/m. The numerical study results pointed out that the random 

distribution of fibers gives thermal conductivities significantly lower than 

those calculated from the primary unit cell. The fractional difference 

increases from about 1% at a volume fraction of 0.05 up to 8% at a volume 

fraction of 0.5, and appears to be nearly independent of the thermal 

conductivity ratio f/m. The author notes that the combination of finite 

element analysis and spatial statistical techniques has resulted in a model 

of transverse thermal conductivity in continuous unidirectional fibre 

composites containing randomly distributed reinforcement. 

Boltzman lattice method has been widely used to investigate the 

effective thermal conductivity of porous media and composites [287–299]. 

Wang et al. [300] presented a full set of numerical methods for predicting 

the effective thermal conductivity of fibrous materials, which includes a 

random generation-growth method for generating micro morphology of 

fibrous materials based on existing statistical macroscopic geometrical 

characteristics and a highly efficient lattice Boltzmann algorithm. Authors 

considered a two-dimensional and two-phase fibrous material. They 

assumed each fiber is represented by a straight line located by its core 

position and orientation angle. The core distribution probability is defined 

as the probability of a point to become a core of fiber. The value of core 

distribution probability is strongly relative to the fiber number density. For 

the isothermal boundary treatment, authors followed the bounce-back rule 

of the non-equilibrium distribution 

 

 eqeq gggg   ,  (50) 
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where  and  represent opposite directions, geq is equilibrium distribution 

of the evolution variable g. The suggested approaches include a stochastic 

generation growth algorithm for producing the practical structures of 

fibrous materials, and a lattice Boltzmann model for solving the energy 

equations through the materials. 

The effective thermal conductivity of 2D fibrous networks is analyzed 

for different given parameters. The study results show that the fiber 

orientation angle limit will cause the material effective thermal 

conductivity to be anisotropic and a smaller angle limit leads to a greater 

anisotropy. The effective thermal conductivity of fibrous material increases 

with the fiber length and approach a stable value when the fiber length is 

sufficiently long. The effective thermal conductivity differs for different 

fiber location distribution functions as well. 

The effective thermal conductivity of composite materials with thermal 

contact resistance at interfaces is studied by lattice Boltzmann modelling in 

[301]. The partial bounce back scheme was revisited to obtain correct 

dimensional formula for thermal contact resistance. Xie et al. considered 

the concept of temperature “diffusing” through the multiphase lattice 

system to apply the thermal lattice Boltzmann method. The position-

dependent temperature diffusivity 
~

 has the same value as the real 

thermal conductivity, but with a different dimension (m2/s). 

The local macroscopic temperature and heat flux at each node were 

statistically calculated using distribution of the evolution variable. The 

study results showed that the existence of thermal contact resistance 

lowered the effective thermal conductivity. Thermal contact resistance 

increased with the particle-particle interfaces. With a low thermal contact 

resistance, the effective thermal conductivity of composites decreased with 

the increasing particle size. However if the thermal contact resistance was 

not negligible, a smaller average size of particles led to a lower effective 

thermal conductivity of composites for a given volume fraction . 

Thomas et al. [302] carried out a quantitative analysis of a globally 

transverse anisotropic unidirectional carbon fibre-reinforced polymer with 

a high volume fraction. The associated RVE for thermal conductivity 

predictions was estimated. Several spatial descriptors (fibre volume 
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fraction, pair correlation function, local area fraction distribution through 

Voronoï tessellation, covariance function) are used to characterize 

distribution of fibres location and reveal a weak level of anisotropy. A 

comparison of the results was made with those obtained for a random 

microstructure, so the deviation from the uniformity was graded with 

statistical parameters. 

The studied material is a unidirectional laminate that has been laid up 

with 27 layers of carbon fibres/epoxy matrix. In a layer, all the fibres have 

the same orientation, and all the layers have a 0 orientation. The fibres 

radii vary in the 2.8-3.9 m range. Comparison between the microstructure 

of an ideal isotropic-fibre arrangement and the microstructure of the 

studied composite material was realized. The microstructure of the 

isotropic-fibre distribution (in the plane orthogonal to the fibre direction) 

was modelled as a random point pattern. In a composite a hard-core model 

is employed since two fibres cannot be closer than a distance equal to the 

sum of their radii. The fibre radii dispersion and the fibre volume fraction 

were the ones measured in the experimental micrographs. The pair 

correlation function is defined for peculiar orientation (angle) as follows 
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where nk,(r) is the number of fiber centers within distance  

(r – r/2)/(r + r/2) from a reference fiber, N is a total number of fibers,  

is the fiber density, and r1 is the diameter of the channel in which the count 

is made. 

Authors associated Voronoï diagram to a non-parametric statistical test 

to get RVE objectivity. The computation of fiber locations in composite 

matrix was realized using a classical iterative algorithm and took into 

account the edge effects. Results of study showed that the covariance 

function was a relevant descriptor to point out the anisotropy. The 

covariance plot for two orthogonal directions ( = 0 and  = 90) 
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highlighted significant differences mainly for small distances between 

fibers (< 100 m). Authors have determined the RVE size considering the 

evolution of fiber area fraction, directional pair correlation function and 

effective thermal conductivities with the composite image size. The 

effective thermal conductivity calculations gave the estimation of RVE 

size (~ 280 m). 

 

 

3.3. MULTI-SCALE METHODS 

 

Most composite materials are multi-scale in nature, i.e., the scale of the 

constituents is of lower order than the scale of the resulting material and 

structure. For most of the analyses of composite structures, effective or 

homogenized material properties are used; instead of taking into account 

the individual component properties and geometrical arrangements. These 

effective properties are usually difficult or expensive to measure and in the 

design stage the composition may vary substantially, making frequent 

measurements prohibitive. Hence a lot of effort went into the development 

of mathematical and numerical models to derive homogenized material 

properties directly from those of the constituents and from their 

microstructure. However, sometimes such analyses are not accurate 

enough. In principle it would be possible to refer directly to the 

microscopic scale, but such microscopic models are often far too complex 

to handle for the analysis of a large structure. A way out is what is now 

commonly known as multi-scale modeling [303–307], where macroscopic 

and microscopic models are coupled to take advantage of the efficiency of 

macroscopic models and the accuracy of the microscopic models. The 

scope of such multi-scale modeling is to design combined macroscopic-

microscopic computational methods that are more efficient than solving 

the full microscopic model and at the same time give the information that 

we need to the desired accuracy.  

An analytical and micromechanical modelling study was conducted by 

Srinivasan et al. [308] to predict through the thickness thermal 

conductivity of composite filled with diamond powder are developed and 



Numerical Methods in Heat Conduction 43 

validated. This research also includes an algorithm based on modified 

random sequential adsorption algorithm was developed to generate 

statistically isotropic unit cell of carbon fibre containing up to 60% of 

volume fraction in the RVE along with random distribution of spherical 

and ellipsoidal diamond powder particles embedded in the matrix based on 

the position and orientation. The effects of aspect ratio, shape and particle 

size on thermal conductivity of the composite were studied. The goal of 

unit cell generation algorithm was to generate random distribution of fibers 

in the unit cell which would be statistically equivalent to the actual carbon 

fiber reinforced plastic microstructure. Statistical functions were used to 

distribute the fibers in the RVE. 2D FEM models of RVE with 

unidirectional carbon fibers in the unit cell along with spherical and 

ellipsoidal particle filler embedded in the matrix were randomly generated. 

The diamond powder filler was generated randomly based on position and 

orientation within the matrix without overlapping. The fiber and the fillers 

were meshed using three node linear heat transfer triangular elements and 

the epoxy was meshed using four node linear heat transfer quadratic 

elements. Steady state heat transfer thermal analysis of composite was 

carried out using finite element software. The insulated surfaces prevented 

convection and the direction of heat transfer was perpendicular to lines of 

heat sink. The temperature distribution between both faces of composite 

across the distance 2h is 
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The micromechanical analytical model was considered. The thermal 

conductivity of hybrid matrix of diamond powder/epoxy values according 

to these models is 
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In order to evaluate transverse thermal conductivity coefficient of the 

model, heat flux was calculated on the upper and lower faces of RVE and 

the thermal conductivity coefficient was determined by equation  

 

Thje /2 .  (54) 

 

The numerical results showed that the fiber inclusions demonstrate a 

significant influence for the heat flux distribution in the RVE and the heat 

fluxes are concentrated through the fiber-filler interaction. A comparison 

of FEM and analytical model for the transverse thermal conductivity of the 

composite was carried out in the study. The analytical micromechanical 

models were mainly dependent on the thermal conductivity ratios and the 

volume fraction of the constituents.  

The formulation and implementation of an extended finite-element 

method for random short fibre-reinforced composite materials have been 

proposed by Pike and Oskay [309]. A new enrichment function is proposed 

to incorporate the effect of random fibre inclusions within the extended 

finite-element method framework to eliminate the need of using finite-

element meshes compliant with fibre inclusions. An extended finite-

element method is based on the expression of the response field using the 

following approximation 
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where u is displacements; Na is the finite-element shape function 

associated with node a; a and b are the dummy indices of summation over 

all nodes and enriched nodes, respectively; ψ is the enrichment function; 

aû  and bĉ  are the nodal coefficients of the standard and enrichment shape 

functions, respectively; n is the total number of mesh nodes in a finite-

element discretization; and L is the index set of enriched nodes. The first 

right-hand side term of this equation corresponds to the standard finite-

element approximation of the response field, whereas the second part is the 
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enrichment to the approximation space based on a predefined enrichment 

function, ψ. 

The enrichment functions of extended finite-element method have 

been employed in modeling the deformation response of short fibers 

embedded in a matrix. The fibers were idealized in study as rigid bodies 

going through only translation and rotation, but no bending and stretching. 

This condition may be imposed by considering the following constraint 

 

       0:  cc xxRuxuxg  ,  (56) 

 

where uc is the constant vector of translation; R is the orthogonal tensor of 

rigid body rotation about the center of the fiber; and δ is Kronecker Delta. 

The orthogonal transformation imposed by the rigid body rotation 

constraint is valid for large rotations, but is a nonlinear constraint. The 

discretization of the trial and test functions follows the Galerkin method. 

The process was started by the decomposition of the problem domain into 

finite elements. In contrast to the standard finite-element approach, the 

mesh does not necessarily conform to the fiber domains, i.e., fibers are 

allowed to lie within the element domains. The constraint equation for the 

fiber indicates that the motion of the fiber is fully defined by a translation 

vector and a rotation angle.  

The following possible cases of fibre positions were considered in 

numerical calculation: far field elements with no enrichment, partially 

enriched elements, and fully enriched elements entirely crossed by the 

fiber, fully enriched elements that contain fiber. In full enrichment cases, 

triangular sub-elements aligned with the fiber faces are used in the 

integration of a 2D quadrilateral. The number of integration points along 

the fiber ( i
gn ) is determined using a heuristic formula as a function of the 

fiber length (li) and the mesh density (hm) given as the approximation to the 

nearest even integer   mi
i
g hln /3.1 . Only an even number of 

integration points are used to ensure that the no gauss point lies on the fiber 

center. 
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The numerical studies indicated that the sensitivity to the numerical 

integration of the constraint equation is the main factor leading to non-

monotonic convergence. The demonstrated errors are point wise in contrast 

to the more traditional error characterization in which the errors over the 

entire problem domain are averaged. The highest errors within the model 

typically occur at the fiber tips. The errors at the fiber tips tended to 

decrease slightly as it moved across the domain, but clearly demonstrate 

the position sensitivity of the accuracy. The largest errors occur when the 

tips of the fibers are positioned at the center of an element. The numerical 

examples of this work verified the performance characteristics of the 

proposed extended finite-element method against the direct finite-element 

method.  

Algorithms for automated meshing and unit cell analysis of periodic 

composites were introduced by Kim and Swan [310]. The hierarchical 

pixel/voxel meshing framework for periodic composites was extended in 

this study to achieve unit cell models of quadratic triangles (2D) or 

tetrahedra (3D) using combinations of element splitting and nodal shifting. 

Two of the most significant and challenging aspects of constructing 

meshes for general unit cell analysis of periodic composites are those 

associated with achieving full compatibility between the matrix and 

reinforcement phases (the two-way meshing problem), and that of applying 

periodic boundary conditions to the unit cell. To highlight the general two-

way meshing problem, it is helpful to consider the plane weave composite 

with orthogonal inserts. Meshing of the individual yarns in this unit cell 

model is actually quite simple, starting with a circular cylinder for each 

yarn and then applying a sequence of distortion, translation, and rotation 

transformations. Within the context of a standard FEM framework, 

attention is devoted here to solving the two-way meshing problem for unit 

cell or RVE models containing internal surfaces of discontinuity. In FEM 

and extended finite-element method the approximation functions are 

enriched using partition of unity concepts to incorporate local analytical 

solution characteristics in the vicinity of inclusions or discontinuities. 

In a three-dimensional spatial domain, the material region occupied by 

the R-th reinforcing fiber or particle can be described mathematically either 
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with a single function FR(X):  s  or a set of different functions as 

follows 

 

  0 XFX RSR
.  (57) 

 

These mathematical representations permit one to test whether any 

given material point lies inside of a specific reinforcing object R or outside 

of that object. The material points X lies inside of the R-th reinforcing 

object when FR(X) < 0.  

The textile composite unit cell model is composed of four woven yarns 

and nine orthogonal inserts. It is here assumed that each yarn was initially 

a straight cylinder with an elliptical cross-section, but then deformed so 

that the center-line curve is sinusoidal and so that cross-sections remain 

orthogonal to the original axis of the cylinder. In addition, the center-line 

curve of the yarn lies on a user-defined,  -plane. The mathematical 

description of each woven yarn in local co-ordinates can be written as 

 

     0ˆ0   RRR FXFX ,  (58) 

 

where  
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and center-line 
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In the preceding, r, r, are radii of the yarn’s elliptical cross-section in 

local directions, and, respectively, and l, l are the amplitude and 

wavelength of the sinusoidal curve CL ( ) that defines the centerline of 

woven yarn object in local co-ordinates  –.  

The fiber director is assumed parallel to the yarn’s center-line curve 

and is constant over each elliptic cross-section perpendicular to  -axis. 

Accordingly, the material director of point () in  -co-ordinates can 

be expressed as  

 

       
    0,/2cos/2,1            

/2cos/21ˆ 5.02









lll

llld






. (61) 

 

It was assumed that a given unit cell model can initially be meshed 

with hierarchical pixel (in 2D) or voxel (in 3D) meshing techniques.  

All pixels were splitted into triangles and all voxels into tetrahedra 

without regard to the location of material interfaces. In two dimensions, 

individual four-nodded pixels without hanging nodes can simply be 

diagonally bisected with no additional concerns about displacement field 

continuity between adjoining triangles, and if the original pixels are square, 

then the triangles resulting from splitting will have aspect ratios of 2 , 

where here aspect ratio is defined as the ratio of maximum to minimum 

edge length. The essential techniques used in subdivision of pixels into 

triangles generalize directly to three-dimensions where voxels and their 

quadrilateral faces are split into tetrahedra. 

In the current framework, the mesh of the unit cell was constructed in 

three stages: a) creation of the background pixel/voxel mesh; b) splitting of 

pixels/voxels into triangles/tetrahedra to form the base-triangular or 

tetrahedral mesh; and c) additional node-shifting and element splitting to 

achieve the final triangular/tetrahedral mesh. To demonstrate the 

robustness and efficacy of proposed meshing techniques, three different 

types of composite unit-cells are modeled in [310]: an aligned fiber 

composite at very high fiber volume fraction φf, achieved using multiple 
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fiber diameters; a particulate composite at moderately high volume fraction 

of reinforcement; and a three-dimensional continuous textile-reinforced 

composite material.  

The above methods were applied in three-dimensions to create the unit 

cell of Si–C and In–Sn composites. The inclusions are assumed to be 

spherical, of uniform size, and arranged in a face-centered cubic pattern, 

which gives up to about 70% volume fraction when uniform particles are 

closely packed. The convergence behavior of the computed elastic 

constants shows that the effective stiffness modules increase with 

increasing mesh refinement. This behavior is due to the fact that 

intermediates nodes of the quadratic tetrahedral elements were positioned 

midway along element edges, leading to truncation of the SiC volume 

fraction at low mesh resolutions. 

Study results show that coarse meshes tend to underestimate the 

volume fractions of convex reinforcing objects, since their boundaries are 

approximated here as piecewise linear or piecewise planar. If the 

intermediate nodes of edges could be positioned to fall on material 

interfaces, as opposed to merely the midpoint of the segment connecting 

end nodes, then the quadratic elements used in this study would achieve 

piecewise quadratic approximation of material interfaces. 

Hou and Wu [311] have considered a multi-scale finite element 

method for solving a class of elliptic problems arising from composite 

materials and flows in porous media, which contain many spatial scales. 

The method is designed to efficiently capture the large scale behavior of 

the solution without resolving all the small scale features. The second-

order elliptic equation was considered  

 

  fuxa  ,  (62) 

 

цhere    xaxa ij  is the conductivity tensor and is assumed to be 

symmetric and positive definite with upper and lower bounds. This 

equation can be regarded as the equation of steady state heat conduction 

through a composite material, with a, and u interpreted as the thermal 
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conductivity and temperature. In practice, a may be random or highly 

oscillatory; thus the equation solution displays a multiple scale structure.  

A set of nodal basis  dii
K ...1,   with d being the number of nodes 

of the element was defined in each element K  Kh. In multi-scale method 

 i satisfies 

 

  0 ixa   in 
hKK  .  (63) 

 

By the homogenization theory the solution of examined equation has 

an asymptotic expansion:  

 

     2

10 ,   Oyxuxuu  ,  (64) 

 

where y = x/ is the fast variable. Here, u0 is the solution homogenized 

equation 

 

fua  0* in , 00 u  on ,  (65) 

 

a* is the constant symmetric and positive effective coefficient, given 

by 
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and  j is the periodic solution of  
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with zero mean, i.e.б  j  = 0.  

Under certain smoothness conditions, one can also obtain point-wise 

convergence of u to u0 as   0. The conditions can be weakened if the 
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convergence is considered in the L2 () space. Since in general u1  0 on 

, the boundary condition u| = 0 is enforced through the first-order 

correction term, which is given by  

 

  0/  xa in ,   /,1 xxu  on .  (68) 

 

The base functions defined by equation  

 

  0 ixa    (69) 

 

have the same asymptotic structure as that of u, i.e., 

 

...10  iiii  , i = 1, d,  (70) 

 

where
i
0 ,

i
1  and first-order corrector  i are defined similarly as u0, u1, 

and  respectively. Multi-scale method converges to the correct 

homogenized solution in the limit as   0 and attains large error in the 

case of  ~ h. The first-order corrector  k has a boundary layer structure 

when its boundary condition on K has a high frequency oscillation with O 

(1) amplitude. A proper boundary condition for the base function k was 

chosen in order to eliminate the due to the boundary integral boundary 

layer structure. In the special case when conductivity tensor is diagonal and 

separable in 2D, the base functions can be constructed from the tensor 

products of the corresponding 1D base. In this case the corrector  k does 

not have a boundary layer. This is a special example of obtaining the 

appropriate boundary condition without solving the cell problem.  

It was pointed out that the multi-scale method gives the same rate of 

convergence as the linear finite element method when the small scales are 

well resolved, h <<. When h does not resolve the small scales, the multi-

scale method and the traditional finite element method behave very 

differently. The boundary condition of the base functions can have a big 

influence on the accuracy of the multiscale method. The oscillatory 
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boundary condition for the base functions in general leads to better 

accuracy than the linear boundary condition. 

Steady heat conduction through a composite material with tubular fiber 

reinforcement in a matrix was considered in study. The base functions 

were chosen in order to resolve the smallest scales of the composite. The 

oscillation was localized in the circular region with fibers. Away from that 

region, the multiscale base functions are very close to the standard bilinear 

base functions since the conductivity is practically a constant. Numerical 

experiment results pointed out that the multi-scale finite element method is 

useful for general fiber composite problems. The efficiency of the above 

computation can be greatly improved by constructing the multi-scale 

functions only in the region of rapid oscillations. 

A new finite element formulation has been developed by Ghost [312] 

for analysis of heterogeneous media, in which the second phase is 

randomly dispersed within the matrix. A tessellation based mesh 

generation technique to account for the arbitrariness in location, shape and 

size of the second phase was introduced.  

A tessellation based mesh generator was developed to adequately 

account for the presence of the randomly dispersed second phase. Two-

dimensional mesh generator is developed on the basis of Dirichlet 

tessellation of a domain to yield a network of Dirichlet cells or Voronoï 

polygons. This is a method of subdividing a Euclidean space into n-

dimensional bounded convex polytopes. It may be perceived as the 

production of a network of interfaces formed by the impingement of 

expanding hyperspheres about random nuclei that are growing at a uniform 

rate from zero. If second phase inclusions are realized to be points in 

space, the convex polytopes (polygons in two dimensions) resulting from 

this discretization would encompass one inclusion.  

Dirichlet tessellation is defined as the subdivision of a plane, 

determined by a set of points such that each point has associated with it a 

region of the plane that is closest to it than to any other. Then the interior 

of the Voronoi polygon associated with the labeled point Pi is the region Di 

defined as  
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},:{ ijxxxxxD jii  ,  (71) 

 

where P1 (x1), P2 (x2)… Pn (xn) is a set of n distinct random points in plane. 

The aggregate of all such regions Di constitute the Dirichlet tessellation in 

the plane. Each region may be perceived as the intersection of open half 

planes bounded by the perpendicular bisectors of lines joining the point Pi 

with each of its neighbors Pj. The boundary segment Bij is common to the 

polygons for Pi and Pj and nearer to them than to any other labeled points 

in the plane, i.e., 

 

},,:{ jilxxxxxxxB ljiij  .  (72) 

 

The vertex Vijk of the polygons is equidistant from three generating 

points Pi, Pj, Pk as 

 

},,,:{ kjilxxxxxxxxxV lkjiijk  .  (73) 

 

The Voronoi polygons that share boundary segments were called 

contiguous elements or polygons and the corresponding generating points 

were called contiguous points. 

The tessellation for a finite number of points P1, P2… Pn inside a 

restricted window W to be made up of regions or tiles was characterized as 

 

},,:{ WPijxxxxWxD jjii  .  (74) 

 

The labeled points considered in their algorithm were all assumed to 

lie within the window. The edges of the window may be represented by 

effective linear inequality constraints, which were used in unambiguous 

tile creation near the domain periphery.  

A two-dimensional mesh generator was devised for plane sections of 

multi-phase materials which are assumed to consist of unidirectional fibers 

or particulates. Based on information regarding the boundary of the 
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domain, locations, shapes and sizes of the inclusions, discretization takes 

place automatically. Following the representation of the domain boundary, 

the tessellation algorithms create convex elements within the entire region. 

The tessellation algorithm was described in detail in the study. Both the 

complete global and incomplete local Voronoï cell finite element methods 

have produced satisfactory results for a wide variety of test problems. 

Furthermore, convergence is achieved through an increase in the degrees 

of freedom and incorporating more regularly shaped elements. 

A numerical scheme, based on an isoparametric second-order finite 

element discretization of the unit cell heat conduction problem, to calculate 

the effective thermal conductivity of composite materials with general 3-D 

microstructures and interfacial thermal resistance was presented by Matt 

and Cruz [313]. The scheme is based on an isoparametric second-order 

finite-element discretization of the unit cell heat conduction problem. In 

study the finite-element methodology of Rocha and Cruz, originally 

developed to calculate the effective conductivity of unidirectional fibrous 

composites with interfacial thermal resistance, was extended in two 

important directions: the three dimensions are considered, and second-

order isoparametric finite elements are employed to accurately treat curved 

geometries.  

A statistically homogeneous composite was considered. The 

continuous and dispersed composite phases were, respectively, a solid 

homogeneous matrix of thermal conductivity m occupying domain c, and 

solid homogeneous particles/fibers of thermal conductivity d
ij , i, j = 1, 2, 

3, occupying domain d. The particles/fibers have arbitrary shapes, and are 

orderly or randomly distributed within the matrix. An interfacial thermal 

resistance function RI was present at the interface s (a disconnected set) 

between the matrix and the dispersed phase. The composite extends 

throughout a macro-scale region  = c  d of characteristic dimension 

L, over which an external temperature gradient T/L is imposed. The RVE 

of the composite microstructure is the locally periodic cell pc, which 

contains several particles and/or fibers of characteristic dimension l, which 

was commonly referred to as the micro-scale. The characteristic dimension 
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of the RVE was referred to as the mesoscale, denoted by LR. The 

composite length scales were well-separated and, given statistical 

homogeneity, one can define the small parameter   LR/L for the medium. 

For steady state heat conduction in the medium described above, the 

non-dimensional strong form of the boundary value problem is 
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were  = T/T; 
c

c

  ; 
d

d

  ;  TLgG mR  /2 ; T and g 

are, respectively, the temperature field and the volumetric rate of heat 

generation at the micro-scale; nc is the unit vector locally normal to c 

and pointing to the outside of c; Bi is the Biot number; m
d
ijij  /  is 

the conductivity ratio. Numerical solution of the cell problem (a boundary-

value problem with periodic boundary conditions) by the finite element 

method was divided into three steps: 1) domain and mesh generation, 2) 

finite-element discretization, and 3) solution of the resultant linear system 

of algebraic equations. The following cell microstructures were considered 

in study: ordered array of spheres, ordered array of perfectly-aligned 

prolate ellipsoids, ordered array of circular cylinders, and a disordered 

array of disoriented circular cylinders. Mesh generation comprises the 

subdivision of the cell domain pc into NE non-overlapping conforming 

finite elements, each to domain e, e = 1… NE, such that  

 

e
N
ehpc

E  1,    (76) 

 

is the discrete approximation to the domain pc, where h is the interfacial 

thermal conductance function. Over each finite element, the solution of the 

cell problem is approximated by the interpolation of its values at the nodes. 

An isoparametric discretization implies that both the geometry pc and the 
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periodic temperature field were approximated by the interpolation 

functions. Quadratic polynomials are employed as the interpolants; hence, 

the finite element meshes are composed of 10-node quadratic tetrahedral. 

The use of quadratic interpolation functions is expedient: an improved 

representation of 3D curved surfaces (spherical, ellipsoidal, and 

cylindrical) is mandatory for an accurate numerical solution, especially for 

composites with a high thermal contrast between the constituent phases. 

Numerical results of study revealed that is more computationally efficient 

to sum directly the surface integral contributions to the appropriate entries 

of the global composite matrix, rather than to incorporate elemental 

contributions into the elemental stiffness matrices, and then perform direct 

stiffness summation with these elemental data structures. In the finite 

element code developed, three auxiliary data arrays for the construction of 

the global stiffness matrix and forcing vector are used: a) the array, which 

associates to each local mesh node of a tetrahedron e; b) the vector, 

which associates to each global node the corresponding degrees of 

freedom; c) the array, which associates to each local mesh node of a 

tetrahedron e the corresponding equation number. 

The numerical predictions for the effective thermal conductivity of 

ordered array of spheres, ordered array of prolate ellipsoids, ordered array 

of circular cylinders, and disordered array were presented in study.  

The numerical predictions have been validated against analytical 

results for the simple cubic array of spheres, and for the limiting cases 

when the ordered arrays of perfectly-aligned prolate ellipsoids of 

revolution and circular cylinders are thermally equivalent, respectively, to 

the simple cubic array of spheres and the square array of unidirectional 

fibers. The data indicate that the effect of the Biot number is more 

pronounced on the in-plane conductivities, than on the out-of-plane 

conductivity. The numerical results show that the magnitude of the 

interfacial thermal resistance significantly affects the effective conductivity 

of composite materials.  

The complexity and heterogeneity (inclusions) of composite materials 

often cause costly computational efforts. FEM and FDM are widely used to 

evaluate the heat transfer problems. FEM is recommended in case of 
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thermal analysis of composite structures. FEM has advantages when 

dealing with complex geometry and loading but its formulae and 

programming are more complicated. Nevertheless it should be mentioned 

that FDM has been successfully applied by many users. They have 

gathered broad experience in skilful heat conductivity modelling. The 

formulae for FDM are relatively simple, and the execution of FDM 

programmes is rapid. As the configurations of composite matrix with 

inclusions are not so complicated in our model, the FDM is applied in our 

research. 

The results of our study indicate that the Monte Carlo method, 

combined with the FDM, is a powerful numerical technique for heat 

transfer modelling in irregular composites. 

 

 

 





 

 

 

 

 

 

Chapter 4 

 

 

 

RESEARCH METHOD 
 

4.1. NON-RANDOM-WALK MONTE CARLO METHOD 

 

Two-component composite material, with matrix thermal conductivity 

m was investigated as a computational model. Square shaped thermal 

inclusions with a thermal conductivity f << m were placed randomly in 

the binder matrix. Inclusions location in the material was done using a 

random number generator built into the Delphi® compiler and was 

equiprobable. Two algorithms of the random inclusion placement were 

used in the calculations. The first algorithm allowed receiving isolated 

inclusions. Each newly placed inclusion was prohibited to contact with 

existing inclusions. Thus, there was a matrix layer around each inclusion, 

which minimum thickness was set as a parameter. The second algorithm 

allowed inclusions to contact with each other. In this case, inclusions could 

contact their faces and can gather in clusters.  

For each realization of the random placement of the inclusions (for 

each test) we solved numerically the internal Dirichlet problem in a two-

dimensional rectangular area. The Dirichlet problem includes the 

stationary heat equation in the interior of a given region and the prescribed 

temperature setting on the boundary of the region. The Fourier’s law of 

heat conduction in composite’s area  with heat conductivity  and 

temperature T can be expressed as 
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    wT ,  (77) 

 

where w is volumetric heat source.  

We have considered the problem of thermal conductivity in a 

composite in the absence of heat sources: w = 0. 

To minimize errors accumulated in iterative cycles, we used non-

dimensional variables: relative thermal conductivity  

 

m /   (78)  

and relative temperature 

 

CTT / ,  (79) 

 

where TС is a characteristic temperature for the problem to be solved. In 

these dimensionless variables, the two-dimensional heat equation can be 

written as 
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where (x, y) can take the values 1 or f/m.  

Equation (80) was solved by the method of top progressive relaxation 

on a uniform rectangular grid. As a result of each test, we calculated the 

temperature field within the region and determined the effective relative 

thermal conductivity of the material.  

For a large number of tests we built statistical distribution of the 

probability p  that the effective relative thermal conductivity was in a 

certain range of values. The probability was estimated as pm = m/ , where 

m is the number of tests for which the relative thermal conductivity was 

into a range of values );[  
RR mm , mR is integer index, which 

enumerated the range of relative thermal conductivity values,  is the total 
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number of tests,  is the half-width the range of values. The probability 

density (or the distribution density) was estimated as the ratio of the 

probability to the width of the interval 
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Next, we determined the following characteristics of the above 

mentioned distribution: average value , standard deviation, the 

coefficient of variation 
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and kurtosis 4 
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The temperature gradient T in the direction of the angle  with 

respect to the axis X in an elementary volume of anisotropic medium with 

a thermal conductivity  causes only one local heat flux Jd , which is 

described by the Fourier equation 

 

 Td  - J ,   TX  , . (85) 

 



Alexander Pysarenko and Igor Zaginaylo 62 

 

Consider the region Ω of the composite, whose matrix, according to 

the Monte Carlo principle, is randomly filled with inclusions. 

The stationary Fourier heat conduction equation for the region Ω, 

which does not contain heat sources or heat sinks, can be expressed in 

terms of the LHF density vector: 

 

0 Jd . (86) 

 

Suppose that a temperature difference T is applied to this region in 

the  angle direction. In this case, the resulting heat flux in the  direction 

for the indicated region can be expressed by the modified probability 

density distribution functions F1(s) and F2(c/s) for the spatial and angular 

components, respectively: 

 

    cc ddTsFsFd  



   /21, JJ   (87) 

 

Functions F1(s) and F2(c/s) can be represented as linear 

combinations of probability density distribution functions f1(s), f2(c/s) for 

the spatial and angular components, as well as factors a1(s) and a2(c/s), 

having the dimension of the thermal conductivity coefficient 

 

     sfsasF c
 111 , and      sfsasF ccc

 /// 222  ,  (88) 

 

where f2(c/s) is the probability density of passing a local heat flux in the 

direction of the angle c, provided that it is observed in the spatial  

region s.  

Functions f1(s) and f2(c/s) are determined by independent test 

parameters. 

The size of inclusions having the shape of a square with side b; 

minimum distance d between inclusions; the concentration c of inclusions; 



Research Method 63 

the ratio m/f of the coefficients of thermal conductivity of the matrix and 

inclusions, can be indicated as such parameters: 
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The thermal inhomogeneity of the various regions of the composite, as 

well as the non-isotropy of heat transfer, are the reasons for the multimodal 

character of the probability density distributions f1(s) and f2(c/s): 

 

    
k

kk sfsf1 ,    
p

pcpc fsf ,2 /  . (90) 

 

Preliminary it is possible to distinguish the following characteristic 

regions of heat transfer in a composite: unperturbed matrix, inclusions, 

regions before and behind the inclusion (in the direction of heat flux JΩ), 

and regions between inclusions with increased flux density. 

Directions that are parallel and perpendicular to the temperature 

gradient T , two symmetrical directions for each of the angles of square 

inclusion from the regions before and behind the inclusion (relative to the 

heat flux JΩ) can be indicated as the characteristic directions of the local 

heat fluxes.  

The numerical solution of equation (80) at fixed boundary conditions 

allows to calculate the temperature field T(x, y), and then, using (85), to 

calculate the components of the LHF density vector of jΩ,x and jΩ,y, along 

the coordinate axes x and y, respectively. The modulus of local heat flux 

density vector can be easily determined from its components: 

 

2
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2
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The density vector direction of LHF in the region Ω can be 

characterized by the angle Ω of vector deviation from axis x. It's obvious 

that 

 

x

y

j

j

,

,
arctan


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  . (92) 

 

An investigation of the statistical distribution of the density of local 

heat fluxes in a composite material requires the solution of the heat 

equation (80) in a sufficiently large number of points uniformly located in 

the countable region. 

In this situation, the numerical method for solving heat conduction 

problems, which is considered to be the most effective, namely, the Monte 

Carlo method with floating random walk does not solve the problem, since 

the coordinates of the walk points are dynamically generated, and the 

uniformity of their location in the countable domain is not guaranteed.  

The Monte Carlo method with a fixed random walk on a uniform 

orthogonal grid more closely matches the requirements of the problem, but 

we must be sure that the walking particles emitted from the source node 

will pass through all the nodes of the counting domain in sufficient 

quantity.  

Thus, it seems more convenient to use the finite-difference methods, 

with which we are guaranteed to obtain the result for each node. 

We separately note that to find the field of directions of density vectors 

of local heat fluxes; it is convenient to solve equation (80) on an 

orthogonal grid with step h. This orthogonal grid is oriented along 

coordinate axes.  

We consider heat flux through the neighborhood (x  h, y  h) of 

computational grid node (x, y) as local heat flux in the composite matrix. 

Thus, in this situation, it is possible to use the finite difference method. It is 

convenient to choose rectangular shape of the two-dimensional region 

filled with the matrix material and square-shaped inclusions. 
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Figure 1. Example of two templates with random placement of inclusions: N = 117,  

а = 160h, b = 8h, and d = h.  

We generated a square-shaped template with a side of the square 

equals to a. The side of the square was equal to the integer number of steps 

of the rectangular grid. The value of side varied in our numerical 

experiments from 128h to 1024h.  

The square-shaped inclusions with equal side b have been placed in the 

template, using the random number generator with an equally probable 

distribution law. The minimum value of b is 4h; the maximum value is 

32h. The inclusions placement algorithm sets sizes of the inclusions and 

their number N in the template, as well as minimum distance d between the 

inclusions. The values of d change from d = 0 (non-isolated inclusions) to 

b – h. Figure 1 shows two examples of composite matrixes with inclusions 

sizes are a = 160h and b = 8h, respectively. The minimum distance 

between inclusions is d = h. The number of inclusions in these templates is 

N = 117.  

Figure 2 shows a fragment of the template with a superimposed grid. 

The mesh and the boundaries of the filler particles are oriented along the x- 

and y-axes. The index j numbers the grid nodes along the x axis, the index i 

numbers the grid nodes along the y-axis. The boundaries of the filler 

particles are located in the middle between the nodes of the counting mesh. 

When calculating the temperature field and local heat fluxes, the following 

rule is used: if two adjacent nodes, between which the heat energy is 

transferred, are inside one component of the composite material, namely in 
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the matrix or in the filler particle, then the thermal conductivity in the heat 

flux path is taken to be equal to the thermal conductivity of the matrix m 

or the thermal conductivity of the filler f, respectively. 

If the matrix-inclusion boundary passes between two adjacent nodes, 

as for example between nodes (j = m + 1; i = n) and (j = m + 1; i = n + 1), 

then the thermal conductivity in the path of heat flux between these nodes 

were assumed to be equal to the average arithmetic thermal conductivity of 

the material components   2/fm   .  

Thus, we did not introduce additional interface thermal resistance, 

assuming the thermal contact between matrix and filler particles to be 

ideal. 

The inclusions concentration in the template was considered as the 

ratio of all inclusions area to the total area of the template  

 

2

2

a

Nb
c  .  (93) 

 

 

Figure 2. Fragment of the template with superimposed grid. 
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The Figure 1 shows the calculation results for c = 0.5. The ratio of the 

thermal conductivities of the matrix and the inclusions was m/f = 21 for 

all numerical experiments. 

In order to minimize the errors associated with heat transfer at the 

boundaries, the calculated region of the modeled composite included three 

identical templates: central (representative) and two adjacent ones. The 

centers of these templates were located along the y-axis. On the perimeter 

of the calculation area, one layer of cells with size h was added. The 

computational model assumed that this layer has the thermal conductivity 

of matrix. Thus, the size of the computational domain along x-axis was 

(a + 2) h, and along y-axis was (3a + 2) h. Inclusions were not located on 

the outer boundaries of the calculated region. The computational grid node 

indices along x-axis assumed the values j  [1; a + 2], and along y-axis i  

[1; 3a + 2]. The scheme of calculated region is shown in Figure 3.  

 

 

Figure 3. Scheme of calculation area. 
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We carried out the calculations under the assumption that the Dirichlet 

boundary conditions are satisfied at the boundaries. The left (j = 1) and 

right (j = a + 2) boundary layers of the composite matrix had constant 

temperatures: 
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At the same time, inequality TL > TR holds. The vector directed along 

the normal from the less heated isothermal template surface to the warmer 

isothermal template surface and equals to the ratio of the temperature 

difference to the distance between these surfaces we called the temperature 

macro-gradient. Thus, the temperature macro-gradient was applied along x-

axis. For the upper (i = 1) and lower (i = 3a + 2) boundary layers, a linear 

temperature change along x-axis was specified: 
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The effect of the boundary layers i = 1 and i = 3a + 2 on the 

temperature fields in the countable region is shown in Figure 3. It shows 

the temperature distributions in the same column (j = 512) of the counting 

grid for representative and two adjoining templates of size a = 1024h, 

filled with inclusions of size b = 32h with a concentration c = 0.37 at the 

minimum distance between the particles of filler d = 8h.  

The figure shows that the temperature profile of the column of the 

upper adjacent template differs somewhat from the temperature profile of 

the representative template in lines 1 to 300, and then they coincide with 

high accuracy. Similarly, the temperature profiles of the representative and 

lower adjacent template coincide in lines 1–700, and in lines 700–1024 

there are discrepancies. The influence of the upper and lower boundary 

conditions on the temperature profiles and, consequently, on the local heat 

fluxes, extends about 1/3 of the template. Thus, the temperature profile of 
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the representative template in the counting domain can be considered 

undistorted. 

We also note that due to the translational symmetry for counting region 

which includes above mentioned templates, the thermal fluxes between the 

layers for i = a and i = a + 1 are exactly equal to the thermal fluxes 

between the layers for i = 2a + 1 and i = 2a + 2. Therefore, the calculation 

technique assumed a solution of equation (85) for the whole counting area 

and then the analysis of LHF only for the representative template i  [a + 

1; 2a + 2]. All LHF values in this work are in conventional units, because 

to represent them in system units it is necessary to specify a certain value 

of h. The effective thermal conductivity of the representative pattern was 

calculated from the total heat flux passing through its left or right 

boundary. The value of temperature macro-gradient in calculation of е can 

be replaced by     haTT RL 1/  . The total heat flux J at the boundary 

passes distance ah through an isothermal line. In this case, the effective 

thermal conductivity can be expressed by: 
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The procedure for generating the described pattern with random 

placement of inclusions values of the placement parameters a, b, c and d 

we call test. For each test, we generated the inclusions pattern. Equation 

(80) was solved by the finite-differences method. The solution was 

considered to be obtained when the ratio (86) was fulfilled for each node of 

the computational grid with accuracy not worse than 10-5. Formulas (91) 

and (92), as well as the values of the components of LHF density vector for 

each node of the computational grid, were used to determine the modulus 

of the local flux density vector and its deviation angle from x-axis. The 

effective thermal conductivity of the material was found from (96). All 

data were saved. 
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Figure 4. The temperature distribution along the column j = 512 in the representative 

and adjacent templates with a size a = 1024h. 

The tests with the same parameters of inclusions placement we call 

series of tests. The number of tests in the series varied depending on the 

study objectives from 400 to 8000. 

Because of the random placement of inclusions in each test, our 

research method can also be attributed to Monte Carlo methods in the 

sense that is commonly used in economic simulation tasks [314]. For the 

same reason, the local heat fluxes calculated by us can be considered as 

random variables. All the values of local heat fluxes in one series of tests 

were considered a sample from one general population. The value of the 

effective thermal conductivity obtained in each test was also interpreted by 

us as a random variable, and the set of values obtained in one series of tests 

was taken as a sample from the general population. The statistical 

characteristics of samples of the effective thermal conductivity, the 

modulus of the local heat flux vector, and the angle of deviation of the 

local heat flux from the x axis were investigated using standard statistical 

procedures. 
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4.2. VISUALIZATION IN HEAT CONDUCTION ANALYSIS 

 

The study of the calculated maps of the modules of local heat fluxes 

density vectors and fields of their directions is another productive way of 

analyzing the results of modeling thermal conductivity processes in 

inhomogeneous materials. Flux maps provide important qualitative 

information that, even without being expressed in numerical measures, 

allows one to analyze specific heat transfer processes occurring in a matrix 

with randomly scattered inclusions. 

In the case of a homogeneous matrix that does not contain an 

inclusion, the local heat fluxes in each node of the countable grid are equal 

in modulus of density and have the same direction. Such a state of the 

matrix will be called an unperturbed matrix. We will also use the term 

“ntensity” instead of the term “modulus of density vector” as applied to 

local heat fluxes. 

In the case of inclusions with a thermal conductivity different from the 

thermal conductivity of the matrix, the local heat fluxes become 

inhomogeneous. In our numerical experiments, where thermal insulating 

inclusions with relative thermal conductivity f = f/m  0.048 were 

modeled, the spread of the intensity of local heat fluxes reached 1.5–2 

orders of magnitude. 

Figure 5 shows the LHF intensity map in test with parameters a = 

128h at b = 16h, c = 0.094 and d = 14h. This map was performed in 8-bit 

grayscale. Black, and white areas on this map correspond to the fluxes with 

lowest and highest intensity correspondently. Heat-insulating inclusions 

(black squares) and unperturbed matrix (light gray regions) are clearly 

visible on this LHF intensity map.  

In addition, dark gray areas with reduced intensity of local heat fluxes 

to the left and right of inclusions are visible in Figure 5. It should be noted 

that in these regions the thermal conductivity of the medium is the same as 

in the region of the unperturbed matrix, but the intensity of the heat fluxes 

is much lower. We will call such domains a dark matrix. Since the total 

heat flux moves from left to right, the left, and right areas of the dark 
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matrix will be called the front region and the rear region, respectively. The 

regions with increased intensity of local heat fluxes are formed in the 

inclusion angles area. 

 

 

Figure 5. LHF intensity map in test: a = 128h, b = 16h, c = 0.094, and d = 14h. 

 

Figure 6. LHF intensity map (in gray scale) in test: a = 128h, b = 16h, c = 0.094,  

and d = 14h. 
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Figure 6 presents the flux map negative image with a non-linear 

blackening curve in test a = 128h at b = 16h, c = 0.094 and d = 14h. 

Such a map makes it possible to better detect the increase in the 

intensity of local fluxes in the region of inclusions angles. The fluxes map 

contains the outlines of the domain structure. The intensity of local fluxes 

is reduced at the boundaries of the domains located in the heat-conducting 

matrix. The computational model assumes the presence of square-shaped 

inclusions in composite matrix. The boundaries of domains begin and end 

at the centers of the sides of these squares.  

Analysis of Figure 7 allows one to determine the nature of the dark 

matrix. Figure 7 shows the field of directions of local fluxes in the vicinity 

of a solitary inclusion. The directions field, calculated using formula (92), 

is indicated by arrows. The thickness of the arrows is proportional to the 

intensity of the local heat flux. Only eight gradations of intensity are 

displayed on this map, while the maps shown in Figures 5, 6 contain 256 

gradations of intensity. 

Local heat fluxes are shielded by inclusion in the rear region. This 

phenomenon is the cause of the formation of a dark matrix. For local fluxes 

flowing to the inclusion from the left, it is more advantageous to round the 

obstacle. Therefore, most part of the flux leaves the frontal area of the 

inclusion. Thus, a frontal dark matrix is formed. Local fluxes, flowing over 

the upper and lower side of the inclusion, form a region with increased 

intensity. Local fluxes flowing inside the inclusion still tends to come out 

of it, crossing the horizontal boundaries, and further enhances the intensity 

of fluxes, that envelops the inclusion. This increase in flux ceases to 

operate in the region of the middle of the horizontal boundary of the 

inclusion. Local fluxes again begin to penetrate into the inclusion through 

horizontal boundaries in the region of the right vertical boundary. Then, 

local fluxes exit through the right boundary of the inclusion into the region 

of the rear dark matrix. The foregoing is a mechanism for the formation of 

high intensity angular regions. These regions are clearly visible in  

Figure 6. 
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Figure 7. LHF directions field around the square filler particle. 

In the case of low inclusions concentrations and large minimum 

distances between them the directions field and the density of local fluxes 

around each inclusion is not distorted due to the presence of surrounding 

inclusions. This situation reflects the concept of "non-interacting 

inclusions" used in Maxwell's generalized thermal conductivity theory and 

its numerous modifications. Figure 5 shows that the length of the region of 

the dark matrix on which the influence of the isolated inclusion extends is 

of the inclusion size order. 

 

 

Figure 8. LHF intensity map in test: a = 128h, b = 20h, c = 0.22, and d = 5h. 
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Figure 8 shows the LHF intensity 8-bit grayscale map in test with 

parameters a = 128h at b = 20h, c = 0.22 and d = 5h.  

In contrast to the case shown in Figure 5, here we see two inclusions, 

marked “A” and “B”, about which it cannot be said that they “do not 

interact.” 

The combined grayscale intensity map and the field of directions of 

local fluxes in the region of inclusions interaction are shown in Figure 9. 

Local heat fluxes flow mainly upwards in the region into the gap between 

the inclusions. Due to this maneuver, the general path of the heat flux in 

the matrix is somewhat longer.  

 

 

Figure 9. LHF intensity and directions map between interacting filler particles A and B 

from Figure 8. 

The number of interacting filler particles is expected to increase with 

increasing concentration and decreasing the minimum distance between 

them. Figures 10 – 11 show changes in the conditions for the flow of local 

heat fluxes with a further increase in the concentration of inclusions. The 

figures show the fluxes maps of two tests of the same series. At c = 0.33, 

almost all inclusions interact with each other. And this interaction is not 

exhausted by the mutual distortion of dark matrices. Angular regions of 

increased intensity of local fluxes merge with each other, form sufficiently 

extensive channels with high flux densities. The length and number of 
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local channels depends not only on the random location of the filler 

particles, but also on the direction of application of the temperature drop at 

the boundaries of the region. Therefore, we call these heat conductive 

channels induced. 

In Figure 10, there are three rather long channel designated Ch1, Ch2 

and Ch3. The channels Ch1 and Ch2 are practically straight, without any 

significant lengthening of the path of the local flux. 

 

 

Figure 10 a. LHF intensity map in test 1: a = 128h, b = 16h, c = 0.33, and d = 4h. 

 

Figure 10 b. LHF intensity map in test 2: a = 128h, b = 16h, c = 0.33, and d = 4h. 
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In Figure 11, the situation is somewhat different: we see only 2 

channels, Ch4 and Ch5, and they are less long and more curved than Ch1 

and Ch2. The heat transfer conditions in the sample shown in Figure 10 are 

obviously more favorable than in the sample shown in Figure 11.  

Thus, visualization of the solutions of the heat conduction problem in a 

random-inhomogeneous material makes it possible to understand how the 

placement parameters of the inclusions affect the conditions for the flow of 

local heat fluxes. 

The formation of induced heat-conducting channels can be interpreted 

within the framework of the following heat-optical analogy. Consider, for 

example, the heat fluxes map shown in Figure 11. Here the heat fluxes 

move from left to right due to the temperature difference on the sides. Let 

us consider the case of heat-insulating inclusions. Two close-lying 

inclusions, labelled 1L1t and 1L1b, direct some of the total heat flux to the 

region A free of inclusions. Thereafter, the pair of inclusions 1L2t and 

1L2b directs the main part of the heat flux from the region A to the region 

B free of inclusions. Inclusions 1L3t and 1L3b direct the heat flux from 

area B to the right boundary. The pairs of inclusions 1L1t – 1L1b,  

1L2t – 1L2b, and 1L3t – 1L3b can be considered as elements that focus 

heat flow and direct it to the induced thermal channel 1. Consequently, 

these pairs of inclusions can be termed as thermal lenses of this channel. 

For clarity, we drew stylized lenses directly on the fluxes map of the 

induced channel 1. 

A similar role is played by the pairs of inclusions 2L1t – 2L1b, 2L2t – 

2L2b, and 2L3t – 2L3b. These pairs can also be considered as thermal 

lenses that focus heat fluxes and form the induced heat-conducting  

channel 2. 

It should be noted that at least two heat insulating inclusions are 

required to form a thermal lens. Local heat flux will move between these 

inclusions. Due to the fact that the general direction of the heat fluxes in 

this case is horizontal, the thermal lens should conventionally include at 

least one "top" inclusion and at least one "bottom" one. Our labelling of 

inclusions contains this information. For example, marking 2L1b means 
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"second induced channel, thermal lens 1, and “bottom element", and 1L3t 

means "first induced channel, thermal lens 3, and "top element".  

 

 

Figure 11. Visualization of the heat-optical analogy. 

We also note that one and the same inclusion can be part of two 

thermal lenses, as happened with the inclusion of 1L1b/2L1t. This 

inclusion is simultaneously the lower element of the first thermal lens of 

the first induced channel and the upper element of the first thermal lens of 

the second induced channel. 

 

 

 



 

 

 

 

 

 

Chapter 5 

 

 

 

THERMAL CONDUCTIVITY 

OF TWO-COMPONENT 2D COMPOSITES 
 

5.1. STATISTICS OF THERMAL  

CONDUCTIVITY DISTRIBUTION 

 

Changing the random arrangement of inclusions in the matrix with the 

same placement parameters leads to spread in the value of the transmitted 

heat flux and, consequently, to scatter of the effective thermal conductivity 

of the material. Based on the results of a large number of tests for each 

series with certain placement parameters, we constructed the effective 

thermal conductivity statistical distribution of composite material. Such a 

distribution shows the probability for certain value of the effective thermal 

conductivity can be obtained in a separate test. 

For convenience of comparing the results of various series of tests, we 

use the relative effective thermal conductivity, defined as the ratio of the 

effective thermal conductivity of the material to the thermal conductivity 

of the matrix 
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as well as the probability density, equal to the ratio of the frequency of the 

value e falling in a certain interval to the width of this interval. 

Statistical distributions of the relative effective thermal conductivity 

for various placement parameters are shown in Figures 12 – 17. 

Figures 12 – 13 are performed on the same scale and show the 

transformation of the distribution of effective thermal conductivity with a 

change in the concentration of inclusions. Analysis of the figures shows 

that a change in the concentration of inclusions causes not only a shift in 

the position of the mode of the distribution, but also a change in the width 

of the peak, and the nature of its asymmetry, namely, the elongation of the 

front or tail of the distribution. Peak of the distribution is narrower at small 

and large concentrations of filler than at average concentrations. The case 

of a small concentration of inclusions corresponds to an elongated front of 

the distribution, and the case of large concentrations corresponds to an 

elongated tail of the distribution. 

 

 

Figure 12. Statistical distributions of the relative effective thermal conductivity  

in series of 8000 tests: a = 128h, b = 8h, d = 0, and 1) c = 0.098; 2) c = 0.195;  

3) c = 0.293. 
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Figure 13. Statistical distributions of the relative effective thermal conductivity  

in series of 8000 tests: a = 128h, b = 8h, d = 0, and 1) c = 0.391; 2) c = 0.488;  

3) c = 0.637. 

An increase in the size of the filler particles with an equal 

concentration of inclusions and a constant minimum distance between 

them leads to a shift in the average value of κе toward lower values 

(Figures 14, 15). The width of the distribution peak under these conditions 

increases. These changes become more significant at higher filler 

concentrations.  

Figure 16 presents a change in the character of the distribution of κе 

with a change in the minimum distance between the filler particles for the 

case of constant concentration and size of the inclusions. An increase in the 

minimum distance causes a small increase in the effective thermal 

conductivity, while the peak width of the distribution decreases.  

The statistical distributions κе for a different scatter of the particle sizes 

of the filler are shown in Figure 17. In these tests, the Gaussian distribution 

of the particle size of the filler was simulated with a given average  

value < b > and different values of the root-mean-square deviation b. 
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Figure 14. Statistical distributions of the relative effective thermal conductivity in 

series of 4000 tests: a = 128h, с = 0.14, d = 4h, and 1) b = 8h; 2) b = 12h;  

3) b = 16h. 

 

Figure 15. Statistical distributions of the relative effective thermal conductivity in 

series of 4000 tests: a = 128h, с = 0.28, d = 4h, and 1) b = 8h; 2) b = 12h;  

3) b = 16h. 
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Figure 16. Statistical distributions of the relative effective thermal conductivity in 

series of 4000 tests: a = 128h, с = 0.26, b = 12h, and 1) d = 4h; 2) d = 6h;  

3) d = 8h. 

 

Figure 17. Statistical distributions of the relative effective thermal conductivity in 

series of 4000 tests: a = 128h, с = 0.26, d = 6h, < b > = 12h and 1) b = 0;  

2) b = 0.6h; 3) b = 2.1h. 
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The form of the distribution of κе practically does not change for 

different scatterings of the dimensions of the filler particles. It should be 

noted that for larger filler particles the mean value of κе decreases, while 

for smaller particles it increases (Figure 15). The case of particle size 

distribution according to the Gaussian law corresponds to the appearance 

in the matrix in equal quantities of both smaller and larger inclusions 

compared with the average size. Thus, we obtain two competing effects of 

particles of large and small sizes on an average value of κе. Figure 17 

shows, that in this case both effects compensate each other. 

The possible values of κе are limited from above and below, so it is 

natural to assume that the statistics κе can be described by the beta-

distribution with a probability density 
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However, using the beta-distribution is inconvenient for analyzing the 

results of numerical experiments, since the variations of parameters  and 

 affects both the position of the distribution mode and its asymmetry. 

It seems more convenient for us to use the Weibull distribution 
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Parameter W shows the distribution mode position, parameter W 

characterizes distribution width, and shape parameter γW characterizes the 

asymmetry of the distribution. To approximate the experimental data, it 

makes sense to introduce scale factors in the Weibull distribution (41), 

which depend on the width of the interval partition. A fairly convenient 

modification of the Weibull distribution is [Seasolve PeakFit Users Manual 

4.12]: 
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where 
 Wa0  is the magnitude of the peak amplitude, 

 Wa1  is the position of 

the distribution mode, 
 Wa2  is the full-width at half-maximum (FWHM), 

and 
 Wa3  is the shape parameter of the distribution, characterizing its 

asymmetry at half-maximum width. 

 

Table 1. Parameters of the effective thermal conductivity distribution  

at various placements of inclusions in composite 

 

Location settings  Wa0
 

 Wa1  
 Wa2  

 Wa3
 

b = 8h, d = 4h and с = 0.141  (Figure 14) 128 0.769 0.0112 3.81 

b = 12h, d = 4h and с = 0.141 (Figure 14) 67.3 0.797 0.0241 4.34 

b = 16h, d = 4h and с = 0.141 (Figure 14) 46.3 0.766 0.0361 4.48 

b = 8h, d = 4h and с = 0.281 (Figure 15) 114 0.585 0.0120 3.57 

b = 12h, d = 4h and с = 0.281 (Figure 15) 60.2 0.580 0.0252 4.09 

b = 16h, d = 4h and с = 0.281 (Figure 15) 37.1 0.576 0.0351 4.32 

b = 12h, d = 4h and с = 0.264 (Figure 16) 60.1 0.600 0.0259 4.16 

b = 12h, d = 6h and с = 0.264 (Figure 16) 71.2 0.603 0.0212 4.02 

b = 12h, d = 8h and с = 0.264 (Figure 16) 88.1 0.605 0.0162 3.79 

b = 12h, b = 0,6h d = 4h, с = 0.264 (Figure 17) 72.2 0.602 0.0190 3.58 

b = 12h, b = 1,6h, d = 4h, с = 0.264  75.4 0.601 0.0185 3.66 

b = 12h, b = 2,1h, d = 4h, с = 0.264 (Figure 17) 73.3 0.602 0.0189 3.62 

 

 

 



Alexander Pysarenko and Igor Zaginaylo 86 

Table 1 shows the parameters of the distributions from Figures 14 – 

17, obtained by approximating them with a modified Weibull distribution 

(100). For the distributions shown in Figure 12 and 13 it is more 

convenient to use the graphical representation in the form of concentration 

dependences (Figure 18). Note that parameter 
 Wa1 is close to the average 

value, i.e., to the effective thermal conductivity κе, which is discussed in 

detail below. 

 

  

(a)     (b) 

  

(c)     (d) 

Figure 18. Concentration dependences of the Weibull distribution parameters shown in 

Figures 12 and 13 (a = 128h, b = 8h, d = 0): a)
 Wa0 ; b)

 Wa1 ; c) 
 Wa2  d)

 Wa3
. 
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The distribution parameters given in Table 1 and shown in Figure 18, 

allow us to objectively estimate the changes in the distribution parameters 

of the effective thermal conductivity when the parameters of the placement 

of the filler particles are changed. The effect of the placement parameters 

of the inclusions on the peak width of the effective thermal conductivity 

distribution will be discussed in more detail below. 

Let’s summarize the results of this study: 

 

 increase in the size of the inclusions causes a decrease in the 

effective thermal conductivity, provided that all other placement 

parameters remain unchanged; 

 increase in the minimum distance between inclusions causes a 

decrease in the effective thermal conductivity, provided that all 

other placement parameters remain unchanged;  

 increase in the concentration of inclusions leads to a change in the 

asymmetry of the peak of the distribution from the case when peak 

is elongated in the front direction to the case when the peak is 

elongated in the tail direction; 

 increase in the size of the inclusions leads to a change in the 

asymmetry of the peak of the distribution, namely, the peak is 

elongated in the front direction; 

 the distribution peak is elongated in the tail direction in the case of 

increasing of minimum distance between the inclusions; 

 dispersion of the filler particle sizes does not significantly affect 

the characteristics of the peak of the distribution. 

 

This indicates that the resistance to heat transfer in the composite is 

determined not only by the ratio of the volumes of phases with different 

thermal conductivity, but also by the qualitative change in the processes of 

heat transfer when the parameters for placing heat-insulating inclusions 

change. 
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5.2. CONCENTRATION DEPENDENCES  

OF THERMAL CONDUCTIVITY 

 

The relative effective thermal conductivity of the material was 

calculated as the average value < κе > for a series of tests. Graphs of < κе > 

dependence on the concentration c for various b and d, for a series of 800 

tests, are shown in Figures 19 and 20.  

It should be noted that the generalized conductivity theory (GCT) [39, 

40] predicts < κе > dependence only on the concentration of inclusions and 

their shape providing that the inclusions are not interacting.  

Analysis of local fluxes maps indicates that in the case of square-

shaped inclusions the ratio d/b  1 can be considered as a criterion for the 

absence of interaction between the filler particles and, consequently, as a 

criterion of the GCT applicability. 

 

 

Figure 19. Dependence <e >(c) for materials with different b and d = h. 
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Figure 20. Dependence <e >(c) for materials with b = 8h and various d. 

Indeed, as d approaches b, the < κе >(c) dependences differ slightly: 

the difference in values < κе > is less than 0.5% (Figure 20). In this case, 

the effects of inclusions on local heat fluxes near their neighbors are 

weakening. Parameters d and b, in accordance with the predictions of 

GCT, no longer affect the effective thermal conductivity. 

When the inclusion concentration in composite materials increases the 

application of GCT becomes problematic, but in case of small 

concentrations (with c  0.1), < κе > behavior is well described by this 

theory. With a small number of inclusions, it is most probable that they 

will be located at distances significantly greater than d. Thus, in this case 

GCT can be applied, and < κе > should not depend on b and d. Figures 19 

and 20 show weak dependences < κе >(d) and < κе >(b) in the region of 

small concentrations.  

The dependencies shown in Figures 19 and 20 are nonlinear. We 

considered in sections 2 various models of thermal conductivity of 

composites, which also predict various nonlinear dependencies <e >(c). 

Since our approach is model-free, we did not use any of the models 

described above and selected a function that best describes the results of 
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our numerical experiments. In doing so, we have limited the range of 

possible dependencies rather simple fractional-rational and irrational 

functions. As a result, we found that the concentration dependences of the 

effective thermal conductivity are best described by the function [315]  
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where c is inclusions concentration;  and  are fitting coefficients.  

Discussion of Figures 15 and 16 showed that the mode of distribution 

of effective thermal conductivity depends on the placement parameters of 

inclusions, so it is natural to expect the functional dependence of  and  

on b and d. 

Our numerical experiments showed that if we impose computational 

grids with different steps h on the modeled pattern with inclusions, then, as 

expected, the effective thermal conductivity obtained as a result of solving 

the heat conduction problem does not change. That is, if we have 

calculated the thermal conductivity of the template with the placement 

parameters a = 128, b = 16 and d = 4, then exactly the same result will be 

obtained for the mesh, with the superimposition of a = 160, b = 20 and  

d = 5 or a = 224, b = 28 and d = 7. Thus,  and  should depend on 

dimensionless quantities: the relative size of the inclusion b/a, and the 

relative minimum distance d/a. The relative minimum distance can also be 

defined as d/b, and this definition seems more convenient to us. 

The analysis of fitting coefficients showed that  weakly depends on 

the relative minimum distance between the inclusions d/b, but 

demonstrates a significant dependence on the relative size of the inclusions 

b/a. The graph of this functional dependence is shown in Figure 21. The 

graph shows points with different values of d/b. 

It should be noted that dependence  =  (b/a) is saturated at  

b/a > 1, i.e., in the case where the size of inclusions cannot be assumed to 

be small compared to the size of the counting area. Apparently, under such 
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conditions, the concept of a composite material and its effective thermal 

conductivity lose meaning, and the countable region can be interpreted as a 

model of a construction of two homogeneous materials. 

 

 

Figure 21. Dependence of the fitting coefficient  on the relative size b/a of  
filler particle. 

 

Figure 22. Dependence of the fitting coefficient  on the relative minimum distance 

d/b between the filler particles. 
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The fitting coefficient , on the contrary, turned out to be practically 

independent of b/a, but depending on the relative minimum distance d/b.  

Figure 22 shows the dependence of the fitting coefficient  on the relative 

minimum distance between the filler particles. In this case, points with 

different values of b/a, are marked on the graph. 

The separation of the fitting factors by a coefficient that depends 

only on the relative particle size, and by the coefficient, that depends 

only on the relative minimum distance is a good argument for choosing the 

relative minimum distance precisely in the form of bd / . 

Another argument is that in this case it is possible to analyze not the 

dependencies < e > (b/a) and < e > (d/a) separately, but immediately 

consider the dependencies < e > (d/b). Figure 23 shows the dependencies 

of < e > (d/b) for several material models with different filler particle 

sizes and their similar concentrations. 

 

 

Figure 23. Dependence < e > (d/b) for materials: b = 8h and c = 0.246;  

b = 10h and c = 0.244; b = 12h and c = 0.264; b = 16h and c = 0.234. 
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Figure 24. Dependence of the fitting coefficient  on the relative concentration of  

the filler particles. 

 

Figure 25. Dependence of the fitting coefficient  on the relative concentration of  

the filler particles. 
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Figure 26. Dependence of the fitting coefficient  on the relative concentration of  

the filler particles. 

As noted above, the increase in the ratio d/b corresponds to a decrease 

in the interaction between the inclusions. The dependence of < e > (d/b) 

under these conditions disappears. Indeed, the curves in Figure 23 are 

saturated when the value of d/b tends to unity. 

Under the condition d/b < 1, the dependencies < e > (d/b) are 

approximated fairly well by the expression  
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where , , and  are the fitting coefficients which depend on the 

concentration of filler particles in the material.  

Figure 24 shows the dependence of the fitting coefficient (c) on the 

relative concentration of the filler particles. The graph presents the points 

for 8 different sizes of inclusions. The values of the coefficient  for the 

used variants b/a (from 0.031 to 0.125) coincide with high accuracy. 

Consequently, this dependence is common for all sizes of inclusions. 
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Figure 25 shows similar concentration dependence for the fitting 

coefficient . This coefficient is also weakly dependent on the size of 

inclusions. And only the concentration dependencies of the fitting 

coefficient  turned out to be different for inclusions of different sizes  

(Figure 26). 

 

 

5.3. EFFECTIVE ANISOTROPY AND SCATTER  

OF THERMAL CONDUCTIVITY 

 

The dispersion can be used as a characteristic of the distribution curve 

broadening, but for analysis of heat transfer in a two-phase composite, it is 

more convenient to consider the standard deviation or the coefficient of 

variation. The dependence of the standard deviation s of <e> 

distributions on the inclusions concentration is shown in Figures 27 and 28. 

Here the values of the placement parameters coincide with those shown in 

Figures 19 and 20. 

Standard deviation increases with inclusions concentration raises and 

reaches maximum at a certain value of c (Figures 27 and 28). The position 

of the maximum s(c) is determined mainly by minimum distance d and 

slightly depends on inclusions size b. The presence of the maximum s(c) 

is quite expectable. At high concentrations, we can consider the material 

model not in the form of a heat-conducting matrix with heat-insulating 

inclusions (model A), but in the form of a heat-insulating matrix with heat-

conducting inclusions (model B). The heat-insulating inclusions 

concentration increasing (model A) is equivalent to the heat-conducting 

inclusions concentration decreasing (model B). 

The standard deviation s tends to zero for c = 1 (model A) or c = 0 

(model B). Thus, s (c) dependence should have a maximum. However, this 

dependency cannot be symmetrical with respect to the position of the 

maximum. Model A assumes square-shaped inclusions and model B 

assumes fiber-shaped inclusions. Maximum s (c) is shifted toward smaller 

concentrations of insulating inclusions.  
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Figure 27. Dependence of the distribution standard deviation <e> on the 

concentration for materials with different b and d = h. 

 

Figure 28. Dependence of the distribution standard deviation < e > on  

the concentration for materials with b = 8h and different d. 
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Figure 29. Distribution of the <e> values when a temperature macro-gradient  

is applied along x-axis. 

The inclusions random placement in the template not only leads to 

difference in the effective thermal conductivity from test to test, but also to 

difference in the effective thermal conductivity when temperature macro-

gradient is applied along different directions in the same test. It is known 

that anisotropy is a characteristic for ordered materials. We examine a 

difference in the effective thermal conductivity along different directions 

in composite. This difference was called an effective anisotropy. 

The probability distribution of <e> values in a series of 3600 tests for 

placement N = 272 heat-insulating inclusions is shown in Figure 29. The 

sizes of the inclusions and the template are b = 5h and a = 128h, 

respectively, and the minimum distance between inclusions is d = h. The 

distribution of thermal conductivity values in the same test series, but after 

turning each template by 90° is presented in Figure 30. This rotation 

corresponds to the fact that the temperature macro-gradient is first applied 

along x-axis and then applied along y-axis. 

Both distributions are visually very similar and have similar 

parameters; the average value of <e> in both cases is 0.292. The standard 

deviations of both distributions are 0.0205 and 0.0207, respectively. The 
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distribution of the difference between the relative effective thermal 

conductivities e along two coordinate axes x and y is shown in Figure 

31. This difference we call the effective anisotropy of thermal 

conductivity. 

 

 

Figure 30. Distribution of the <e> values when a temperature macro-gradient  

is applied along y-axis. 

 

Figure 31. Distribution of the e values.  
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The average value <e> for the distribution, which is shown in 

Figure 31, is 8.88  10-5. This value is 3.5 orders of magnitude smaller than 

the average values of the initial distributions of effective thermal 

conductivity. We can assume that, in comparison with the average value of 

the effective thermal conductivity, the value <e> is equal to 0. 

The standard deviation of the distribution e is 0.0392, which is 

almost 2 times higher than the standard deviation of the initial distributions 

e. Hence, we can assume that for a given series of placements the initial 

distributions e for different temperature macro-gradient directions are 

statistically independent from each other. In other words, the change in the 

temperature macro-gradient direction is equivalent to another random 

realization of inclusions placement. 

Therefore, there is no sense to consider the average value < e > as a 

quantitative measure of the effective anisotropy of thermal conductivity, 

since the mathematical expectation of this quantity should be equal to 0. 

 

 

Figure 32. Dependences of the standard deviation on the inclusions concentration for 

the distribution δe (curve 1) and the distribution e (curve 2). 

We propose to consider the standard deviation s of e distribution as  

a measure of effective anisotropy, since the mathematical expectation of 
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this value is different from zero. The value of s was found to depend on 

the inclusions placement parameters of in the computational domain.  

The dependence of s on the inclusions concentration with size b = 

16h in the template a = 128h is presented in Figure 32. The minimum 

distance between inclusions equals d = 3h. This dependence was obtained 

from a series of 400 tests. Figure 32 shows, in addition, the standard 

deviation s of the effective thermal conductivity distribution in the same 

series of tests. The ratio of values s and s is equal approximately to 1.9. 

Both standard deviations have maximum in the concentration range  

c  0.32.  

The appearance of this maximum is quite understandable. The 

inclusions concentration growth leads to the fact that the parameters of 

heat fluxes in different directions are increasingly differs from each other. 

When the inclusions concentration is high they are located in the matrix 

evenly and, basically, at the minimum distance. The conditions for the flow 

of heat fluxes become practically the same in different directions, which 

leads to a drop in the standard deviation of the distribution e. 

 

 

Figure 33. Dependences of the standard deviation on the inclusions size for the 

distribution e (curve 1) and the distribution e (curve 2). 
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Figure 34. Dependences of the standard deviation on the minimum distance between 

inclusions for the distribution e (curve 1) and the distribution e (curve 2). 

Figure 33 presents the dependences of s and s on the size of 

inclusions in the template a = 128h. The inclusions concentration in the 

matrix is c  0.29 and the minimum distance between inclusions is d = 3h. 

Each point of the graph is obtained from a series of 400 tests.  

Figure 34 presents the dependences of s and s on the minimum 

distance between inclusions in the template a = 128h for the inclusions 

concentration in the matrix c  0.29 and the size of the inclusions b = 16h. 

Each point of the graph is obtained from a series of 400 tests. Dependences 

of s and s for different parameters are similar.  

Thus, the value of s is actually determined by the value of s. Hence, 

the standard deviation s of the distribution e (but not the deviation of the 

distribution e) can be considered as a measure of the thermal 

conductivity effective anisotropy. 
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5.4. SUMMARY 

 

1) Composite materials with a random inclusions arrangement have 

statistical scattering of the effective thermal conductivity 

depending on the specific implementation. 

2) The statistical distribution of the effective thermal conductivity can 

be approximated by the Weibull distribution.  

3) A composite material with certain inclusions placement parameters 

can be characterized by effective thermal conductivity. We have 

shown that the average value of thermal conductivity in a 

representative sample of its realizations can be considered as an 

effective thermal conductivity.  

4) The correct value of effective thermal conductivity requires 

consideration of the mutual influence of inclusions. The effective 

thermal conductivity of a composite depends on the size of the 

inclusions and the minimum distance between them. 

5) An approximate expression for the dependence of the effective 

thermal conductivity of the composite on the concentration of 

inclusions is proposed. This expression includes two coefficients, 

one of which depends only on the relative size of the inclusions, 

and the other coefficient depends only on the relatively minimal 

distance between the filler particles. Such a form of approximation 

is convenient for further theoretical analysis. 

6) The approximate expression for the dependence of the effective 

thermal conductivity of the composite on the concentration of 

inclusions is applicable for the entire range of possible inclusions 

concentrations, in contrast to those offered in GCT family models, 

which can only be used at low inclusions concentrations. 

7) Two-phase composite materials with a random inclusions 

arrangement have different values of the effective thermal 

conductivity for different directions of the heat fluxes. This 

property of the composite material can be called thermal 

conductivity effective anisotropy. The thermal conductivity 

effective anisotropy has statistical nature. 
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8) The constancy of the ratio between the standard deviations of the 

effective anisotropy of thermal conductivity and the actual 

effective thermal conductivity in all numerical experiments 

(approximately 1.9) indicates a high degree of statistical 

independence of the heat fluxes in the material when a temperature 

macro-gradient is superimposed in two mutually perpendicular 

directions.  

9) The change in the direction of the temperature macro-gradient 

must be associated with a change in the inclusions distribution.  

10) The standard deviation of distribution of composite material 

effective thermal conductivity can be considered as measure of its 

thermal conductivity effective anisotropy. 

 

 





 

 

 

 

 

 

Chapter 6 

 

 

 

STATISTICS OF LOCAL HEAT FLUXES  

INTENSITY DISTRIBUTION  
 

6.1. SET OF DISTRIBUTION MODES 

 

As we noted above (see sections 4), the presence of filler particles in 

the composite matrix leads to a violation of the homogeneity of the heat 

fluxes. Analysis of intensity maps of local fluxes revealed a number of 

specific areas of the matrix: an unperturbed matrix, a dark matrix, and 

induced heat conductive channels. These regions differ in the characteristic 

value of local heat fluxes: the intensity of local fluxes in a dark matrix is 

lower than the intensity of local fluxes in the unperturbed matrix. The 

induced heat-conducting channels were characterized by an increased 

intensity of local fluxes. 

It is obvious that the value of the effective thermal conductivity of a 

composite material is determined by the conditions for the flow of local 

heat fluxes. The above is the reason for studying the distribution of local 

heat fluxes in terms of intensity. It is also necessary to clarify the 

peculiarities of the influence of the placement of inclusions on the 

distribution of local heat fluxes.  

Figures 35 shows sample of composite material with randomly 

disposed thermal insulating inclusions. Template size is 128h  128 h, the 
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inclusions size is b = 5h and minimum distance is d = h. Thermal 

insulating inclusions are represented on the grid by dark gray squares. 

Inclusions concentration is c ≈ 0.293 (N = 192). 

 

 

Figure 35. Composite with placement parameters:  a = 128h, b = 5h, and d = h 
(sample 1). 

 

Figure 36. LHF intensity distribution in sample 1. 
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Figure 36 presents the LHF intensity distribution in this sample. This 

distribution is characterized by three modes, designated as mode 1, mode 

2, and mode 3. Mode 1 is well differentiated from mode 2, and modes 2 

and 3 partially overlap.  

To identify the template cells through which flow the local fluxes of 

different modes of this distribution, we used the following visualization. 

All cells with the intensity of local flows less than 0.07 conventional units 

were painted black. Local heat fluxes forming mode 1 flow through these 

cells. Most local fluxes with an intensity of 0.07 to 0.17 conventional units 

form mode 2. Cells with such fluxes were painted in grey. The cells 

through which local flows passed with an intensity of more than 0.17 

conventional units were painted white. Such local fluxes preferentially 

form the mode 3. In connection with the partial overlap of modes 2 and 3, 

such a visualization will show some part of the cells forming mode 2 as the 

cells forming mode 3 and vice versa. However, the share of such erroneous 

identification will be low. 

The result of the visualization is shown in Figure 37. A preliminary 

analysis of the obtained map indicates that the mode 1 is formed by local 

fluxes passing through the inclusions, with the exception of the corner 

cells. Therefore, we call this mode as the mode of inclusion (I-mode). The 

cells forming mode 2 turned out to be, in fact, cells of a dark matrix 

(compare Figures 5, 8, 10, and 11). Subsequently mode 2 will be called a 

dark matrix mode (D-mode). Dark matrices of inclusions are interacting 

for the case of a given concentration c ≈ 0.293. 

The remaining white cells may belong to either the unperturbed matrix 

or the induced heat-conducting channels. Since white cells begin to 

predominate at a given concentration of inclusions, we will call this mode 

a mode of channels (C-mode). 

Figure 38 shows the distribution of the intensity of local heat fluxes in 

another sample from the same series of tests. The separation of mode D 

and mode C is not so obvious on this histogram, as in Figure 36.  
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Figure 37. LHF intensity map in sample 1.  

 

Figure 38. LHF intensity distribution in sample 2. 

To analyse the effect of placement parameters on individual 

distribution modes, we built histograms for large series of tests. Figure 39 

shows the LHF intensity distribution in a series of 800 tests (series 1) for 

placement parameters a = 128h, b = 5h, d = h, c ≈ 0.293 (N = 192, 

samples 1 and 2 are included in this series). In this case the total number of 

analyzed LHF is more than 107.  
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Figure 39. LHF intensity distribution for test series 1: a = 128h, b = 5h, d = h,  

c ≈ 0.293 and its decomposition into separate modes D and C.  

We assumed that the presented multimodal distribution is the sum of 

three single-mode distributions. Representative statistics allows 

determining the parameters of overlapping modes if the types of their 

distributions are known. First it should be marked that C-mode is 

asymmetric with an elongated right tail. We can assume that D-mode has a 

similar asymmetry in spite of it is not so obvious. 

As random variation of the LHF value through each next cell in 

connection with multiplicative influence of randomly distributed inclusions 

should have an equal probability regardless of the sign, then, the 

probability of the LHF intensity distribution should be described by a log-

normal law if number of steps and inclusions concentration are large: 
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where Me is a median,  is the distribution parameter, which is related to 

the width of the mode. However, the reparametrized form of the lognormal 



Alexander Pysarenko and Igor Zaginaylo 110 

distribution, which is used, in particular, in [PeakFit™ v4 Users Guide], 

seems to be more convenient for further analysis. 
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where A, and Mo are mode and amplitude of the mode, respectively. Their 

values are easily determined from the histogram. 

The result of decomposition of the discussed multimodal distribution 

into separate components using the PeakFit® v. 4.12 program is also 

shown in Figure 39.  

I-mode, being well separated from other modes, does not need a 

special decomposition procedure. In this case, the program was used to 

determine the parameters of this mode.  

A part of LHF which corresponds to a certain mode, we call power of 

the mode Pw. The power can be defined as the area under the intensity 

distribution curve. For the test series under discussion the power of  

I-Mode, D-mode and C-mode are PwI ≈ 24.7%, PwD ≈ 15.3%, and PwC ≈ 

59.9%, respectively. It is appropriate to note here that the concentration of 

inclusions in this case is 29.3%. The power of the mode of inclusions turns 

out to be somewhat smaller because the inclusion angles do not participate 

in its formation. Indeed, there are 192 inclusions in the template at given 

placement parameters, therefore, 768 grid nodes are excluded from the 

formation of the I-mode. The expected power of I-mode should be PwI = 

(4800 – 768)/16384  100% ≈ 24.6%, which agrees with the above results 

of the analysis of the distribution. 

The intensity of the fluxes passing through the angles of inclusions is 

characteristic for the dark matrix. Therefore, the angular nodes contribute 

to the determined power PwD. Correction of this power by 768 grid nodes 

shows that the "clean" power of the dark matrix in this case is PwD ≈ 

10.6%. 
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Figure 40. LHF intensity multi-modal distribution for test series 2: a = 160h, b = 4h, 

d = h, c = 0.30 and its decomposition into separate modes D and C. 

The characteristics of the individual modes of distribution and the 

degree of their overlap are very sensitive to the placement parameters of 

the inclusions, as shown in the following three figures. 

Figure 40 shows LHF intensity distribution in a template with 

following parameters of randomly arranged inclusions: a = 160h, b = 4h,  

d = h, c = 0.30 (N = 480). Distribution represents series of 400 tests (series 

2). The overlapping modes was separated, and they are also shown in 

Figure 40. For this test series the power of C-mode and D-mode are  

PwC ≈ 61.2% and PwD ≈ 15.8% respectively. 

Figure 41 shows a distribution of the LHF intensity values in a 

template with the following parameters: a = 160h, b = 5h, d = h, c = 0.293 

(N = 300) for a series of 400 tests (series 3). It can be seen, the overlapping 

of modes D and C is stronger than in series 2. The power of the modes also 

changes: PwC ≈ 59.9%, and PwD ≈ 14.2%. The increase in the inclusions 

size leads to larger overlap of the modes.  

It should be noted that series 1 and series 3 differ only in the size of the 

template a, and therefore in the relative size of the inclusions b/a. 

Comparing the LHF distributions of these series (Figures 39 and 41), we 

note the following. C-mode in both cases has the same power, but in series 
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3, the mode position is shifted to the left with respect to the mode position 

in series 1. The shift to the left is also observed for the D-mode, although 

to a lesser extent than for the C-mode.  

 

 

Figure 41. LHF intensity multi-modal distribution for test series 3: a = 160h, b = 5h, 

d = h, c = 0.293 and its decomposition into separate modes D and C. 

 

Figure 42. LHF intensity distribution in test series 4: a = 160h, b = 8h, d = h,  

c = 0.292 and its decomposition into separate modes D and C. 
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Figure 42 shows the distribution of the LHF intensity values in the 

template a = 160h, b = 8h, d = h, c = 0.293 (N = 300) for a series of 400 

tests (series 4). In this case, visually, nothing indicates the presence of two 

overlapping modes in the distribution, and only knowledge of the 

transformation of the distribution with increasing b allows us to assume the 

presence of two hidden modes at the observed wide maximum. In this case 

PwC ≈ 59.2%, and PwD ≈ 12.2%. 

The presence of numerical data characterizing the overlap of the  

D- and C-modes makes it possible to clarify the localization of LHF in the 

samples.  

It was found for series 4 that almost all the fluxes falling into intensity 

range from 0.05 to 0.1 arbitrary units correspond only to the D-mode, and 

all the fluxes with intensity more than 0.21 arbitrary units belong to the  

C-mode. On the heat fluxes pattern the inclusions are marked black, the 

areas with LHF intensity of at least 0.22 arbitrary units (belong to the C-

mode) are marked white, and the areas with LHF intensity up to 0.1 

arbitrary units (belong to the D-mode) are marked dark gray. The regions 

which can belong to both D-modes and C-mode because of their overlap 

are marked light gray. An example of such a pattern is shown in Figure 43. 

 

 

Figure 43. LHF modes intensity map for test series 4. 
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Figure 44. LHF intensity distributions in test series 4 and 5. 

The proposed method of visualizing the localization of different LHF 

modes gives a better idea of the structure of the heat transfer paths 

(induced heat-conducting channels) inside the sample than the method 

used by us in constructing the visualization in Figure 33. 

The distribution modes are also sensitive to the minimum distance 

between inclusions. Figure 44 shows the distribution of the LHF intensity 

values in the template a = 160h, b = 5h, c = 0.293 (N = 192) for d = 0 and 

d = 2h (series 5 and 5 respectively). Increasing of minimum distance d  

from 0 to 2h leads to shifting both of C and D modes to the right. Wherein, 

the power of the C-mode decreases from 62.1% to 54.5%. The decrease in 

PwC is accompanied by an increase in the power of the D-mode from 

12.1% to 21.0%.  

Returning to Figure 43, we note that inclusions placement shown there 

does not satisfy the criterion d/b ≥ 1 for the applicability of GCT. 

Inclusion placements of this type just lead to the appearance of induced 

heat-conducting channels. 

In the case of low inclusions concentrations and large minimum 

distances between them, the criterion for the applicability of GCT will be 

fulfilled. In this case, the nature of LHF flow turns out to be somewhat 

different. The changing of LHF flow character should lead to a change in 
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the character of LHF intensity distribution. Really, at low heat-insulating 

phase concentrations the shape of the LHF distribution varies significantly, 

although the multimode character of the distribution is preserved. Figures 

45 and 46 show the LHF intensity distribution in test series 6 with 

parameters: a = 128h, b = 5h, с = 0.073 (N = 48), d = h and in test series 7 

with parameters: a = 128h, b = 16h, с = 0,094 (N = 6), d = 6h, respectively. 

Analysis of C-mode shape at low concentration of inclusions shows 

that in this case its distribution cannot be approximated by a lognormal 

law. It is natural to assume that with a decrease in inclusions concentration, 

the number of random changes in LHF while passing the total heat flux 

through the material becomes not large enough that conditions for the 

formation of a lognormal distribution arise. 

The second feature of LHF intensity distributions at low concentrations 

and large inclusions is shown in Figure 46. D-mode amplitude is reduced 

so that it is impossible to discern. 

 

 

Figure 45. Poly-modal LHF intensity distribution in test series: a = 128h, b = 5h,  

c = 0.073, and d = h. 

The third feature of the LHF intensity distributions at small inclusions 

concentrations is well manifested at relative minimum distances of the 

order of 0.5. Figure 47 shows the LHF intensity distribution in test series 6 
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with parameters: a = 128h, b = 6h, с = 0.196 (N = 89), d = 3h. Two 

separate modes, indicated in the figure as D1 and D2, arise at the location 

of the mode D.  

 

 

Figure 46. Poly-modal LHF intensity distribution in test series a = 128h, b = 16h,  

c = 0.094, and d = 6h. 

 

Figure 47. Poly-modal LHF intensity distribution in test series a = 128h, b = 6h,  

c = 0.196, and d = 3h. 
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To clarify the nature of the D1 and D2 modes, we constructed a series 

of visualizations of the LHF intensity distribution in specific tests. We 

applied the same method as in the construction of Figure 33 by selecting the 

template cells that form the D1 mode with a dark gray colour, and D2 with a light 

gray colour. Inclusions are traditionally marked in black, and the regions of 

the unperturbed matrix are white. Induced channels are not formed at a 

given inclusions concentration, hence, the mode C is correctly interpreted 

as a weakly perturbed matrix. The result of the visualization is shown in 

Figure 48. This figure shows the LHF map in the sample fragment 

(placement parameters: a = 128h, b = 5h, c = 0.098 and d = 3h).  

Figure 48 shows that both dark gravy areas (mode D1) and light gray 

(mode D2) are localized in a dark matrix. The mode D1 is that part of the 

dark matrix that is near the centre of the inclusion face or between closely 

spaced inclusions. 

 

 

Figure 48. LHF intensity map in the sample fragment.  

Thus, the modes D1 and D2 arise as a result of the splitting of the 

mode D under certain placement parameters. 
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6.2. EFFECT OF INCLUSIONS PLACEMENT  

ON HEAT FLUXES DISTRIBUTION MODES 

 

We considered the dependences of the statistical characteristics of the 

LHF intensity distribution modes on the inclusions placement parameters 

only for inclusions concentrations of the order of 0.25 or more. Such 

concentrations correspond to the region where the GCT applicability 

conditions are violated and where it can be expected that the character of 

the LHF distribution will affect the value of the effective thermal 

conductivity of the material. 

Figure 49 shows the power dependencies of the C and D modes 

obtained for the test series with parameters a = 128h, b = 5h, d = 0, and  

a = 128h, b = 5h, d = h. Each point on the graph is obtained as a result of 

processing a separate series of 800 tests. The splitting of D-mode was not 

observed at these placement parameters and in the indicated concentration 

range. Naturally, the power of the dark matrix mode increases with 

increasing the concentration of inclusions, and the power of the mode of 

the induced heat-conducting channels decreases.  

It should be noted that for the parameters d = 0 and c > 0.4, the region 

that corresponds to the mode of the dark matrix is larger than the region 

that corresponds to the mode of the induced channels. However, even at d 

= h and above, the region corresponding to the mode of induced channels 

is always larger than the region corresponding to the mode of the dark 

matrix. At non-zero minimum distances between inclusions, it is usually 

impossible to achieve concentrations above 0.5. Such an opportunity is 

only for d = 0. It turned out that for the concentration c ~ 0.6 the Pw (с) 

dependences are saturated and, with a further increase in concentration, 

change their behaviour: PwC begins to increase unexpectedly, and PwD 

begins to decrease. According to our assumption, this is due to the fact that 

at such concentrations the material should be considered not as a heat-

conducting matrix with square body-insulating inclusions, but as a heat-

insulating matrix with heat-conducting filamentous inclusions. LHF 

transport in such material requires a separate study.  
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Figure 49. Dependences of PwC and PwD on the inclusions concentration in tests:  

a = 128h, b = 5h, d = 0 and a = 128h, b = 5h, d = h. 

The position of the C and D modes (the Mo parameter from formula 

(104)) with increasing concentration weakly shifts to the left (i.e., the 

intensity of LHF decreases), and as the minimum distance increases, they 

shift to the right (i.e., the LHF intensity increases).The dependences of the 

Mo parameter for modes C and D on the inclusions concentration in the 

same series of tests are shown in Figure 50.  

The increase in the size of the inclusions allows us to investigate the 

behavior of the position of the mode at a greater number of minimum 

distances. Figure 51 shows the dependence of MoC on the concentration of 

inclusions for parameters a = 128h, b = 6h d = h, 2h, and 3h. The character 

of the MoC (с) dependence varies with increasing d. In this material, the 

mode D splits into the modes D1 and D2, which exhibit the same behavior 

as in Figure 50. 

The mode width parameter  (see formula (104)) for modes С and D 

has somewhat different behaviour. Figure 52 shows that D-mode width D 

relatively quickly increases with increasing concentration of inclusions in 

the case when C-mode width C is weakly dependent on the concentration 

of inclusions. Since the position of the mode is slightly shifted to the left, 

the increase in the width of the mode occurs due to the stretching of the 



Alexander Pysarenko and Igor Zaginaylo 120 

right tail. This means that intense local heat fluxes can pass through the 

regions of a dark matrix filled with a sufficiently large number of 

inclusions. 

 

 

Figure 50. Dependences of MoC, and MoD on the inclusions concentration in tests:  

a = 128h, b = 5h, d = 0 and a = 128h, b = 5h, d = h. 

 

Figure 51. Dependences of MoC, and MoD on the inclusions concentration in tests:  

a = 128h, b = 6h and various d/b. 
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Figure 52. Dependences of C, and D on the inclusions concentration in tests:  

a = 128h, b = 5h, d = 0 and a = 128h, b = 5h, d = h. 

  

Figure 53 a. Dependences of the power 

of C-mode and the total power of the 

modes D1 and D2 on the d/b ratio in 

tests: a = 128h, b = 7h, c = 0.245,  

d = 0, h, 2h, 3h. 

Figure 53b. Dependences of parameters 

Mo and  of C-mode on the d/b ratio 

in tests: a = 128h, b = 7h, c = 0.245,  

d = 0, h, 2h, 3h. 

As we showed above (see sections 5), the effective thermal 

conductivity of a composite material is affected by the ratio d/b. The most 

probable cause of this effect is the change in the conditions for the flow of 
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local heat fluxes. Therefore, the dependences of the mode characteristics of 

the LHF distribution on the ratio d/b are of interest.  

Figure 53 shows the dependence of the mode power of the induced 

channels and the total power of the dark matrix modes D1 and D2 on the 

relative minimum distance for the test series a = 128h, b = 7h, c = 0.245,  

d = 0, h, 2h, 3h.  

Analysis of the graph shows that when the minimum distance 

increases, the regions between the inclusions are occupied mainly by a 

dark matrix. Visualization of solutions shows that this occurs mainly in the 

direction of the x axis, i.e., in the direction of the common heat flux. The 

thermal conductive channels become narrower, but the intensity of the 

fluxes in them increases. This is confirmed by Figure 54, which shows the 

dependence of the position of the mode of the channels and the mode 

width on the relative minimum distance between the inclusions. Reducing 

the power of the channel mode and shifting its position toward a higher 

intensity have competing effects on the effective thermal conductivity of 

the material. As shown in sections 5 (see Figure 23), as a result, we still 

have an increase in the effective thermal conductivity with an increase in 

the ratio d/b. 

 

 

6.3. EFFECT OF LHF FLOW ANGLES  

ON THERMAL CONDUCTIVITY 

 

In material with irregularly arranged inclusions, LHF do not flow 

strictly along the applied temperature macro-gradient. Figure 54 shows a 

fragment of heat fluxes map in material with inclusions placement 

parameters: a = 128h, b = 10h, c = 0.537 and d = h (N = 88). The 

temperature macro-gradient between the material boundaries is applied 

from right to left. 

The map demonstrates that a significant part of LHF flows at nonzero 

angles to the direction of the temperature macro-gradient between the 

material boundaries. There are even such areas where LHF flow almost 
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perpendicularly to the direction of temperature macro-gradient. Thus, the 

heat flux passing through the sample overcomes a distance slightly greater 

than the distance between the left and right boundaries of the sample. 

Therefore, the total heat transfer resistance of the sample should increase, 

and the effective thermal conductivity should decrease. The heat fluxes 

path elongation can be described by a characteristic deviation angle of the 

averaged direction of heat fluxes from the direction of temperature macro-

gradient between the boundaries of the sample. 

Before choosing the procedure for calculating this characteristic angle, 

we analyzed the distribution of the angles of the deviation of LHF from the 

temperature macro-gradient direction. Figure 55 shows such distribution 

for the pattern, a fragment of which is shown in Figure 54. 

 

 

Figure 54. Fragment of heat fluxes map with sizes 48h × 40h. LHF directions were 

calculated according to (5) and indicated by arrows. LHF intensity is proportional to 

the thickness of the arrows. Heat-insulating inclusions are gray. 

Figures 56 – 58 show that the character of the angular distribution of 

LHF is the same in large series of tests. The inclusions placement 

parameters influence the distribution characteristics. 
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Figure 55. Angular distribution of LHF deviation from temperature macro-gradient 

direction in test which shown in Figure 54. 

 

Figure 56. Angular distribution of LHF deviation from temperature macro-gradient 

direction in series of 800 tests: a = 128h, b = 7h, d = 2h, and c = 0.1. 

It should be noted that separate modes are seen on the right tails of 

these distributions. Analyzing LHF patterns we defined the reasons of 

existence of the mode, corresponding to an angle of about 40 degrees. 

Figure 54 shows that LHF flow through the inclusions corners at an angles 
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of about 40 – 45 degrees. The decrease in the inclusions size at their 

constant concentration corresponds to an increase in the inclusions number 

and, correspondingly, the number of angular regions through which LHF 

flow at above mentioned angles.  

 

 

Figure 57. Angular distribution of LHF deviation from temperature macro-gradient 

direction in series of 800 tests: a = 128h, b = 7h, d = 2h, and c = 0.245. 

 

Figure 58. Angular distribution of LHF deviation from temperature macro-gradient 

direction in series of 800 tests: a = 128h, b = 7h, d = 2h, and c = 0.39. 
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Thus, the appearance of the mode on the LHF angular distribution is 

only due to the rectangular shape of the inclusions and demonstrates the 

LHF passage through their corners. 

The mode value of the most similar distributions corresponds to the 

range of 4 – 8 degrees and depends slightly on the inclusions placement 

parameters. Therefore, we did not consider the angular distribution mode 

as the characteristic angle. As a characteristic angle, we considered the 

following two variants: the average value of angle < > (the first initial 

moment of the distribution, which is determined in the standard way) and 

the angle of <W >, while the statistical weighting is performed from the 

magnitude of the module vector of LHF density: 
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where | ji,j | is the module vector of LHF density, determined according to 

(91) at the counting grid node with numbers i, j; and  i,j is the angle 

between the temperature macro-gradient and the direction of the LHF 

vector at the same node, determined according to (92). 

Figures 59 and 60 show the correlation scattering fields of the LHF 

average deviation angle < > with the relative effective thermal 

conductivity e of the material with the placement parameters: a = 128h,  

b = 10h, c = 0.34, d = h and the LHF average deflection angle <W > with 

e of the same material, respectively. The inclination angle value of 

scattering ellipses shows that anti-correlation exists between the selected 

angles (< >, <W >) and e. The anti-correlation is stronger in the case of 

<W >.  

Figures 61 and 62 show dependence of the correlation coefficients 

between e and < >, and also between e and <W > for the parameters  

a = 128h, b = 10h, d = h and a = 128h, b = 10h, d = 4h, respectively on 

inclusions concentration. 
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Figure 59. Correlation scattering field of the average angle of LHF deviation from 

temperature macro-gradient direction and relative effective thermal conductivity in 

series of 800 tests: a = 128h, b = 10h с = 0.34, and d = h. 

 

Figure 60. Correlation scattering field of the < W > from temperature macro-gradient 

direction and relative effective thermal conductivity in a series of 800 tests: a = 128h, 

b = 10h с = 0.34, and d = h. 
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Figure 61. Dependences of the correlation coefficient between e and < > (curve 1), 

and the correlation coefficient between e and < W > (curve 2) on inclusions 

concentration: a = 128h, b = 10h, and d = h. 

 

Figure 62. Dependences of the correlation coefficient between e and < >  

(curve 1), and the correlation coefficient between e and <W > (curve 2) on 

inclusions concentration: a = 128h, b = 10h, and d = 4h. 
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It is obvious that the correlation of the weighted average angle <W > 

with e is stronger, therefore, as a characteristic angle, it is reasonable to 

consider the weighted average angle of LHF deviation from the 

temperature macro-gradient direction. 

Figure 63 shows typical dependences of the weighted average angle of 

LHF deviation on the inclusions concentration. These dependences 

demonstrate a tendency of saturation or approach to the local maximum as 

the inclusions concentration increases. Moreover, it shows that the 

weighted average angle also depends on minimum distance between 

inclusions and this dependence becomes stronger at concentrations of 0.3 

and higher. 

Figures 64 and 65 show the weighted average angle of LHF as a 

function of the relative minimum distance d/b at different concentrations 

and different particle sizes of the filler. These dependences are stronger at 

high concentrations.  

 

 

Figure 63. Dependences of weighted average angle of LHF deviation from temperature 

macro-gradient direction on the inclusions concentration for a = 128h, b = 16h, and 

different minimum distances d. 
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Figure 64. Dependences of weighted average angle of LHF deviation from temperature 

macro-gradient direction on the d/b ratio for a = 128h, b = 10h, and and various c. 

 

Figure 65. Dependences of weighted average angle of LHF deviation from temperature 

macro-gradient direction on the d/b ratio for a = 128h, b = 16h, and various c. 

Figures 64 and 65 also show that the dependences <W > (d/b) are 

weakened as the ratio d/b is increased, i.e. with a decrease in the mutual 

influence of inclusions. 
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Figure 66. Dependences of weighted average angle of LHF deviation from temperature 

macro-gradient direction on the b/a ratio for a = 128h, d = 0 and various c. 

 

Figure 67. Dependences of weighted average angle of LHF deviation from temperature 

macro-gradient direction on the b/a ratio for a = 128h, d = 2h, and various c. 

Figures 66 and 67 show the weighted average angle of LHF as a 

function of the relative particle size (b/a) of filler at different 

concentrations and different minimum distances between the filler 
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particles. In these figures, a decrease in <W > is observed with an increase 

in the ratio b/a. As a reason for this dependence, it can be pointed out that 

an increase in the ratio b/a at a constant inclusions concentration means a 

decrease in the number of filler particles and, consequently, the number of 

those regions of the matrix in which the LHF deviate from the direction of 

the temperature drop. In this case, for smaller values of d, when the 

interaction between the filler particles is more probable, the <W > (d/b) 

dependences are stronger. 

Concentration dependences <W > are described fairly well by the 

approximation 

 

    





 4 3

arctan ccW   , (106) 

 

where , and  are the fitting coefficients. 

 

 

Figure 68. Dependence of the fitting coefficient  on the d/b for all b/a. 

Figures 68 – 69 show the dependencies of the fitting coefficients on 

the relative minimum distance d/b between inclusions. These graphs 

contain points with different values of the relative size of the inclusions 
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b/a. The indicated values differ 4 times. In this case, the spread of the 

values of the fitting factors does not exceed 12%. In the first 

approximation, we can assume that there is no dependence of the 

magnitude of the fitting coefficients on the relative size of the inclusions.  

 

 

Figure 69. Dependence of the fitting coefficient  on the d/b for all b/a. 

As expected, the values of both fitting coefficients tend to some 

constant values with increasing d/b ratio and approaching it to 1. 

 

 

6.4. SUMMARY 

 

1) It was found that the statistical distribution of the modulus of the 

density vector of local heat fluxes is multimodal. It is shown that 

this distribution consists of the distributions of local fluxes that 

flow inside the inclusions, as well as in the region of the dark 

matrix and in the region of induced heat-conducting channels. 

2) At high inclusions concentrations (c > 0.25), beyond the 

applicability limits of the GCT, individual modes of the LHF 
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distribution can be completely satisfactorily approximated by the 

log-normal distribution.  

3) For the case of low concentrations, the mode of distribution of 

local heat fluxes, passing through the regions of the dark matrix 

can split into two modes. A mode with lower values of the 

modulus of the density vector of local heat fluxes is formed in the 

region of a dark matrix immediately adjacent to the boundaries of 

inclusions or located between closely located inclusions. The mode 

with higher LHF values corresponds to the rest of the dark matrix, 

whose dimensions are comparable to the size of the inclusion. 

4) Changes in the placement parameters of inclusions in conditions 

when there is a mutual influence of inclusions lead to changes in 

the characteristics of the multimode heat flux intensity distribution. 

These changes, in turn, manifest themselves in the form of changes 

in the effective thermal conductivity of the material. 

5) Local heat fluxes in composite materials with heat-insulating 

inclusions deviate from the direction of the temperature macro-

gradient.  

6) We propose to consider the weighted average angle, determined 

according to formula (47), as a measure of the average deviation 

specified in paragraph 1. 

7) It is shown that the value of the weighted average angle of local 

heat fluxes deviation from the direction of the temperature macro-

gradient is significantly correlated with the effective thermal 

conductivity of the sample. The effective thermal conductivity 

decreases with an increase in the weighted average deviation 

angle. This means that deviations of the local heat fluxes from the 

direction of the temperature macro-gradient lead to an increase in 

the effective path of heat fluxes in the matrix of the composite 

material. 

8) An approximate expression for the dependence of the weighted 

average angle of LHF deviation from the temperature macro-

gradient on inclusions concentration was proposed. This 

expression includes two coefficients that depend on relative 
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minimal distance between the filler particles. Such a form of 

approximation is convenient for further theoretical analysis. 

 

 





 

 

 

 

 

 

 

 

 

AFTERWORD 
 

 

Two years ago, starting work on the article [315], we simulated the 

impact of various factors on the integral thermal conductivity of the two-

component composites. In doing so, we experimented with ordered 

structures of inclusions in the matrix, which were modelled separately for 

each series of tests. We observed that the thermal conductivity of the 

composite depended on the specific location of the inclusions. These facts 

did not fit into the framework of the dominant Maxwell-Rayleigh theory. 

The theory assumes the dependence of thermal conductivity on 

concentration, size and shape of inclusions. Nevertheless, the results of our 

numerical experiments have shown that changing the placement of 

inclusions leads to a change in the integral thermal conductivity by 10-

12%. This led us to the decision to use statistical methods of investigation 

to study the influence of the arrangement of inclusions on the effective 

thermal conductivity. 

 As a result, we started placing the inclusions with the help of a 

random number generator. Concentration and size of inclusions were used 

as traditional model parameters for describing the thermal conductivity of 

composites. We considered the minimum distance between inclusions as 

the third parameter. The effect of this parameter on the thermal 

conductivity was established by us at the stage of experiments with ordered 
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structures. This effect was confirmed for the distances d < b of inclusions 

at their random placement within the matrix of the composite.  

In order to explain this fact, we decided to calculate the local heat 

fluxes in the material. The primary study of the fluxes was carried out by 

means of visualization of a numerical solution. The study of the visualized 

flow maps allowed us to identify the characteristic areas of the material 

that received the names of the dark matrix and induced channels. It turned 

out that the minimum distance between inclusions affects the fluxes maps 

when the inclusions are close. In addition, the paths of local flows were not 

straight, but tortuous. The number and curvature of the turns of their paths 

also depended on the placement parameters of the inclusions. 

The next step was to study the statistical distribution of fluxes in terms 

of intensity and direction. It was found that these distributions turned out to 

be multi-modal. The results of numerical experiments have made it 

possible to correlate the modes of the heat fluxes intensity distribution with 

the characteristic regions of the composite matrix, namely, the dark matrix 

and the induced channels. We have introduced the parameter "weighted 

average angle of deviation from the macro-gradient of temperature" to 

characterize the tortuosity of the paths of local heat fluxes. We have shown 

that this parameter is significantly correlated with the effective thermal 

conductivity of the composite. Its influence on the thermal conductivity is 

explained by the increase in the path length of the local heat fluxes in the 

composite matrix. The foregoing indicates that the placement of inclusions 

and the intensity of heat fluxes should be taken into account in the study of 

thermal conductivity. Accounting for this influence is possible within the 

framework of the statistical approach. 

The angular distribution of the local heat fluxes turned out to be quite 

complex and consisting of several modes. A detailed investigation of the 

angular distribution of heat fluxes is the following obvious problem. 

Correlation between the weighted average angle and effective thermal 

conductivity is not exhaustive. We hope to find a correlation between the 

parameters of the modes of distribution of the local heat fluxes intensity 

and the effective thermal conductivity. The search for this correlation is 

also the matter of the near future. In addition, the mono-disperse model 
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does not correspond to the observed structure of most composite materials. 

Therefore, the study of the statistical characteristics of local heat fluxes in 

poly-disperse structures is also an actual problem.  

Thus, this study is difficult to complete, it can only be suspended, 

which the authors did for a while to write this book. 
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