О ЗАКОНОМЕРНОСТЯХ ФОРМИРОВАНИЯ МАТРИЦ ЧИСЛЕННО-АНАЛИТИЧЕСКОГО ВАРИАНТА МГЭ ПРИ РАСЧЕТЕ ЖЕЛЕЗОБЕТОННЫХ РАМНЫХ КОНСТРУКЦИЙ

Ковров А.В., Ковтуненко А.В. (Одесская государственная академия строительства и архитектуры)

Сформульовані закономірності формування матриць, що входять до вирішуючого рівняння чисельно-аналітичного варіанту МГЕ, при розрахунку багатоповерхових багатопрогонових залізобетонних рамних конструкцій.

Актуальность исследований – современные расчеты зданий и сооружений, имеющих рамную конструкцию, требуют учет реальной работы, как материалов, так и узловых соединений элементов.

Численно-аналитический вариант МГЭ позволяет реализовать учет реальной работы конструкций при расчете рамных конструкций. Это обуславливает необходимость совершенствования процесса автоматизации формирования матриц, входящих в разрешающее уравнение.

Цель работы – изучить закономерности и разработать предложения по автоматизации формирования матриц численно-аналитического варианта МГЭ, при расчете многоэтажных многопролетных железобетонных рамных конструкций.

В работах [1, 3] изложены основные правила формирования систем разрешающих уравнений численно-аналитического варианта МГЭ.

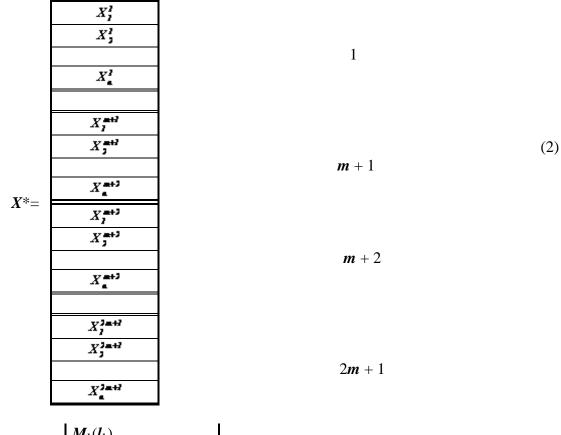
В работе [4] рассмотрены основные принципы и правила формирования матриц численно-аналитического варианта МГЭ, позволяющие автоматизировать расчет рамных конструкций.

Рассматривая уравнения равновесия узлов рамы и совместности деформаций, в соответствии с [4] и выполняя характерную цепочку преобразований, в соответствии с [1, 3], получаем разрешающее уравнение численно-аналитического варианта МГЭ, имеющее вид:

$$A^*(l_i) \cdot X^* = -B(l_i) \tag{1}$$

где $B(l_i)$ – матрица нагрузки, формируемая в соответствии с [1];

 X^* – вектор граничных параметров, определяемый по формуле:



где k — номера элементов, для которых внутренние усилия являются независимыми граничными параметрами

$$X_{i}^{j} = \begin{bmatrix} EIv_{(m-1)n+i}(0) \\ EI\varphi_{(m-1)n+i}(0) \\ M_{(m-1)n+i}(0) \\ Q_{(m-1)n+i}(0) \\ EAu_{(m-1)n+i}(0) \\ N_{(m-1)n+i}(0) \end{bmatrix} \qquad \text{при } j = 1...m+1, i = 2...n \\ \text{при } j = m+2...2m+1, i = n \end{cases}$$

 $A*(l_i)$ – матрица коэффициентов.

В результате исследований предложено матрицу коэффициентов формировать по следующей формуле:

$$A^* = A \cdot C_1 + C_2 + C_3 + K_1 + K_2 + K_3$$
(5)

где: A — исходная матрица коэффициентов, имеющая вид

$$\mathbf{A} = \begin{vmatrix} |\mathbf{A}_{1}| & |0| & \dots & |0| \\ |0| & |\mathbf{A}_{2}| & \dots & |0| \\ \dots & \dots & \dots & \dots \\ |0| & |0| & \dots & |\mathbf{A}_{4}| \end{vmatrix}$$
(6)

для которой каждый блок формируется по формуле:

$$A_{i} = \begin{vmatrix} 1 & l_{i} & -l_{i}^{3}/2 & -l_{i}^{3}/6 & 0 & 0 \\ 0 & 1 & -l_{i} & -l_{i}^{3}/2 & 0 & 0 \\ 0 & 0 & 1 & l_{i} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & l_{i} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{vmatrix}$$

$$(7)$$

 ${\it K}_1$ — матрица зависимостей между усилиями и жесткостями вертикальных участков, имеющая вид:

	1	2	m +1	m + 2		2 m +1	_
	k_I^I	0	0	0		0	
	0	k_j^I	0	0		0	
		•					
$K_1 =$	0	0	k_{a+l}^{l}	0		0	(8)
	0	0	0	0		0	
					-		
	0	0	0	0		0	

$$A_{\mathbf{j}}^{\mathbf{k}\mathbf{j}} = \begin{bmatrix} -EI_{\mathbf{k}}/EI_{\mathbf{k}\mathbf{s}\mathbf{r}} & 0 & 0 & 0 & 0 & 0 \\ 0 & -EI_{\mathbf{k}}/EI_{\mathbf{k}\mathbf{s}\mathbf{r}} & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -EI_{\mathbf{k}}/EA_{\mathbf{k}\mathbf{r}\mathbf{r}} & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$
(10)

 ${\it K}_2$ — матрица зависимостей между усилиями и жесткостями горизонтальных участков, имеющая вид:

	1	m +1	m +2	m +3	2 m +1	
	0	0	0	0	0	
K ₂ =	0	0	0	0	0	(11)
	0	0	0	k_I^2	0	
	0	0	0		0	(11)
	0	0	0	0	k,,	
	0	0	0	0	0	

$$k_{i}^{2} = \begin{array}{c|ccc} 1 & 2 & n \\ \hline 0 & 0 & 0 \\ \hline 0 & 0 & 0 \\ \hline & & & & \\ \hline 0 & 0 & & A_{2}^{kl} \end{array}$$
 (12)

 ${\it K}_3$ – матрица зависимостей между жесткостями горизонтальных и вертикальных участков, имеющая вид:

	1	2		m	m +1	m + 2	m +3		2 m +1	
K ₃ =	0	0		0	0	k_1^{B}	0		0	
	0	0		0	0	0	$k_{j}^{\mathbf{H}}$		0	
	0	0		0	0	0	0		$k_{\underline{\underline{m}}}^{\underline{\underline{m}}}$	
	0	0		0	0	0	0		0	
	k_1^{st}	$k_1^{\mathbf{s}}$		0	0	0	0		0	(1.4)
	0	k_j^B		0	0	0	0		0	(14)
		T	1				T	ı		
	0	0		k=1	0	0	0		0	
	0	0		k. 20	k_{∞}^{\pm}	0	0		0	

$$k_{i}^{2} = \begin{bmatrix} 1 & 2 & n-1 & n \\ A_{ij}^{k3} & 0 & 0 & 0 \\ 0 & A_{ij}^{k3} & 0 & 0 \\ 0 & 0 & A_{i(a-1)}^{k3} & 0 \\ 0 & 0 & 0 & A_{i}^{k4} \end{bmatrix}$$
(15)

$$A_{\underline{i}}^{M} = \begin{pmatrix} 0 & 0 & 0 & 0 & EI_{\underline{i}}/EA_{\underline{i}} & 0 \\ 0 & -EI_{\underline{i}}/EI_{\underline{i}} & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ -EA_{\underline{i}}/EI_{\underline{i}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$
(17)

$$\mathbf{k}_{i}^{B} = \begin{bmatrix} 1 & 2 & n \\ 0 & A_{i}^{B} = & 0 \\ 0 & 0 & 0 \\ 0 & 0 & A_{i-1}^{B} \\ 0 & 0 & 0 \end{bmatrix}$$
(18)

$$\mathbf{k}_{i}^{B} = \begin{bmatrix} 1 & 2 & \mathbf{n} \\ 0 & A_{i}^{M} & 0 \\ 0 & 0 & 0 \\ \hline 0 & 0 & A_{i-1}^{M} \\ \hline 0 & 0 & A_{i-1}^{M} \\ \hline 0 & 0 & 0 \end{bmatrix}$$
(20)

В приведенных матрицах приняты следующие обозначения:

- $\qquad \boldsymbol{h} = (\boldsymbol{m} 1)\boldsymbol{n} + \boldsymbol{i};$
- **s** количество элементов стоек;
- *m* количество пролетов;
- **n** количество этажей.

 C_1 – матрица обнуляющая столбцы исходной матрицы коэффициентов, номера которых соответствуют номерам нулевых начальных параметров;

 C_2 — матрица компенсирующих элементов, образующихся при переносе независимых конечных параметров на места нулевых начальных параметров;

 C_3 – матрица компенсирующих элементов, образующихся при вовлечении независимых конечных параметров в уравнения численно-аналитического варианта метода граничных элементов.

Выводы

Ha основании изучения закономерностей формирования матриц численноаналитического варианта МГЭ при расчете многоэтажных многопролетных железобетонных рамных конструкций разработаны предложения по формированию матриц, входящих в разрешающее уравнение, которые позволяют совершенствовать процесс их автоматизации с целью создания методики расчетов при помощи системы компьютерной математики MATLAB.

Литература:

- 1. Баженов В.А., Коломиец Л.В., Оробей В.Ф. и др. Строительная механика. Специальный курс. Применение метода граничных элементов. Одесса: Астропринт, 2003. 288 с.
- 2. Дащенко А.В., Кирилов В.Х., Коломиец Л.В., Оробей В.Ф. МАТLАВ в научных и инженерных расчетах Одесса: Астропринт, 2003 216 с.
- 3. Оробей В.Ф., Ковров А.В. Решение задач статики, динамики и устойчивости стержневых систем. Применение метода граничных элементов. Одесса, 2004. 122с.
- 4. Основы автоматизации формирования матриц метода граничных элементов при статическом расчете плоских рам / А. В. Ковров, Т. С. Цатуров // Открытые информационные и компьютерные интегрированные технологии. Харьков: НАКУ «ХАИ», 2005. Вып. 27. С. 160-166.