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deformation fields of laminar composites. The results of pulsed impact of acoustic emission on 

samples of fiber-filled composites are analyzed in detail. The features of using wavelets to detail 

the space of intra-volume damage have been studied. Modifications of the Haar wavelet transform 

are presented as a basis for the study of functionally graded composite structures. A comparative 

analysis of wavelet transformation techniques for describing the dynamic response and simulating 

damage in laminated piezoelectric composites was carried out. Spectral dependences are presented 

for symmetric and asymmetric modes of Lamb waves in laminated composites. The monograph is 
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PREFACE 

Industrial composite materials consist of a large number of microstructural 
components with different characteristics, the combination of which determines 
the properties of the material as a whole. The processes occurring in composite 
materials are described by differential equations with rapidly oscillating 
coefficients, the numerical solution of which requires significant computational 
effort, since it involves the use of a very small grid size. 

 This led to the development of a new area of mathematical research, the goal 
of which is to construct methods for averaging partial differential operators such 
that the solutions of the resulting equations with averaged coefficients are close to 
the solutions of the original equations and adequately describe the behavior of the 
composite. The averaged (effective) characteristics of composite materials are 
determined experimentally or numerically, and there are also a number of 
analytical estimates. 

Existing analytical estimates of the properties of composites (for example, 
Hashin-Shtrikman estimates and Voigt-Reuss estimates for elastic constants, 
thermal and filtration properties), as a rule, provide a fairly wide range of possible 
values of material properties and can only be used for rough estimates. 

Currently, numerical methods have been developed for obtaining effective 
characteristics of materials with a periodic structure in problems of linear elasticity, 
thermal conductivity, diffusion, etc. - this is the asymptotic averaging technique. 

However, in this case it is necessary to solve problems in the class of functions 
that are periodic on a cell, which complicates the implementation of this method.  

Only in the case of a certain symmetry of the sample and material under study 
can periodic boundary conditions be replaced by non-periodic boundary conditions. 
The insufficiency of classical averaging methods encourages the development of 
new mathematical approaches. The basis of one of the approaches was the use of 
wavelets - a class of basis functions that are used in digital signal processing, 
information compression, pattern recognition, etc. 

One of the main advantages of the wavelet transform is the ability to obtain a 
representation of quantities at the scale level of interest. Using the wavelet 
transform, an averaged representation of the function is obtained (coarse scale - 
“low resolution”) and its local components are isolated (fine scale - “high 
resolution”). This transformation property allows the introduction of multiscale or 
variable resolution analysis of the function under study. 

 The properties of wavelets suggest that the wavelet transform will also be 
useful in averaging solutions to partial differential equations. 

This work is devoted to some basic wavelet analysis methods used to diagnose 
the spatial structure and analyze the dynamics of mass and energy flows of 
composites. 
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The first chapter deals with the analysis of general features and problems of 
using continuous and discrete wavelet transforms. 

The second chapter is devoted to the peculiarities of using acoustic sounding 
of composite structures and subsequent wavelet processing. 

The use of wavelets for identifying damage in composite structures is 
discussed in the third chapter. 

Features of the use of Haar wavelets in the study of compositional structures 
are discussed in the fourth chapter. 

An analysis of the specifics of using wavelet transformations for the study of 
composite materials is given in the fifth chapter. 

The sixth chapter is devoted to the theoretical and experimental study of 
composites using Lamb waves. 
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CHAPTER 1 
INTRODUCTION 

 
The term "wavelet" was introduced by Grossman & Morlet in the mid-80s in 

connection with the analysis of the properties of seismic and acoustic signals [1]. 
The subject of the study was signal analysis, and the set of basis functions was 
redundant. Meyer showed the existence of wavelets that form an orthonormal 
basis in L2 (R) [2]. Discretization of the wavelet transform was described in 
Daubechies' paper [3], which built a bridge between mathematicians and signal 
processing specialists. Daubechies developed a family of wavelet filters that have 
maximum smoothness for a given filter length. The popularity of wavelets increased 
after Mallat introduced the concept of multiple-scale analysis [4]. He was 
apparently the first to use wavelets for image encoding. Some ideas of wavelet 
theory were partially developed a very long time ago. For example, Haar published 
a complete orthonormal system of basis functions with local domain in 1910. These 
functions are now called Haar wavelets [5].  

The word wavelet (from the French “ondelette”) literally translates as “short 
(small) wave. Despite the fact that the theory of wavelet transform has already been 
largely developed, there is, as far as is known, no precise definition of what a 
“wavelet” is and what functions can be called wavelets. Usually, wavelets are 
understood as functions whose shifts and dilations form the basis of many 
important spaces, including L2 (R). These functions are compact in both the time 
and frequency domains. Wavelets are directly related to multi-scale signal analysis. 

The continuous wavelet transform Tf  is the scalar product of f(x) and basis 
functions 

 

    axxba 
1

,  , 


Ra , Rb , baxx  ,             (1.1) 

so  
 

     dxxfxabaT f 




 , .                                         (1.2) 

 

 The basis functions a,b  L2(R)   are real and oscillate around the x-axis. They 
are defined over a certain interval. These functions are called wavelets and can be 

thought of as scaled and shifted versions of the prototype function  (x). 
 When analyzing signals, it is often useful to represent a signal as a set of its 
successive approximations. For example, when transmitting a signal, you can first 
transmit a rough version of it, and then successively refine it. This transfer strategy 
is beneficial, for example, when selecting signals from a database, when you need 
to quickly scan a large number of files. 
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 In most applications we deal with discrete signals. Therefore, from a practical 
point of view, discrete analogs are of interest, which convert a discrete signal into 
continuous and discrete signals, respectively.  

Wavelet analysis is a rapidly developing technique that covers such practical 
applications as pattern recognition problems, processing and synthesis of various 
signals, image analysis of various natures, studying the properties of turbulent 
fields, convolution (packing) of large amounts of information, and in many other 
cases. 
 In many areas, significantly better results can be expected by using wavelets. 
Let's list some of them: the use of wavelet transform for signal compression, the 
use of wavelet transform for multiple-scale curves, the use of wavelet transform for 
surfaces, wavelets are successfully used in quantum physics, in the study of atomic 
structure, in laser technology, problems of analysis of non-stationary signals (this 
kind of problem arises in medicine (tomography, electrocardiography), 
hydroacoustics and other fields), removing noise from noisy signals. 

Wavelets can be orthogonal, semi-orthogonal, biorthogonal. These functions 
can be symmetrical, asymmetrical or non-symmetrical. There are wavelets with a 
compact domain of definition and those without one. Some functions have an 
analytical expression, others have a fast algorithm for calculating the associated 
wavelet transform. Wavelets also differ in the degree of smoothness. For practice, 
it would be desirable to deal with orthogonal symmetric (asymmetric) wavelets.  

It seems important to carry out a preliminary comparative analysis of the 
Fourier and wavelet transforms. The wavelet transform of a one-dimensional signal 
consists of its expansion into a basis constructed from a soliton-like function 
(wavelet) with certain properties through scale changes and translations. Each 
function of this basis can be characterized as a certain spatial (temporal) frequency 
and its localization in physical space-time. Thus, in contrast to the Fourier transform 
traditionally used for signal analysis, the wavelet transform provides a two-
dimensional sweep of the one-dimensional signal under study. A necessary 
condition for such a procedure is to consider frequency and position as independent 
variables. As a result, it becomes possible to analyze the properties of a signal 
simultaneously in physical (time, coordinate) and frequency spaces.  

The scope of application of wavelets is not limited to the analysis of the 
properties of signals and fields of various natures obtained numerically, 
experimentally, or through observations. Wavelets are beginning to be used for 
direct numerical modeling - as a hierarchical basis well suited for describing the 
dynamics of complex nonlinear processes characterized by the interaction of 
disturbances in wide ranges of spatial and temporal frequencies.  

The results of numerous experiments indicate that at large values of the 
Reynolds number, a significant part of the volume of the turbulent fluid remains 
passive with respect to energy dissipation and, consequently, with respect to its 
inverse cascade. Wavelet analysis turns out to be very convenient for analyzing 



8 
 

processes with intermittency. This analysis allows us to identify the spatiotemporal 
properties of the object being studied, determine the presence of intermittency and 
the distribution of dissipation regions, and obtain local high-frequency and global 
large-scale information about the object. 

Processing short high-frequency signals or signals with localized frequencies is 
a difficult procedure. The wavelet transform turns out to be a convenient tool for 
adequately deciphering such data, since the elements of its basis are well localized 
and have a moving time-frequency window. 

Another example is the application of the wavelet transform to the turbulent 
velocity field in a wind tunnel at high Reynolds numbers, which for the first time 
provided visual confirmation of the presence of the Richardson cascade.  

The application of wavelet analysis to invariant measures of some well-known 
dynamical systems that model the situations of transition to chaos observed in 
dissipative systems turned out to be even more effective. 

For practical application, it is important to know both the basic definition and 
the characteristics that a function must have in order to be a wavelet. 

Any localized R- function   L2 (R) is called a wavelet if for it there is a function 

* L2 (R) such that the families {jk} and {*jk}, constructed according to the 
relations 
 

   ktt
jj

jk  22
2/  ,    1

22
  jk ,    Ikj ,             (1.3) 

 

     kttt
jj

jk

jk
 2*2*

2/  , Ikj ,                   (1.4) 

 
are paired bases of the function space L2 (R). 

 Each wavelet  , defined in this way, regardless of whether it is orthogonal or 

not, allows any function f  L2 (R) to be represented as a series  
 

   





kj

jkjk tctf
,

 .                                             (1.5) 

 
whose coefficients are determined by the integral wavelet transform f with respect 

to *. 
 The orthogonality of the wavelet and the presence of an orthogonal basis 

presupposes the following relations: *  , {jk}  {*jk}. 

For many practical purposes, it is sufficient that the wavelet   has the 

property of semi-orthogonality, i.e. so that its Riesz basis {jk} satisfies the condition 

jk,  lm = 0 for j = l,  j, k, l, m  I. 
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A wavelet is called non-orthogonal if it is not a semi-orthogonal wavelet. 

However, being an R-wavelet, it has an analogue * and the pair ( , *) allows us 

to form families {jk} and {*jk}, that satisfy the biorthogonality condition jk,  lm 

= jlkm, j, k, l, m  I  and allowing to construct a full-fledged wavelet series and 
reconstruction formula.   

Most of the restrictions imposed on the wavelet are associated with the need 
to have an inverse wavelet transform (or reconstruction formula). 

he wavelet transform, unlike the Fourier transform, uses a localized basis 
function. The wavelet must be localized both in time and in frequency. 

Often for practical use it turns out to be necessary that not only the zero 
 

 




 0dtt                                                      (1.6) 

 
but also all the first m moments 

 




 0dttt
m                                                (1.7) 

 
were equal to zero. 

Such a wavelet is called a wavelet of order m. Wavelets with a large number of 
zero moments allow, ignoring the most regular polynomial components of the 
signal, to analyze small-scale fluctuations and high-order features. 

An assessment of such a necessary property as localization and boundedness 
of a wavelet can be presented in the following form 

 

    1

1



n

tt                                                (1.8) 

 
or 
 

    1

01ˆ 


n
k  ,                                     (1.9) 

 

where 0 is the dominant frequency of the wavelet, the number n should be as 
large as possible. 

A characteristic feature of a wavelet transform basis is its self-similarity. All 

wavelets of a given family lm(t) have the same number of oscillations as the basic 

wavelet (t). 
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As an orthogonal discrete wavelet generating an orthonormal basis, we can 
specify the Haar wavelet 

 

 
















1,0

12/1

2/10

,0

,1

,1

tt

t

t

t
H                                     (1.10) 

 
The disadvantages of this wavelet are its non-smoothness, i.e. the presence of 

sharp boundaries in t-space. As a result, there is no symmetry of shape in k-space 
and infinite (decreasing as k-1) «tails» appear. However, for some analysis tasks 
these disadvantages are insignificant, and sometimes the one-sidedness of the 
wavelet even becomes an advantage.  

Often, a very similar, also discrete, but symmetrical FHAT wavelet is used to 
describe the signal function 

 

 
















1

13/1

3/1

,0

,2/1

,1

t

t

t

t                                      (1.11)  

 
 

    









k

k

k

k
kk

3

3sinsin
3̂ ,                              (1.12) 

 

where (k) is the Heaviside function ((k) = 1 for k > 0 and (k) = 0 for k  0. 
The FHAT wavelet, which is irregular in time space and does not decay quickly 

enough in frequency space, and the LP wavelet (Littlewood & Paley), on the 
contrary, which has sharply defined boundaries in k-space and does not decay 
quickly enough in t-space, can be considered as intermediate cases between which 
Almost all wavelets are found. 

The wavelet transform can be thought of as a dot product that analyzes the 
wavelet at a given scale and the signal being analyzed. The choice of analyzing 
wavelet is usually determined by what information needs to be extracted from the 
signal. Each wavelet has characteristic features both in time and in frequency space, 
so sometimes with the help of different wavelets it is possible to more fully identify 
and emphasize certain properties of the analyzed signal. 

Real bases are quite often constructed on the basis of derivatives of the 
Gaussian function 
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    

















2
exp1

2
t

t
m

t

m

m ,                          (1.13) 

 

    









2
expˆ

2
t

ikmk
m

m ,                              (1.14) 

 

where t
m = m […]/ tm, m  1. 

 Higher derivatives have more zero moments and allow you to extract 
information about higher order features of the signal. 

In particular, the parameters m = 1 and m = 2 can be associated with a MHAT 
wavelet. The MHAT wavelet has a narrow energy spectrum and two moments equal 
to zero (zero and first). These circumstances make it possible to analyze complex 
signals. The MHAT wavelet generalized to the two-dimensional case is often used 
to analyze isotropic fields. Calculating the derivative in only one direction results in 
a non-isotropic basis with good angular selectivity. 

The well-known Dog wavelet is also constructed based on the Gaussian 
function 

 

 






























8
exp5.0

2
exp

22
tt

t ,                     (1.15) 

 
 

 
 

 






























2
2

2/1
2exp

2
exp

2

1
ˆ k

k
k


 .             (1.16) 

 
 The most commonly used complex basis is based on the well-known Morlet 
wavelet in k- and r-space 
 

    









2
expexp

2

0

r
rikr ,                             (1.17) 

 

   
 













 


2
expˆ

2

0kk
kk ,                         (1.18) 
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in which the plane wave is modulated by a Gaussian of unit width. As k0 increases, 
the angular selectivity of the basis increases, but the spatial selectivity deteriorates. 
 In quantum mechanics, the Paul wavelet is often used 
 

   
  1
1

1





m

m

it

i
mt ,                              (1.19) 

 

       kkkk
m

m  exp̂ .                          (1.20) 

 
 
A large numerical value of the parameter m corresponds to an increased 

number of zero moments of this wavelet. 
Wavelet analysis allows you to obtain objective information about the signal 

being analyzed, since some properties of the wavelet transform do not depend on 
the choice of the analyzing wavelet, which makes these properties very important. 
Let's point out some of these basic properties. 

The wavelet transform W [f] = W (a, b) of the vector function f(t) is a vector 
with components representing the wavelet transform of each component of the 
analyzed vector separately 

 
 

         2121 fWfWtftfW   

   baWbaW ,, 21   .                     (1.21) 

 
 Invariance under shift and, as a consequence, commutativity of differentiation 
 

    00 , bbaWbtfW  .                               (1.22) 

 
 Conditions (1.21) and (1.22) lead to the commutability property for derivatives 
of vector analysis. 
 The wavelet differentiation operation can be represented as follows 
 

        dtttffW ab

m

t

mm

t *1  




.              (1.23) 

 
 Thus, to ignore, for example, large-scale polynomial terms and analyze high-
order features or small-scale variations of the function f, it makes no difference 
whether to differentiate the analyzing wavelet or the function itself the required 
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number of times. This property is very useful considering that often the function f 
is a series of numbers, and the analyzing wavelet is given by a formula.  
 Invariance under stretching (compression) or the property of scale invariance 
is described by the relation 
 



























0000

,
1

a

b

a

a
W

aa

t
fW .                          (1.24) 

 

 Consider the function f  Cm(t0). Such a function is continuously differentiable 
at the point t0 up to a derivative of order m. The wavelet transform coefficients of 
this function at b = t0 must satisfy the inequality 

 

  2/3

0,



m

ataW ,  0a  .                             (1.25) 

 

If f  (t0), i.e. the analyzed function belongs to the space of Holder functions 

with exponent  (f is continuous,  f(t+t0) – f(t)  = ct0 ,  < 1, c = const > 0), then 
the coefficients of its wavelet transform at b = t0 can be written in the form of the 
formula 

 

  2/1

0,



 actW ,   0a .                                (1.26) 

 
All information about a possible feature of f(t) (localization t0, intensity c, 

exponent ) is contained in the asymptotic behavior of the coefficients W(a, t0) for 
small a. If the coefficients diverge on small scales, then f has a singularity at t0 and 

the singularity index   is determined by the slope of the dependence log W(a, t0) 
to log a. If, on the contrary, they are close to zero in the vicinity of t0 on small scales, 
then  f at the point t0 is regular. 

The signal energy Ef can be calculated through the amplitudes (coefficients) of 
the wavelet transform (analogous to Parseval’s theorem) 

 

        



2

*

21

1*

21 ,,
a

dadb
baWbaWCdttftf  ,              (1.27) 

 

    



2

212
,

a

dadb
baWCdttfE f  .                    (1.28) 

 
The energy density of the signal EW(a,b) = W2(a,b) characterizes the energy 

levels (excitation levels) of the signal f (t) under study in space (a, b) = (scale, time). 
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Knowing the energy density EW(a,b), we can determine the local energy density 
at point  b0 (or t0)  

 

    






 
 db

a

tb
baEtaE W

0
0 ,,  .                 (1.29) 

The window function  “maintains” a range around t0 and satisfies the equality 
 

  1dbb .                                               (1.30) 

 

If we choose the Dirac function as   then the local energy spectrum takes the 
form 

 

   0

2

0 ,, taWtaE  .                                 (1.31) 

 
This characteristic makes it possible to analyze the time dynamics of the energy 

transfer of a process by scale - the exchange of energy between the components of 
the process of different scales at any given point in time. 

Most often, studies concerning the practical use of the wavelet transform 
contain the results of calculations in which discrete wavelets are used. This 
preference is due to the fact that commonly used continuous wavelet bases are not, 
strictly speaking, orthonormal, since the elements of the basis are infinitely 
differentiable and decay exponentially at infinity, which contradicts strict 
orthonormality. There are no such problems with discrete wavelets. Because of this, 
discrete wavelets usually lead to more accurate transformation and representation 
of the signal and, in particular, its reverse recovery after the compression 
procedure.  

The wavelet coefficients hk and gk an be uniquely determined within a 
multiscale analysis. They can be calculated directly, knowing the definition 

 

    
k

k kxhx 22                                           (1.32) 

 

    
k

k kxgx 22                                          (1.33) 

 
and properties of orthogonality of scale functions 
 

     mdxmxx 0 .                                         (1.34) 
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 From (1.34) and the orthogonality of wavelets to scale functions, we obtain 
the following equation for the coefficients 
 

 
k

mmkk hh 02                                                 (1.35) 

 

 
k

mkk gh 02 .                                                (1.36) 

 
 In a particular case, we can get a well-known filte 
 

 31
24

1
0 h ,        33

24

1
1 h  

 

 33
24

1
2 h  ,       31

24

1
3 h  .                   (1.37) 

 
 These coefficients define the simplest wavelet D4 from the well-known 
property of orthonormal Daubechies wavelets with finite support. D4                                                     
wavelets appear to be smoother at some points than others. Choosing the sign in 
the expression for h3 will not change the general form of the scaling function, but 
will only renumber the coefficients.  
 Daubechies wavelets with zero moments, the number of which is equal to М, 

have М continuous derivatives. Numerical calculations show that for large М we 

have   0.2. This shows that about 70 – 80% of zero moments cannot be used for 
further analysis. As the smoothness of a wavelet increases, the size of its domain of 
definition usually increases. For sufficiently smooth functions, Daubechies wavelets 
are much smaller (by a factor of 2Mj) than the Haar wavelet coefficients. Therefore, 
using Daubechies wavelets the signal can be compressed much more. Since these 
wavelets are noticeably smoother, the inverse transformation (synthesis) is also 
more efficient.  
 The presence of relationships at two scales for multiscale analysis is a 
characteristic feature of the construction of wavelet packages. The main idea of 
their creation is to sequentially iterate the frequency band splitting while 
maintaining the same pair of filters. Let us denote the scaling function by the symbol 

0, then the wavelet packet can be constructed using the following relations 
 

    
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    
k

nkn kxgx 212   .                                (1.39) 

 

 For the “mother wavelet” the symbol 1 is used. This family of wavelets forms 
an orthonormal basis in L2(R) called the fixed-scale wavelet packet basis. 
 Wavelets with a scale factor of 2 are most convenient for numerical 
calculations. However, within the framework of multiscale analysis, this factor can 
be any rational number. Therefore, it is possible to construct circuits with other 
integer or fractional scale factors. Sometimes their use can lead to better frequency 
localization. 
 Multiscale analysis can also be carried out with multidimensional functions, for 
example, by constructing tensor products. The tensor product method represents 
a direct path to the development of r- regular multiscale decomposition, which, in 
turn, leads to the appearance of multidimensional wavelets with compact support. 
This makes it possible to analyze any space of ordinary or generalized functions in 
n dimensions with a regularity of up to r.  

 The usual way to construct a two-dimensional orthogonal wavelet basis j,k(x) 

= 2j/2(2jx–k) is to form the corresponding functions from two one-dimensional 
bases using the tensor product 
 

     2,1,21; 22112211
, xxxx kjkjkjkj   .                   (1.40) 

 
 In this basis, two variables x1 and x2 are compressed differently. 
 For many applications, a technique is used in which the resulting orthonormal 
wavelet basis is scaled across both variables in the same way and the two-
dimensional wavelets are given by the following expression 
 

 lykx
jjj

 2,22  ,    Zlkj ,, ,                         (1.41) 

 

but  is no longer the only function; on the contrary, it will be formed from three 
elementary wavelets. To create an orthonormal basis W0, we now have to use three 
families 
 

   lykx   ,    lykx   ,      lykx   .          (1.42) 

 
 Then two-dimensional wavelets will be written in the form 
 

   lykx
jjj
 222  ,     lykx

jjj
 222  , 
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   lykx
jjj
 222  .                                           (1.43) 

 
 As an intermediate step, analysis can be performed on a two-dimensional 
plane along horizontals, verticals and diagonals with the same resolution in 
accordance with three wavelets (1.42). 
 There are 2n–1 functions that form an orthonormal basis and perform 
multiscale analysis of any function from L2(R) in the general n-dimensional case. The 
normalization factor is equal to 2nj/2. 

Wavelets are used both in purely theoretical work in functional analysis 
(regularization of gauge theories, conformal field theory, nonlinear chaos theory) 
and in the analysis of observational data (experimental work on quasi-crystals, 
meteorology, acoustics, seismology, nonlinear dynamics in accelerators, fluid 
dynamics and turbulence, surface structure, cosmic ray fluxes, solar wind, galaxy 
structure, density fluctuations in cosmology, properties of dark matter, 
gravitational waves, etc.). 

In this paper we will consider the problems associated with the use of wavelets 
to study the structure of such complex systems as composites. The widespread use 
of polymer composites in the mechanical engineering, aviation, aerospace, 
shipbuilding and automotive industries has created the need to develop suitable 
structural diagnostic methods and tools that will be applicable to heterogeneous 
materials. Due to the increasing requirements for the technical condition of 
composite structural elements in the above-mentioned industries, diagnostic 
methods must be non-destructive and non-contact if possible. These methods 
should be sensitive to different types of damage in fiber composites and should 
provide damage detection, possibly at an early stage. Modal methods, together 
with advanced signal processing methods, satisfy all these requirements in most 
cases. Among other methods including random decrement signature analysis, 
Hilbert-Huang transform, temperature analysis and Poincaré maps of damaged 
structures, wavelet analysis is the most promising method. The most commonly 
used wavelet methods include collocation procedures [6 - 9], calculation formalism 
based on finite elements [10 - 19], analysis of heat flows in composite structures 
[20 - 29], multiscale analysis [30 - 36], application of algorithms for spaces with Riesz 
potential [37, 38], wavelet filtering of wave numbers [39]. 
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CHAPTER 2 
ACOUSTIC EMISSION  
 
A large number of experimental techniques (Oskouei, Qi, Qiao and others [40 

- 72]) are used to study the process of strain accumulation in composites. These 
techniques are usually divided into two main groups: active techniques and passive 
techniques. In the case of active methods, the composite structure is excited by an 
external source. The superiority of passive methods over active methods lies in their 
ability to perform structural health monitoring during the operation of a composite 
structure. The most common passive technique is acoustic emission.  

Acoustic emission is defined as the transmission of an elastic stress wave 
through a material that is subjected to stress. 

Mechanical stress usually arises from an internal source such as crack initiation 
and growth. 

The necessary equipment for monitoring acoustic emissions consists of: 
• structures under load; 
• a network of acoustic emission sensors to record the slightest vibrations of 

the surface during testing of a composite structure and convert these 
vibrations into analog signals. 

• preamplifiers, which increase the intensity of analog signals; 
• acquisition and recording sections, where amplified signals are recorded 

and converted from analogue to digital; 
• data processing sections where recorded digital acoustic emission signals 

are analyzed. 
Acoustic emission analysis is typically performed using signals or features 

extracted from waveforms. Figure 1 shows a typical acoustic emission waveform. 
The following are the most important features of acoustic emission: 

• presence of a threshold: only acoustic emission signals with an intensity 
above the threshold are recorded by the system; 

• amplitude, namely the maximum voltage of the signal. It is usually indicated 
in units of dB; 

• duration, i.e. time interval between the first and last crossing of the 
threshold (indicated in μs); 

• rise time, namely the time interval between the first crossing of the 
threshold and the maximum amplitude (indicated in µs); 

• counters that index the number of times a signal crosses a threshold in an 
increasing direction within the duration of the signal; 

• energy, which is proportional to the area of the area under the rectangular 
signal within the duration of the signal. usually stated in attojoules (aJ) (1 
aJ = 10–18 Joules); 
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• peak frequency, corresponding to the highest value in the frequency 
distribution obtained as a result of the fast Fourier transform of the signal 
(indicated in units of kHz). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Acoustic emissions can be divided into two main groups: damage diagnosis and 

damage prediction. The first group consists of three subgroups: detection of 
damage occurrence, localization of damage and identification of damage. The 
second group contains studies related to predicting the residual service life and 
residual strength of composite structures using acoustic emission. 

Quite often, the acoustic emission technique is used to detect the onset of 
damage to layered composites. The studies cover a variety of loading conditions 
and configurations of composite structures: tension, compression, double 
cantilever beam stress, end-notch bending, mixed bending, 3-point and 4-point 
bending, buckling, quasi-static transverse indentation, low-velocity loading and 
compression after impact on a real composite structure subjected to arbitrary 
loading. Research covers a wide range of composite materials, including 
thermosets; glass/epoxy and carbon/epoxy, thermoplastic material; glass/polyester 
and glass/polyamide, sandwich and hybrid composites. 

The sensitivity of damage detection is usually improved by combining acoustic 
emission data and mechanical data by introducing a so-called watchdog function. 
The sentinel function is defined as the logarithm of the mechanical energy to the 
acoustic emission energy: 

 

Figure 1. Typical acoustic emission. 

waveform. 
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where  
Em(x) is the mechanical energy (area under the load-displacement curve); 
EAE(x) is the cumulative acoustic emission energy; 
x is the displacement. 
 Depending on the damage state of the composite structure, the function f(x) 
can change as follows: 1) increase: i.e. the function shows that the structure is still 
intact and no damage or any microdamage has occurred in the material; 2) a sharp 
decrease in function: this trend shows that the material has suffered enormous 
damage; 3) constant trend: this shows that there is a balance between the 
mechanisms of destruction and the mechanisms of bridging in the fibers; 4) gradual 
decrease in f(x): it is emphasized that the load-bearing capacity of the composite 
structure is gradually lost. Accordingly, the moment of onset of damage is 
considered to be the first large drop in the guard function curve. 
 The term “significant acoustic emission activity” is defined using the so-called 
historical indicator. The calculation of the historical index is preceded by 
determining the tensile strength of the sample using monotonic loading until its 
final destruction. A similar sample is then subjected to several load/overload cycles. 
During these cycles, acoustic emission signals are recorded until the maximum load 
of the previous cycle is reached. The historic index is defined as follows: 
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where 
H(t) is the historic index at time t; 
N is the number of acoustic emission hits up to time t; 
SOi is the amplitude value of i-th hit; 
K is a parameter that is depended to the number of hits. 
 Factors such as amplitude, pulse duration, rise time, center frequency, peak 
frequency and energy, and specimen geometry affect the reliability and 
repeatability of acoustic emission results in assessing damage in laminated 
composites. 
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The uncertainty of the probability amplitude distribution of the acoustic 
emission signal shape can be described by Shannon’s entropy. An increase in 
Shannon’s entropy indicates the occurrence of an internal change in the composite 
material, which may be associated with the occurrence of damage. The Shannon’s 
entropy of each waveform is calculated using the following formula 
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n
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ii xpxpH

1
2log ,                                 (2.3) 

 
where 
H is the Shannon’s entropy; 
p(xi) is the probability mass associated with waveform’s numerical values xi. 
 The second level of damage assessment of composite structures is the 
separation of acoustic emission signals from different damage mechanisms. This 
process is typically performed in one of four ways: 1) manual recognition of acoustic 
emission data, 2) unsupervised clustering, 3) supervised classification, and 4) signal 
processing. 
 However, sometimes different mechanisms of damage are not fully 
differentiated using only one acoustic emission signature. In this situation, it is 
better to use several acoustic emission functions simultaneously to determine the 
type of damage with greater confidence. In this case, due to the complex 
relationships between different acoustic emission functions, the data separation 
process is usually performed using machine learning methods: unsupervised and 
supervised methods.  
 Unsupervised clustering methods such as k-means, genetic k-means, fuzzy c-
means, Gaussian mixture distribution, self-organizing map, and hierarchical models 
are often used to cluster damage in composites. Typically, all unsupervised 
clustering methods attempt to separate a set of acoustic emission signals {X1, X2, …, 
Xn}. Each signal can contain p features Xi = [x1, x2, …, xp], i = 1, 2, …, n in k (k  n ) 
clusters {C1, C2, …, Ck}.  
 Among the unsupervised clustering methods, k-means is widely used in 
numerical experiments to distinguish between different damage mechanisms in 
laminated composites. The K-means calculation technique involves clustering 
acoustic emission data in two stages. At the first stage, the centroid of the initial 
clusters should be randomly selected. Each data point is then assigned to a cluster 
with the centroid of the nearest cluster. In the second step, the new centroid of 
each cluster is updated to the average of all data points within the cluster 
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where 
Ci

(t) is the i-cluster; 
mi

(t) is the center of i-cluster at t-iteration. 
 Although this method is simple and requires little computational effort, there 
is no guarantee that it will always produce optimal results. In other words, there is 
a possibility that the algorithm is not partitioning the data correctly. This is due to 
the random selection of the centroids of the initial clusters.  

Overcoming this limitation can be achieved by adding a fuzzy parameter to k-
means, which is called fuzzy c-means, or by combining k-means with a genetic 
algorithm, which is called genetic k-means algorithm. The process of clustering 
using k-means algorithm is similar to k-means with the difference that in the said 
procedure a membership parameter is defined which allows a data point to belong 
to more than one cluster at the same time with different membership values 
ranging from 0 to 1. To find the best clustering, for k- means algorithm needs to 
minimize the objective function J (X; C) 
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where 

ij is the membership parameter; 

 is the fuzzier. 
 The conditions for the minimum of the objective function can be represented 
as 
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and 
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Genetic k-means algorithm is used to create the best clusters associated with 
the centroids in new iterations by intersecting the centroids of previous clusters. 

It should be noted that the Gaussian mixture distribution algorithm assumes 
that the entire data set can be expressed as a weighted sum of several Gaussian 
densities with unknown parameters p(x) 
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where 

g  is the Gaussian density function with mean vector k and covariance matrix k; 
X is data; 

k is the mixture weight function. 
The algorithm first estimates random initial numerical values for the mean 

vectors and covariance matrices of the density distributions. It then calculates the 
weighting function values for all data points and mixture distributions. After this, 
new mean vectors and covariance matrices are updated. This process is repeated 
until the stopping criterion is met, which can be the maximum number of iterations  
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where 

Nk is sum of membership weight for kth component defined as Nk = ik. 
 A frequently used signal processing method for recognizing types of damage 
in composite materials is the wavelet transform, in which the signal is decomposed 
into low-frequency and high-frequency components. 

Depending on the type of wavelet transform, both the low-frequency and high-
frequency parts (batch wavelet transform) or only the low-frequency part (discrete 
wavelet transform) will be decomposed into other levels until the original signal is 
finally decomposed into several subcomponents with different frequencies. Then, 
depending on the frequency of the subcomponents, one or more subcomponents 
are correlated with specific types of damage. For acoustic emission type signals, the 
packet wavelet transform is usually preferred over the discrete wavelet transform 
because the valuable information is generally contained in the high frequency 
components (e.g. fiber damage signals). 

The frequency range of each subcomponent in the wavelet wavelet transform 
tree is calculated using the following formula 
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where 
fS is the acoustic emission sampling rate, index i shows the level of decomposition, 
and index n shows the label of subcomponent, which is equal to n = 0, 1, …, 2i-1 for 
decomposition level i. 

The relative energy of each subcomponent, compared to the original signal, 
can be related to the damage mode in the composite structure using a system of 
equations 
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where 
Ei

n is the energy of subcomponent n located in level i; 
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fi
n is the wavelet subcomponent; 

to
n and t1

n show its time period; 
Pi

n represents the energy percentage of the subcomponent respect to the original 
signal. 

An analysis of the effectiveness of the wavelet technique was carried out using 
experimental results on acoustic emission [58]. The theoretical part included a 
study of the shift in the spectral density of the signal during damage to a composite 
sample, the use of entropy as a basis for selecting the wavelet transform of the most 
effective form and, as a final stage, the implementation of this transformation to 
identify damage to the composite structure. 

The spectral density of the signal can be determined in the following form 
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where 
A is the signal amplitude; 
N is the number of structural elements; 
f is the frequency; 

, ,   are the constants. 
 Without loss of generality, S can be represented as a value inversely 
proportional to the value f 
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 Let's transform the value S 
 

    ffS logloglog   .                          (2.19) 

 
 The characteristics of the signal and its shift can be classified by the slope 

coefficient, which is determined by the coefficient .  
 The shift in spectral density and signal characteristics based on different types 
of noise is also used to analyze composite materials. Fluctuations recorded in these 
systems have a low-frequency component. The term 1/f noise or flicker noise is 
usually used for fluctuations of a specified type or shift.  
 The entropy of the waveform is used as the main identifier to select the 
appropriate wavelet for analysis. For a signal having a random amplitude 
distribution as {s1, s2, s3, …, sn}, the generalized form of entropy Ha(S) can be written 
as 
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where 
P(Sk) is the discrete probability distribution of the amplitude. 
 The generalized form of entropy defined in equation (2.20) can be described 
as Rényi entropy. The value of the parameter а (а > 1 or a < 1) is related to the 

distribution of the analyzed data. For the case а  0 equation  (2.20) is transformed 
to obtain the maximum entropy or Hartley entropy 
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 Shannon entropy corresponds to the case а = 1 
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 And, accordingly, the Rényi entropy corresponds to the value а = 2 
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 The selection of the optimal wavelet for processing acoustic signals in this work 
is performed using Rényi entropy. Maximum information about the waveforms in 
their time-frequency domain and the distribution of spectral energy in different 
frequency ranges is based on the selection of the best wavelet.  
 Waveform entropy is a measure of the randomness or instability of the 
waveform and therefore it is safe to assume that a lower entropy value determines 
the stability of the acoustic waveform. In addition, the case of maximum energy can 
be analyzed using certain wavelet transforms of the energy coefficients of the 
acoustic signal. The mathematical form of these trends is the relation 
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where 
EWT is the energy coefficient of the waveform measured using wavelet transform. 
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 A brief description of the procedure for calculating the quadratic Rényi entropy 
can be expressed as follows. The EWT and H(S) values are calculated using the 
discrete wavelet transform.  
 The acoustic waveform f(t) can be expressed as follows  
 

   Tnq SSStf ...,,, 2 ,                                   (2.25) 

 
where 
n is the length of the waveform. 

 If the waveform f(t) is decomposed using the wavelet (t), then the 
deformation wavelet transform can be expressed as 
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where 
j is the number of the selected wavelet. 
 The result of the wavelet transform is the operator relation 
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 The energy factor EWT is calculated as follows 
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 The discrete probability for calculating the quadratic Rényi entropy is 
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 However, the choice of the value of  must be carried out quite accurately, 
because this quantity represents the coefficient of entropy and energy, which can 
generally be measured from the transient and unstable waveform of the acoustic 
signal.  

The wavelet transform uses 3 wavelets to decompose the acoustic signal for 
three different levels N. In this case, the spectral energy with the number of 
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components equal to C = 2N =8 is necessarily obtained. Namely, the functional 
meaning 
 

   ttfWPT jj ,                                       (2.30) 

 
corresponds to form 
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where 
Wj,C  is the spectral energy of the waveform distributed in the component C. 
 The wavelet that recovered the maximum spectral energy in the dominant 
frequency band, max Wj,C  {for C = 1, 2, … , 8} can be selected as the best wavelet for 
further analysis. 
 In this work, the best wavelet was determined from a list of 24 wavelets using 
the procedures described earlier. The result of the decomposition of the acoustic 
waveform was the appearance of eight components. Each of these components 
contains the spectral energy of the signal distributed in the time domain of a specific 
frequency band. Generally, in the CFRP material used in this research work, the 
macroscopic damage modes can be generalized into matrix cracking, delamination, 
matrix-fiber bond failure, fiber rupture, fiber pullout, and through-laminar 
(interlaminar) crack growth.  

The characteristic frequency ranges depended on the nature of the 
deformation. In particular, cracking or delamination of the matrix results in a 
characteristic frequency range of 150–200 kHz. At the same time, a fiber break 
corresponds to a frequency above 300 kHz or 350 kHz. Three samples of composite 

material A1, A2 and A3 were analyzed with test durations in the range (390  440) 

s and the number of acoustic shocks, respectively, in the range (1.9  2.1)103.  
The wavelet family included Haar- (Haar k = 1); Daubechies- (db k, k = 2, …, 11); 

Symlet- (sym k, k = 12, …, 18) and Coiflet- (coif k, k = 19, …, 23) Dmeyers- (Dmey k = 
24); wevelets. The results of determining the average entropy, average energy, as 

well as  values are presented, respectively, in Figures 2,3 and 4. 
The diagrams display the results of assessing the critical values of the threshold 

values for selecting the maximum and minimum parameters “threshold max” and 
“threshold min”. In addition, for a series of wavelets, the distribution density of 
wavelets in the min-max band was estimated using the formula 
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where 
NW is the total number of wavelets in the series; 

min,max is the number of wavelets, the corresponding parameters are outside the 
threshold values. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
The H-distribution is characterized by a sufficiently large number of wavelets, 

the average entropy of which is outside the threshold values.  
In particular, the following wavelets are located above the maximum 

threshold: Haar- and Daubechies- (subseries db k, k = 2, 5, 15). Three wavelets, 
namely: Daubechies- (db 3), Symlet- (sym 12) and Coiflet- (coif 19) have an average 
entropy value less than the minimum threshold value (= 1.52). It is quite natural 
that preference in terms of the min-max parameter for entropy should be given to 
Daubechies wavelets with indices k = 2, 3 and 5. Accordingly, Haar- and Coiflet 
wavelets should be excluded from further analysis in terms of the entropy 
parameter. 

 
 
 
 

 

Figure 2. H-distribution for wavelets according to the average entropy parameter. 
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 The average energy distribution is characterized by a maximum difference 

max - min = 4. Exceeding the maximum threshold for average energy is typical for 

 

Figure 3. E-distribution for wavelets according to the average energy parameter. 

 

Figure 4. -distribution for wavelets. 
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wavelets: Daubechies- (db k subseries, k = 10, 11) and Dmeyers- (Dmey k subseries, 
k = 22 - 24). Below the minimum threshold for average energy there is only one 
wavelet: Daubechies- (db 2). Preference for the min-max parameter for the average 
energy should be given to the Daubechies wavelet with index k = 2. Accordingly, 
Dmeyers wavelets with indices k = 22, 23 and 24 should be excluded from further 
analysis for the average energy parameter. 
 In turn, only one wavelet, namely, Dmeyers- (db 24), exceeds the maximum 

threshold in the -parameter. Wavelets: Haar 1 and Daubechies- (db 2) are located 

below the minimum threshold in the -parameter. The absence of repeating 
wavelets from one, fixed series makes it difficult to select wavelets based on the 

min-max parameter for the value .  
 As a result of the analysis, recommendations for choosing the optimal wavelet 

having average energy, average entropy and -parameter, that satisfy the min-max 
parameter should be pointed to Daubechies-wavelet (db 2). Ranking the 
distribution density of wavelets within threshold values for average energy and 

entropy, as well as the -parameter, leads to the following chain:  

W (=0.875) > WE (=0.75) > WH (=0.71). 
 The generation and propagation of acoustic waves strictly depends on the 
properties of the material and the specific configuration. 
 Using a transform with wavelets dmey, coif5 and coif4, acoustic signals can be 
decomposed into 8 components WFi, i = 1, 2, ..., 8. Processing of the responses of 
composite structures to acoustic emission signals was carried out for each WFi 

component separately for eight frequency ranges in interval 0  500 kHz. The width 
of each subband was 62.5 kHz.  
 The dominant frequency of each waveform is different from each other. 
Because each of these dominant frequency bands represents different types of 
damage from which acoustic signals are emitted.  
 The spectral distribution of dimensionless relative energy was studied for 
wavelets of three characteristic shapes, namely: Dmey-, coif 4- and coif 5 wevelets. 
The results are presented in Fig. 5, 6 and 7. 
 The Dmey-wavelet recovered most of the spectral energy in all selected 
waveforms. However, the coif5-wavelet recovered most of the spectral energy, 
although it is not observed among all the selected 8 signals. When comparing the 
spectral energy of a large number of signals, it can be noted that a significantly 
larger number of signals that recovered most of the spectral energy occur when 
they are decomposed using a dmey-wavelet. Therefore, dmey-wavelet is selected 
as the best wavelet for acoustic signal processing in this study. 
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Figure 5. Spectral distribution E’W = f (FW) for dmey-wavelet. 

 

 

Figure 6. Spectral distribution E’W = f (FW) for coif 4-wavelet. 
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 The resulting spectral distribution for dmey- and coif-wavelets indicates the 
predominant contribution of the WF k components (k = 1, 6). Based on these facts, 
a separate analysis of the frequency dependence in matrix form was carried out for 
WF k  
 

W
ikik

W FE
)(),()(  ,  5...,,1,0i ;     6,1k .              (2.33) 

 

 The explicit form of the matrix coefficients  (i,k) is presented below for Dmey-
wavelt 
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for coif 4-wavelet: 
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Figure 7. Spectral distribution E’W = f (FW) for coif 5-wavelet. 
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and for coif 5-wavelet: 
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 From the above observations, it can be concluded that wavelet analysis of 
acoustic emission response signals has the potential to identify the damage process 
of composite structures since it can distinguish acoustic signals based on frequency 
and time domain characteristics. However, it should be emphasized that these 
waveforms are representative of load stages. Extracting the dominant frequency 
band using the wavelet transform using the best wavelet still makes it possible to 
distinguish the process of damage to the internal structure of two-component 
composites, the inclusions for which differ in size by no more than an order of 
magnitude. 
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CHAPTER 3 
DAMAGE IDENTIFICATION 
 
The widespread use of polymer composites has created the need to develop 

suitable methods and tools for structural diagnostics applicable to heterogeneous 
composite materials. In connection with the increasing requirements for the 
technical condition of composite structural elements in a wide variety of industrial 
sectors, diagnostic methods [73 - 89] must meet a number of conditions: they must 
be sensitive to various types of damage occurring in fiber composites and must 
provide damage detection [90 - 102], possibly at an early stage of their distribution, 
and, finally, they must allow testing under environmental conditions [103 - 112] and 
be inexpensive. Among the works devoted to damage detection, studies Ashory, 
Katunin, Yan should be highlighted. 

Classical modal analysis, that is, the analysis of natural frequencies and modal 
shapes, can only detect large damage, which is confirmed by numerous 
experimental studies. Given the fact that polymer-fiber composites are 
characterized by high variability in their mechanical properties, and the fact that 
these properties can be influenced by many factors (for example, changes in 
environmental and working conditions), natural frequency analysis is ineffective. 
when assessing damage in these materials. 

Continuous wavelet transform with vibration signal analysis was first used to 
detect and localize cracks in beams. The first application of discrete wavelet 
transforms (Daubeches wavelets) was aimed at detecting damage in composite 
laminates.  

Improving the sensitivity of wavelet methods for solving damage identification 
problems is directly related to the high accuracy of assessing the presence and 
position of damage. In particular, the technique of using the zero-order energy 
moment to identify damage based on continuous wavelet transforms using 8th 
order Daubechies wavelets is quite popular. B-spline wavelets are used in the 
development of discrete wavelet transform-based algorithms for identifying 
damage in composite beams and plates. Despite the limitations of the discrete 
wavelet transform, where only compactly supported orthogonal wavelets could be 
applied, the application of B-spline wavelets shows the highest sensitivity to 
damage compared to all other compactly supported orthogonal wavelets.  

Improving damage identification algorithms also involves the use of auxiliary 
methods. In particular, researchers have widely used a damage detection algorithm 
based on continuous wavelet transform supported by artificial neural networks. 
This technique is used to detect delaminations in composite beams. The 2D discrete 
wavelet transform, together with particle system optimization in composite 
structures, constitutes a two-stage damage detection mechanism. In turn, 
structural diagnostics often rely on discrete wavelet transform using B-spline 
wavelets. This technique can be improved by using fractional B-spline wavelets. 
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Qualitative analysis of these wavelets makes it possible to select their most 
appropriate parameters in order to increase the sensitivity of the method. 
Fractional wavelet transforms allow for a combination procedure with a genetic 
algorithm, which was used to select the optimal parameters of fractional B-spline 
wavelets. 

The continuous wavelet transform is based on the integration of square-

integrable functions f(x)  L2(R) into Hilbert space. This transformation can be 

viewed as the convolution of a wavelet function ψ (a, b), where a  Z, a > 0 and 

b  R denote the scaling and shift parameters, respectively. The transformation can 
be represented by the following equation 
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where  
Wf(a, b, s) is a set of wavelet coefficients. 
 It should be noted that the continuous wavelet transform does not have such 
a strong restriction on the type of wavelet function, i.e. these functions can be 
almost arbitrary. The only condition that must be satisfied is the admissibility 
condition 
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 In the vast majority of cases, wavelets can be characterized by the following 
points 

 

   0dxxx  .                                     (3.3) 

 
Representing a discrete transform as a signal with variable resolution forms a 

descending sequence of function spaces Vj  L2 (R)  
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which have the following properties 
 

 RLV j

Zj

2




 ,    }0{


j

Zj

V .                            (3.5) 



37 
 

 The orthogonal complement in the space Vj for any j in the space Vj−1   is a space 
with an orthonormal base ψ jk, j, k ∈ Z. Thus, there is a constraint on the wavelet 
and the scaling function: they must be orthonormal or (semi-, bi-) orthogonal. 
During the discrete wavelet transform, the signal f(x) is decomposed into a set of 
approximation coefficients and a set of detail coefficients at each level of 
decomposition, the signal can be represented in the following form 
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,                                   (3.6) 

 
where 

 (x-n) denotes the scalable function translation procedure. 
 The discrete wavelet transform decomposition can be represented by a set of 
filters. In this case, the resulting sets of approximation and detailing coefficients can 
be represented in the form  
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where 

ℎ̃, �̃� are the impulse responses of the low-pass and high-pass filters, respectively. 
The downsampling procedure during the discrete wavelet transform causes 

the resulting sets of coefficients to be half the length of the original signal in the 
case of single-level decomposition. In turn, as a result, with each subsequent level 
of decomposition, a half decrease in the resulting length of the sets of obtained 
coefficients is observed.  

The stationary wavelet transform can be considered as a redundant transform. 
Therefore, the downsampling procedure is omitted during decomposition. 
Therefore, expansion relations (3.7) and (3.8) take the form 
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and the length of the resulting sets of coefficients remains the same as for the 
original signal. 
 Lifting wavelet-transform is a two-stage wavelet transform that starts with a 
decomposition based on the classical discrete wavelet transform and then 
preliminarily performs a lifting procedure. Lifting is based on the prediction of one 
part of the signal based on a set of filters applied to that part, in accordance with 
the fact that these parts are correlated. The decomposition procedure represented 
by filters is as follows 
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This operation causes problems in the frequency domain. To resolve this issue, 
an update procedure is performed that updates the first signal based on the second. 
 Fractional scaling functions do not have compact support and are not 
symmetric unless their order is integer. This means that they could not be used in 
discrete wavelet transforms. However, to avoid this problem, the fractional wavelet 
transform algorithm can be constructed based on Fourier series. The general 
difference between discrete and fractional wavelet transforms is that the detailed 
wavelet transform is defined by fractional order filters. The orthogonal high-pass 
filter and low-pass filters in the z-domain for the fractional wavelet transform are 
as follows 
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it is a non-orthogonal scaling filter for fractional B-spline wavelet and 
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is an autocorrelation filter B-spline; 

 is a scaling factor; 

 means fractional order of the scaling function. 
 Let us consider the propagation of a pulse load wave of two types, which 
simulate the peak change in the stiffness of a composite material in the form of a 
rectangular beam. The first type of load is a narrow peak band sinusoidal base 
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where 
H (t) is the unit step function, 
f0 is the constant frequency, 
NP = const1, B = const2, 

P = BN. 
 The second type of load is a broadband pulse of a triangular shape, which can 
be represented in the following form 
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where 
A1 = const. 
 A narrowband pulsed load was used to demonstrate the non-dispersive 
characteristics of this type of load. The definition of narrow and wide bandwidth 
refers to the frequency spectrum of the signals and depends on the ratio of the 
bandwidth to the center frequency. 
 It makes sense to use the wavelet approach to find the shortest arrival time 
for various frequency components of the signal. The continuous wavelet transform 
of a function is defined by the formula 
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where a > 0. 
 The kernel of the wavelet transform 
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is determined by the shift and scaling of the mother wave  (t). 
 The parameter a represents the scale variable in the wavelet transform, which 
is similar to the frequency variable in the Fourier transform. The value b represents 
the shift parameter. In the time domain, the quantity ψa,b (t) is centered at b with a 
spread proportional to a. In this study, the relationship between the frequency ω 
and the scale variable a is ω = ω0/a, where ω0 is the center frequency, which is the 
dominant frequency of the mother wavelet. The function ψa,b can be viewed as a 
window function in both the time and frequency domains, and we can change the 
size of the window by changing the variable a to obtain a suitable resolution. This 
multi-resolution is the main characteristic of wavelet analysis.   

 The wavelet function (t) satisfies the admissibility condition, which means 

that the integration С must be finite 
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where 

�̂�(𝜔) denotes the Fourier transform of (t). 
 For further purposes, we can use the Garbor function 
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 The Garbor function has good resolution in both the time and frequency 
domains.  

The Fourier transform of the Garbor function can be represented as 
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where 

 =  (2/ln2)0.5, 0 = 2. 
 The Garbor function can be thought of as a Gaussian window function 
centered at t = 0 in the time domain and at ω = ω0 in the frequency domain. 

 If the Fourier transform  ̂  has a center at ω = ω0 , and, accordingly, (t) 

is centered at t = 0, then the transform   ba,ˆ  has a center corresponding to ω 

= ω0/a in the frequency domain and a center corresponding to b in the time domain.  
 Fourier transforms allow us to obtain the following relations 
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 Considering this ratio, we can get 
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 Therefore, the maximum conversion value   aˆ  corresponds to 0/a. 

Let us consider the propagation of wave group velocity pulses. The transit 
times of samples made of composite materials, determined by the wavelet 
transform, are related to the group velocities. In general, the deformations at 
different points in response to a broadband load consist of a range of frequencies, 
so the wave can be assumed to propagate in an arbitrary direction, for example, x 
as follows 
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where 

kj is the wave number corresponding to each frequency j of the jth harmonic 
component.  
 Let us consider two harmonic waves of equal unit amplitude and several 
different frequencies ω1 and ω2, propagating in the direction x 
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 The restrictions imposed on the wave numbers have the form 
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 Then equation (3.28) can be written as 
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    txkitxk CC   expcos2 .                 (3.31) 

 
Formula (3.31) describes the base wave with frequency ωС and phase velocity 

ωС/kС and modulation cos (∆kx − ∆ωt) with frequency ∆ω and propagation speed 
∆ω/∆k. This wave can be described as a sequence of moving shocks (or groups, or 
wave packets). Phase and group velocities are designated cP and cg, respectively.  

The relationships between these velocities correspond to the following 
situations: A) cg > cP: wavelets appear in front of the group and disappear at the end 
of the group; B) cg < cP: wavelets accumulate at the end of the group, move through 
the group and disappear at the front. 

Now we can analytically specify the time it takes for the wavelet transform to 
pass through a sample of a composite material. The wavelet transform u(x,t) 
provided that the Gabor wavelet is used as the mother wavelet, can be written as 
follows 
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Let us introduce the following notation:  = (t - a)/b. 
Then for the wavelet transform WTu (x, a, b) we can write: 
 

          

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a

baxWT gu 11 expexp
1

,,  

        




 adbaixik
a
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1

 

 

        




 daibxkia g 111 expexp  

 

        




 daibxkia g 222 expexp  

 

     111 ˆexp  abxkia g  

 

    222 ˆexp  abxkia g .                  (3.33) 

 
Now we can enter variables: 
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xkb 111   ,        xkb 222   .                 (3.34) 

 
Then we will get 
 

         2211 expˆexpˆ,,  iaiaabaxWT ggu  . (3.35) 

 

        
2

2

2

1 ˆˆ,,  aaabaxWT ggu  

 

      
5.0

2121 cosˆˆ2  aa gg  

 

      
2

2

2

1 ˆˆ  aaa gg  

 

      5.0

21 cosˆˆ2 xkbaa gg   .         (3.36) 

 
 The following formulas should be considered valid 
 

     Cggg aaa  ˆˆˆ 21  .                  (3.37) 

 
 In this case we can write: 
 

      xkbaabaxWT Сgu   cos21ˆ,, .    (3.38) 

 

 Calculating the peak values for �̂�𝑔(𝑎, 𝜔𝐶)  and [1+cos(b - k x) ] allows us 

to obtain the peak value for the wavelet coefficient. The value �̂�𝑔(𝑎, 𝜔𝐶) is 

centered on the value  = 0/а. Therefore, the argument in brackets will be 

maximum at /k = x/b or 
 

b

x
cg  .                                                  (3.39) 

 
 Therefore, we can conclude that the time shift b, maximizing the wavelet 
transform coefficient, should be the arrival time of the envelope wave at the circular 

frequency ω, related to the scale a by the relation  = 0/а for the coordinate x. 
 The results of calculating the arrival times of wavelet transform pulses of 

recoded signals are shown in the following Figures 8 - 9. Arrival times  and 
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frequencies f  are given in relative units for characteristic values 0 = 10-3 s and f0 = 

9.5103 Hz. The ratio of the dimensionless characteristic size of inclusions to the 
average distance between the nearest particles of a two-component composite 

(samples: Х1 – Х3, Х = А, B, C) varied in the range r  (1.6 – 2.2). 
  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution of the inverse problem, i.e. estimating the location of a point load 

requires drawing up a set of nonlinear equations. Direct computational methods 
lead to difficulty in determining the location of the point load, the direction of the 
scattering waves, and the magnitude of the group velocities. Therefore, it is useful 
to study wave propagation in samples consisting of two-component composite 
materials and dispersion relations, as well as to find the relationship between the 
direction of propagating waves and velocities. 

It follows that this technique requires a detailed check of the dispersion 
relationship in a plate or beam of a composite structure. Plate theories are the most 
common methods for deriving dispersion relations. One approach to solving the 
problem of wave scattering in plates is to represent the scattered field by expanding 
the wave function. To represent the scattered wave field as a wave function 
expansion, it is necessary to establish the eigenfunctions of displacement and 
voltage. Dispersion equation for a homogeneous isotropic plate using elasticity 
equations. 

 

Figure 8. Spectral distribution of arrival time for a two-component 

composite with r = 1.9. 
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To represent the scattered wave field as a wave function expansion, it is 

necessary to establish the eigenfunctions of displacement and voltage. 
Let us consider the dispersion wave relations in the plates according to Midlin's 

theory. Midlin's theory takes into account the effects of shear and rotational inertia. 
Here we consider a composite plate in the x-y plane without external loads. It is 
assumed that the displacements have the following coordinate components 

 

     tyxztyxuzyxu x ,,,,,,
0                             (3.40) 

 

     tyxztyxzyx y ,,,,,,
0                              (3.41) 

 

   tyxwzyxw ,,,,
0

  ,                                      (3.42) 

where 

u, , w are displacements of a point at (x,y,z) on the plate; 

u0, 0, w0 defines the displacements of the mid plane; 

x, y  are cross section rotations. 

 

Figure 9. Spectral distribution of arrival time for a two-component 

composite with r = 2.2. 
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 The generalized in-plane stress resultants (Nx, Ny and Nxy) and the generalized 
bending moments (Mx, My and Mxy are defined as in classical plate theory in vector 
form 
 





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




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
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,              



















z

y

x

M

M

M

M


.                        (3.43) 

 
 The relative dimensionless shift relations have the form 
 

x

u
x




 ,    

y
y







 ,  

xy

u
xy












 .                 (3.44) 

 
 Now we can rewrite the equations (3.44) 
 

 

xxx z 
0

                                         (3.45) 

 

yyy z 
0

                                         (3.46) 

 

xyxyxy z 
0

,                                    (3.47) 

 
where 

x, y, z are strain components; 
superscript 0 denotes the mid plane. 

 Strain (x
0, y

0 and xy
0) and curvature (x, y and xy) can be defined as  
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u
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
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0
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y
y
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0
0 

 ,    
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u
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







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00
0 

                      (3.48) 

 

x

x
x




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
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y

y

y



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
 ,    

xy

yx
xy












 .           (3.49) 

 
 For further transformations it is necessary to introduce the following notation 
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.                        (3.50) 

 
 Then the ratio of mechanical stress and deformation in a sample of a two-
component composite has the form 
 


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                              (3.51) 

 
where submatrices A known as extensional stiffness, B, bending-extension stiffness, 
and D bending stiffness are defined as 
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where 
 

    
N

kkkijji ZZQA
1

1  

 

    
N

kkkijji ZZQB
1

2
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2

2

1
 

 

    
N
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1

3

1

3

3

1
.                                (3.53) 
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 And ijQ  are the transformations of stiffness matrix Qij: 

 

2112

1
11

1 


E
Q            

2112

212
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1 




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E
Q  

 

2112

2
22

1 


E
Q             1266 GQ   

 

2344 GQ        3155 GQ      312345 GGQ  .             (3.54) 

 
 Applying the definition of the resultants of the transverse force, we obtain an 
additional constitutive relation that includes the transverse shear.  

Let us introduce the parameter k into this defining relation for the transverse 
shear and obtain 
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where interlaminar shear strains are determined by the relations 
 

x

w

x

w

z

u
xxz














   

 

y

w

y

w

z
yyz














 


 .                            (3.56) 

 
 The shear correction factor (k) is chosen to be 5/6. Using the fundamental 
equations of motion in terms of resultant stresses and moments, we have 
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where I is the mass moment of inertia. 
 Using the equations of motion and previous formulas, we can obtain the 
following relations 
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In the case of harmonic wave propagation, it is further assumed that the 
displacement functions take the form 

 

    yxyx WVUwwu ,,,,,,,,
000   

 

  tykxki yx exp ,                         (3.67) 

 
where 
the capital letters are complex-valued constants; 
kx , ky are the x and y-components of the wave vector, respectively; 

 is the circular frequency. 
 Substituting equation (3.65) into the equations of motion (in particular, into 
equations (3.60) – (3.64) for a laminated two-component composite gives the 
following generalized eigenvalue problem: 
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where  is the density that is assumed to be the same in all layers of a composite 
material sample; 
h is the thickness of the laminar composite sample. 
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The Kij coefficients depend on the wave vector and stiffening elements of the 
laminar composite sample and are determined by the following relations 
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 For given wave vector components kx and ky the generalized eigenvalue 
problem of equation (3.66) gives five eigenfrequencies, which are real ω, since K is 
a Hermitian matrix. In addition, it should be borne in mind that the elements К34 
and К35 are purely imaginary quantities.  
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 Knowing the dependence of ω on kx and ky, the phase and group velocities are 
determined from the relations 
 

k
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 For the convenience of further calculations, the dimensionless phase velocity 
and circular frequency are defined as 
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The first three modes obtained in the calculations are acoustic modes, which 

can also propagate at lower frequencies. The lowest of them corresponds to the 
bending mode, the second to the planar shear, and the third to the tensile mode. 
The frequency at which the other two modes, known as optical modes, begin to 
propagate is called the cutoff frequency, and these modes are related to ψx and ψy, 
which are the rotations of the cross section. 

In this study, the first acoustic mode, which is the lateral deflection W, was 
analyzed and its group and phase velocities are shown in Figures 10 to 13 for 
composite plates. For composite plate type 1 we have three axes of symmetry 
around θ = 00, 450, 900, and for composite plate 2 we have two axes of symmetry 
around θ = 00, 900, and this fact is clearly shown in these pictures. 

The phase velocity for a composite of the first type ceases to change 

significantly at s = 1.2106. The phase velocities of the second type composite 

sample practically reach saturation at s = 1.5106. The numerical value of the 
saturation frequency for group velocity increases compared to the case of phase 

velocity and is s = 3.2106 for the first sample and s = 4.3106 for the second 
sample. 

The components of the wave vector satisfy the equation 
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where 

 is the wave propagation angle. 
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Figure 10. Phase velocity of the first acoustic mode in composite 1. 
 

Figure 11. Phase velocity of the first acoustic mode in composite 2. 
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Figure 12. Group velocity of the first acoustic mode in composite 1. 
 

Figure 13. Group velocity of the first acoustic mode in composite 2. 

 



57 
 

Mathematically, the wavelet transform can be understood as the inner 
product of the recorded signal and the wavelet function in a function space that 
measures the similarity between the waveform and the wavelet function. When the 
parameters a and b are the values to which the waveform and wavelet function 
best fit, the calculations yield the maximum value of the wavelet coefficient. The 
time shift that maximizes the inner product of the wavelet function for scale a and 
the signal recorded at each sensor is the arrival time associated with the frequency 
associated with that scale, the relation 
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 To estimate the location of the applied load, it is necessary to use the arrival 
times of the dominant frequency content of the signal, specified using the 
presented wavelet approach, and also formulate a system of nonlinear equations. 
For the case of a composite plate, the velocities from the dispersion relations are 
used.  
 In addition, it is necessary to use a system of nonlinear equations and solve it 
with respect to the unknowns θi. Without loss of generality, the point load is shown 
within a triangular sensor arrangement. The same equations will apply for the non-
triangular impact load case, taking into account the convention of the signs of the 
angles. Having found the time of arrival at each sensor Si for frequency f, we can 
find 

     
   fC

l

fC

l
ftftft

gg 2

2

1

1
2112                 (3.75) 

 

     
   fC

l

fC

l
ftftft

gg 3

2

2

1
3223   ,              (3.76) 

 
where 
li is the distance between sensor i and the impact location; 

tij is the arrival time difference between points i and j; 
ti is the arrival time to point i; 

Cgi is the group velocity in the i direction. 
 The position of the composite material sample and the fixation of the wave 

arrival registration points is determined by the triple of angles 1, 2 and 3 for which 
we can write the relations 
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from here we get 
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where 
SiSj is the distance between points i and j. 

 By writing the same equations for l2, l3, 2 and 3, we have 
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 Let's substitute equations (3.77) – (3.80) into equations (3.73), (3.74) 
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 Solving the resulting set of nonlinear equations allows us to find θ1 and θ2, 
from which we can determine xp and yp, i.e., the coordinates of the load location for 
each frequency f.  
 The results obtained for samples made of two-component composite material 
are shown in Table 1. The given values indicate a decrease in arrival time with 
increasing frequency due to an increase in group velocities. Moreover, the results 
are in good agreement with the actual location of the applied load in the case of an 
anisotropic plate. Note that the error in estimating the coordinates of the load 
location is less than 1.2% for all different types of loading of both isotropic and 
anisotropic samples.  
 
Table 1. Spatial distribution of applied load for composite plates 
 

Composite 
Wide Band Load, 103 Hz 

Narrow  
Band 
Load, 
103 Hz 

9.6 15.8 23.6 31.6 39.6 100.4 

Sample 1 
x 0.4877 0.4847 0.5025 0.4881 0.4877 0.5025 

y 0.6864 0.7059 0.7002 0.7040 0.6864 0.7002 

Sample 2 
x 0.4847 0.5025 0.5025 0.4881 0.5025 0.5025 

y 0.7059 0.7002 0.7002 0.7030 0.7002 0.7002 
 
 It should be noted that the processed sensor signals can differ significantly 
from the numerical simulation signals, and this is due to the fact that the data is 
often distorted by measurement noise. Let's consider the effect of noise on the 
results. An analytical consideration of the influence of noise on the results obtained 
can be presented as follows 
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where 
x is the original signal; 
y is the noised signal; 
n(t) is the measurement noise which can be expressed as 
 

   trsmsrtn  ,                                  (3.87) 

 
 
where 
rms is the root mean square of the signal x; 
r(t) is a function which generates arrays of random numbers whose elements are 
normally distributed with mean 0; 
s is the noise level, i.e. a quantity inversely proportional to the signal-to-noise ratio. 
 Adding a certain percentage of white noise to the system and denoising the 
signal using the usual moving average method allows the described method to be 
used to determine the location of the impact. The results were tested for different 
noise levels (2% and 5%) and are shown in Tables 2 – 4. 
  
Table 2. Spectral distribution of arrival time of noisy signals (composite type 1) 
 

Frequency 23.8 31.8 39.8 23.8 31.8 39.8 

Point 
Arrival times, 10-4 s 

Level 2% Level 5% 

S1 2.74 2.59 2.49 2.65 2.455 2.73 

S2 3.025 2.97 2.83 3.015 2.805 2.995 
S3 2.435 2.435 2.2 2.31 2.275 2.455 

 
 

Table 3. Spectral distribution of arrival time of noisy signals (composite type 2) 
 

Frequency, 
103 Hz 

23.8 31.8 39.8 23.8 31.8 39.8 

Point 
Arrival times, 10-4 s 

Level 2% Level 5% 
S1 2.725 2.485 2.81 2.725 2.575 2.82 

S2 3.05 2.85 3.165 3.045 2.84 3.21 

S3 2.45 2.33 2.57 2.405 2.395 2.545 
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Table 4. Spatial distribution of applied load for signals contaminated by noise 
 

Frequency,  
103 Hz 

9.6 15.8 23.6 31.6 39.6 100.4 

 Location, 10-2 m 

Composite Noise level 2% Noise level 5% 

Sample 1 
x 0.5176 0.4976 0.4980 0.4985 0.4976 0.5176 

y 0.7140 0.6898 0.7130 0.7199 0.6898 0.7140 

Sample 2 
x 0.5123 0.4978 0.5125 0.5128 0.5170 0.4981 
y 0.7106 0.6966 0.7106 0.7170 0.6897 0.7130 

 
 A general approach to solving the inverse problem of detecting sudden 
structural damage in isotropic and composite plates can be formulated as follows. 
The impulse load is the cause of the damage, then the numerical response data is 
presented in matrix form. The deformation maps are subject to wavelet transform 
analysis and, accordingly, the wavelet coefficient map of each signal is used to 
estimate the arrival time of the flexural waves by determining the peak value of the 
wavelet coefficients. The final stage is to determine the location of the applied load 
using a system of nonlinear equations. 
 The spread of directions in which group velocities change complicates the 
numerical analysis procedure. Therefore, to solve the problem, calculated group 
velocities from the dispersion relations of wave propagation are used. 
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CHAPTER 4 
HAAR-WAVELETS 

 
Haar wavelet methods, used to solve differential and integro-differential 

equations, are known for their simple implementation as well as their ability to 
capture local effects. Haar wavelets are generated from pairs of piecewise constant 
functions and are not differentiable. In the case of differential and integro-
differential equations, the latter disadvantage can be overcome by regularizing 
quadratic waves (for example, smoothing using interpolating splines) or by 
expanding the higher derivative involved in the differential equation, namely, into 
a series of Haar functions instead of a solution. 

The Haar wavelet transform technique has been successfully implemented to 
solve a wide class of problems covering solid mechanics, mathematical physics, 
evolutionary equations, nuclear reactor dynamics, numerical integration of 
multidimensional strongly and smoothly oscillating integrands, nonlinear 
differential equations with nonlocal boundary conditions, as well as singular 
perturbed two-point boundary value problems [113 – 122]. Among the analytical 
works devoted to the use of Haar wavelets, one can point out the works of Kumar 
and Majak. Experimental studies were carried out by Kim, Xie, Fan, Dai and others. 

Fractional differential, integrodifferential and integral equations can be 
considered as a challenging area of research for the development and adaptation 
of numerical methods. In particular, Haar transforms are used to solve Volterra and 
Fredholm fractional integral equations, as well as fractional order differential 
equations involving harmonic vibrations. The Haar wavelet transform has been 
adapted to solve partial differential and integro-differential equations, respectively.  

A large number of both analytical and experimental works on the analysis of 
structures made of composite materials were based on the Haar wavelet transform. 
In particular, the free vibrations of a multilayer composite plate and the 
delamination of a composite beam, respectively, were analyzed in sufficient detail. 
The Haar wavelet transform allows one to study functionally graded structures. A 
wide range of studies is devoted to vibration analysis of conical and cylindrical 
shells. Vibration analysis allows one to generate a general approach to solving 
boundary conditions. 

It is known that layered composite shells of cylindrical, conical, spherical and 
biconvex shapes are widely used in many fields of technology. Over the past 
decades, many accurate and effective methods for studying the vibration 
characteristics of cylindrical shells have appeared. A significant number of analytical 
and experimental studies are devoted to the study of free vibrations of both conical 
shell structures and spherical shell structures, as well as shell structures of double 
curvature. However, many mechanical structures are made by combining individual 
shells. Because these structures operate under challenging conditions and under 
varying loads, it is important to clearly understand their vibration characteristics.  
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Calculus of variations methods underlie the analysis of free vibrations of 
various shell structures connected by conical, cylindrical and spherical shells. The 
behavior of free vibrations of a coupled shell structure with an arbitrary boundary 
condition is simplified by applying the Jacobi-Ritz method. In addition, with the 
same method it is possible to analyze the free and forced vibration of a sealed vessel 
associated with a volume that has a shape with a double curvature and a cylindrical 
shell. A large amount of research is devoted to free vibration, which is associated 
with a composite laminated shell.  

Analysis of free vibrations of a connected composite layered shell of a 
cylindrical-conical or cylindrical-spherical structure involves the use of the spectral 
collocation method. 

A local-global B-spline approach is used to analyze the vibration characteristics 
of a conical-cylindrical coupled shell. The local-global B-spline can be extended by 
using a wave solution in combination with a power series expansion approach. The 
Fourier spectrum element method is used to analyze free vibrations of conical-
cylindrical spherical coupled shells with arbitrary boundary conditions.  

Recently, because the Haar wavelet discretization approach has high accuracy 
and computational simplicity, it has been widely used in vibration analysis of various 
structures such as beams, plates, and shells. Therefore, the Haar wavelet transform 
is applied to analyze the free vibration of double composite laminar structures. To 
generalize boundary and continuous conditions, the artificial spring method is used. 
Natural frequencies of laminar structures are subject to a detailed analysis 
procedure. 

Let us consider a theoretical model for the analysis of free vibrations of laminar 
composite structures, the equation of motion of a coupled shell, and a discretization 
method using the Haar method. Among other reasons and assumptions for this 
model, it should be mentioned that the individual shells that make up the paired 
shell are made of the same material and have the same thickness. 

This model describes the behavior of a double laminated shell. The orthogonal 
coordinate system of the laminated shell is fixed to the middle surface, which is the 
geometric middle surface. In the meridional, circumferential and radial directions 
(𝜑, 𝜃, z) the displacement shells are u, v and w. The symbols R𝜑 and R𝜃 denote the 
radii of curvature of the meridian and normal surfaces of a doubly curved shell. The 
distance between the geometric axis of the meridian curve C0C1 and the z axis of 
rotation is defined as Rs, O𝜑 and O𝜃  - center points of the two main radii of curvature 
(R𝜑, R𝜃). 

The doubly curved shell contains elliptic, parabolic and hyperbolic shells, which 
are commonly used in practice. The individual shells are connected by a continuous 
state. The quantities 𝜑l,r, 𝜃l,r, zl,r  serve as the basis for the coordinate system for the 
left and right shells of double curvature, and the quantities xc, 𝜃c, zc allow us to 
determine the coordinate system for the middle cylindrical shell, in which the 
indices l, c, r mean left, middle and right shells in a paired shell, respectively. The 
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displacements of individual shells in the direction 𝜑, 𝜃, z are equal to u𝜁 , v𝜁 , w𝜁 (𝜁 = 
l, c, r). It is assumed that both ends of the connected shell are supported by artificial 
springs. There are three linear springs and two rotational springs at both end 
boundaries, and the boundary conditions are determined depending on the 
stiffness of these springs. 
 For an elliptical shell of double curvature, we can write the following relations 
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where 
a, b are the length of the semimajor and semiminor axes of the elliptic meridian, 
respectively. 
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 For a parabolic shell of doubly curvature, we can write 
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where k is the characteristic parameter of the parabolic meridian. Specially,  
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 For a hyperbolic shell of doubly curvature we can write 
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where 
a, b are the length of the semi-transverse and semi-conjugate axes of the hyperbolic 
meridian, respectively. Specially, 
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 In this paper, the structure motion equation of inversely coupled composite 
laminated shells is obtained using first-order shear deformation theory. Using this 

theory, the displacement of any point in the shell with index   is divided into the 
average surface and the cross-sectional rotation component 
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where 

u 
0,  

0,  
0 are the displacements along the meridional, circumferential and radial 

direction at any point in middle surface of shell with index ; 
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  and   are the rotation ones along  and  direction. 

 Deformations at any point of the shell with index   can be determined through 
displacements and rotations of the middle surface as 
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where 

,, , and , denote the normal and shear strains at any point of the shell with 

index ; 

z,  and  z,  denote transverse shear strains; 
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0 denote the meridional, circumferential and shear strains in the 

middle surface of the shell with index ; 

,, , and , present the mid-plane curvature and mid-plane twist changes, 
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0 denote the transverse shear strains in the middle surface. the 
membrane strains of middle surface are defined as 
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where A, B are the Lamé parameters.  
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 The relationship between the resulting force components and the midsurface 
deformation components is expressed as follows 
  















































































0

,

0

,

0

,

0

,

0

,

0

,

662616662616

262212262212

161211161211

662616662616

262212262212

161211161211

,

,

,

,

,

,





































DDDBBB

DDDBBB

DDDBBB

BBBAAA

BBBAAA

BBBAAA

M

M

M

N

N

N

 

 
 


























0

,

0

,

4445

4555

,

,














z

z

AA

AA

Q

Q
.                      (4.14) 

 
 The relationship between force components and deformation components 
can be expressed through stiffness coefficients 
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where 
k

ijQ  are the elastic coefficients. 

 Haar wavelet series are used to discretize derivatives in the governing 
equations of the entire system, including boundary and constraint conditions. A 
number of Haar wavelets are defined in the region [0, 1]. Therefore, linear transfer 
is necessary for the actual shell length region [0, L]. 
 That is, 
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xL

x
 .                                                    (4.16) 

 
 The Haar wavelet series determines the higher order derivatives of the 
displacement components, and the lower order derivatives can be obtained by 
integrating this wavelet series. The higher order derivative of displacements in the 
basic equations of motion and expressions of boundary conditions is of second 
order. The derivative value can be obtained using the Haar wavelet series  
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where  
ai, bi, ci and di are unknown coefficients of the Haar wavelets. 
 The first-order derivatives of displacements and displacement functions for 
transformation type U are written as follows 
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 Similar relations can be written for such types of transformations as V, W, Ф  

and . 
 Let us write matrix forms for U 
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where H, P1 and P2 are the Haar wavelet and its integrals defined as 
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The following notations are used in the above formulas 
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where 
f, g, h, k and l indicate the integral constants, which can be obtained by applying the 
boundary condition. 
 The first order is the highest order of the displacements of the boundary 
condition equations, and the derivatives and first-order displacements in equation 

(4.18) are calculated at  = 0 and  = 1.  
The discretization of the boundary conditions equation can be written in 

matrix form as follows 
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fPaPU b22b2b  ,      gPbPV b22b2b    

 

hPcPW b22b2b  ,     kPdPФ b22b2b    

 

lb22b2b PePΘ  ,                                  (4.28) 

 
where notations are defined as follows 
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The continuity equations can be expressed similarly to the equations for 

boundary conditions 
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where notations are defined as follows 
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 Thus, the equations of motion of entire systems of inversely coupled 
composite laminated shells, including boundary conditions, are discretized using 
Haar wavelet transforms and can be expressed in matrix form as 
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where 
b, d are subscripts that indicate the discrete equilibrium equations of motion and 
the boundary conditions. 
 Numerical evaluations suggested that certain parameters, such as geometric 
size, direction of reinforced inclusions, and composite material properties, 
influence the free vibration of back-bonded composite laminated shells. First, a 
convergence study is conducted to test the robustness of the proposed method. 
Then, several parameters such as geometric size, fiber direction and material 
properties are investigated at the natural frequency of the inversely bonded 
composite laminated shells. 

A comparison of the results obtained in this work (A) with the results of the 
finite element method (B) is presented in the following tables for boundary 
conditions of the type: С-С, С-F, S-S and C-S.  
 
Table 5. Spectral distribution for a connected composite layered spherical-
cylindrical shell 
 

 C-C C-F S-S C-S 
f, Hz A B A B A B A B 

1 332.58 332.06 66.67 66.20 314.58 314.58 316.15 315.83 
2 364.77 366.14 97.02 97.13 320.62 321.05 349.82 350.50 

3 378.72 380.01 124.97 124.85 346.62 347.17 361.36 362.21 

4 455.70 454.72 126.26 126.16 442.53 441.44 447.22 446.18 
5 449.04 494.92 208.83 208.89 478.98 479.15 488.06 488.88 

6 506.88 507.94 217.50 217.48 479.55 480.22 494.64 495.24 
7 555.62 555.84 302.51 303.13 555.62 555.43 555.62 555.63 

8 643.65 643.94 317.45 317.23 635.77 635.82 638.70 638.83 

9 676.34 678.14 320.77 322.85 660.25 661.23 669323 670.54 
10 700.09 701.91 342.36 342.18 700.09 701.27 700.09 701.59 
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Table 6. Spectral distribution for a coupled composite layered elliptical-cylindrical 
shell 
 

 C-C C-F S-S C-S 
f, Hz A B A B A B A B 

1 207.64 207.85 36.85 35.47 199.78 199.22 203.41 203.58 
2 210.17 210.35 60.92 60.98 199.48 199.21 204.19 204.79 

3 259.11 259.78 80.71 80.97 253.51 253.22 256.98 256.34 

4 314.11 313.25 83.88 83.77 304.82 304.33 306.31 306.15 
5 314.90 315.26 150.52 150.33 308.25 307.44 314.40 314.05 

6 321.16 321.49 151.40 151.45 313.13 313.88 317.27 317.19 
7 323.84 323.99 202.44 202.30 323.90 323.80 323.78 323.65 

8 404.74 405.42 232.89 233.32 386.74 387.06 388.13 388.48 
9 404.81 405.22 274.48 274.11 389.75 389.94 404.14 405.08 

10 406.22 406.57 313.51 313.54 404.87 405.19 405.57 406.08 

 
 
 
Table 7. Spectral distribution for a coupled composite layered parabolic-cylindrical 
shell 
 

 C-C C-F S-S C-S 

f, Hz A B A B A B A B 
1 356.59 356.98 30.46 29.80 337.31 337.50 337.97 338.10 

2 402.98 401.13 38.92 37.80 365.94 364.84 402.78 401.67 

3 404.01 403.51 55.63 55.59 384.65 383.93 404.07 403.50 
4 471.44 469.50 126.38 126.41 459.09 456.58 460.51 458.26 

5 531.66 532.84 168.21 169.13 467.08 467.81 531.66 532.81 
6 583.64 584.07 204.55 206.81 535.31 536.89 583.64 583.15 

7 617.61 620.10 208.83 209.34 583.64 583.12 617.61 620.87 

8 643.28 644.63 301.98 303.96 618.35 620.44 643.87 644.05 
9 709.26 712.18 403.97 402.15 643.15 644.28 709.25 712.67 

10 753.90 754.24 405.31 404.29 707.80 710.19 716.12 719.88 
 

For ease of calculation, it is assumed that the individual shells are made from 
the same laminated composite material and have the same thickness. The following 
properties of laminated composites were used for calculations: E1 = 150 GPa, E2 = 

10 GPa,  = 0.25, G12 = G13 = G23 = 5 GPa,  = 1500 kg/m3, f = [00/900]. 
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Table 8. Spectral distribution for a coupled composite layered hyperbolic-cylindrical 
shell 
 

 C-C C-F S-S C-S 
f, Hz A B A B A B A B 

1 223.54 223.69 16.48 16.08 216.13 216.20 217.34 217.42 
2 323.36 321.74 27.93 22.48 313.33 311.88 313.54 312.08 

3 332.45 332.58 33.38 32.59 332.78 332.49 332.37 332.28 

4 375.23 374.89 83.71 83.24 356.45 356.20 371.19 371.67 
5 388.62 389.01 150.51 150.93 364.95 365.06 374.47 373.12 

6 394.65 395.18 166.79 167.53 371.19 371.67 388.62 389.01 
7 431.35 432.33 195.37 196.08 403.36 404.13 403.38 404.15 

8 471.47 472.68 232.53 234.15 449.36 449.59 449.83 450.05 
9 483.47 485.39 329.74 335.39 453.27 454.81 453.21 454.83 

10 526.25 526.67 353.54 355.39 511.92 512.78 511.93 513.37 

 
 In all numerical results m denotes the meridional wavenumber and n denotes 
the circular wavenumber. In addition, for convenience of expression, the 

dimensionless frequency is introduced ( = RC(/E2)1/2. 
The following tables show the results of numerical calculations of the 

dimensionless frequencies of some inversely coupled composite layered shells. 
 
Table 9. Dimensionless frequencies for a three-layer elliptical-cylindrical shell: 

0 0- 900 - 00 
 

  Boundary conditions 
m n C-C C-F C-S S-S S-F E1-C E2-C E3-C E1-E1 E2-E2 

1 

1 0.263 0.082 0.257 0.252 0.081 0.169 0.259 0.169 0.113 0.255 

2 0.428 0.190 0.422 0.416 0.187 0.249 0.425 0.246 0.239 0.421 

3 0.761 0.440 0.745 0.736 0.431 0.433 0.744 0.434 0.262 0.737 

4 0.806 0.616 0.795 0.778 0.616 0.585 0.790 0.587 0.386 0.766 

5 0.109 0.808 1.072 1.057 0.781 0.807 0.998 0.807 0.574 0.969 

2 

1 0.265 0.045 0.257 0.250 0.045 0.256 0.260 0.257 0.245 0.257 

2 0.410 0.257 0.402 0.393 0.248 0.283 0.406 0.276 0.281 0.403 

3 0.649 0.442 0.609 0.607 0.435 0.437 0.601 0.439 0.285 0.599 

4 0.651 0.627 0.650 0.611 0.593 0.622 0.650 0.622 0.457 0.603 

5 0.985 0.725 0.939 0.933 0.724 0.733 0.843 0.737 0.651 0.833 

3 

1 0.387 0.102 0.379 0.373 0.102 0.234 0.385 0.221 0.234 0.382 

2 0.450 0.396 0.442 0.431 0.385 0.397 0.447 0.398 0.234 0.443 

3 0.616 0.460 0.577 0.575 0.454 0.461 0.557 0.463 0.411 0.554 

4 0.631 0.619 0.624 0.579 0.574 0.620 0.624 0.620 0.466 0.562 

5 0.949 0.674 0.898 0.888 0.673 0.706 0.790 0.712 0.692 0.785 
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Table 10. Dimensionless frequencies for a four-layer parabolic-cylindrical shell: 
300: (-300): 300: (-300) 

 

  Boundary conditions 
m n C-C C-F C-S S-S S-F E1-C E2-C E3-C E1-E1 E2-E2 

1 

1 0.518 0.095 0.505 0.489 0.094 0.272 0.420 0.049 0.162 0.391 

2 0.718 0.453 0.683 0.679 0.435 0.322 0.603 0.211 0.234 0.510 

3 0.821 0.587 0.807 0.787 0.587 0.658 0.723 0.278 0.291 0.615 

4 0.930 0.710 0.895 0.886 0.711 0.715 0.831 0.587 0.538 0.746 

5 1.052 0.785 1.050 0.963 0.777 0.853 0.930 0.659 0.650 0.855 

2 

1 0.431 0.063 0.427 0.408 0.063 0.266 0.376 0.062 0.256 0.370 

2 0.720 0.428 0.699 0.691 0.408 0.351 0.647 0.254 0.267 0.605 

3 0.861 0.683 0.841 0.829 0.678 0.725 0.749 0.343 0.340 0.675 

4 0.988 0.828 0.944 0.940 0.817 0.831 0.871 0.687 0.701 0.771 

5 1.126 0.990 1.126 1.029 0.984 0.963 0.988 0.814 0.817 0.881 

3 

1 0.609 0.130 0.594 0.594 0.130 0.104 0.594 0.129 0.089 0.574 

2 0.702 0.633 0.700 0.665 0.630 0.609 0.614 0.158 0.104 0.597 

3 0.895 0.706 0.874 0.868 0.672 0.773 0.845 0.633 0.646 0.793 

4 1.103 0.880 1.055 1.052 0.876 0.905 0.930 0.783 0.783 0.875 

5 1.216 1.122 1.215 1.131 1.102 1.102 1.106 0.891 0.924 0.951 

 
 
Table 11. Dimensionless frequencies for a four-layer parabolic-cylindrical shell: 

150: (-300): 150: (-300) 
 

  Boundary conditions 
m n C-C C-F C-S S-S S-F E1-C E2-C E3-C E1-E1 E2-E2 

1 

1 0.641 0.182 0.614 0.595 0.181 0.258 0.482 0.253 0.234 0.454 

2 0.796 0.489 0.772 0.740 0.474 0.475 0.696 0.475 0.257 0.521 

3 1.114 0.677 1.043 1.029 0.677 0.725 0.827 0.739 0.311 0.757 

4 1.198 0.860 1.164 1.076 0.809 0.853 1.147 0.853 0.680 0.840 

5 1.641 0.948 1.604 1.596 0.947 0.936 1.329 0.937 0.759 1.281 

2 

1 0.534 0.105 0.509 0.488 0.104 0.273 0.449 0.263 0.274 0.405 

2 0.723 0.469 0.708 0.683 0.442 0.472 0.658 0.473 0.281 0.566 

3 1.142 0.712 1.055 1.044 0.701 0.765 0.788 0.772 0.338 0.757 

4 1.192 1.019 1.170 1.074 0.979 1.069 1.165 1.075 0.778 0.801 

5 1.705 1.155 1.640 1.639 1.089 1.191 1.338 1.197 0.975 1.317 

3 

1 0.633 0.142 0.598 0.585 0.142 0.097 0.538 0.036 0.083 0.520 

2 0.675 0.640 0.662 0.629 0.597 0.642 0.658 0.643 0.111 0.564 

3 1.182 0.703 1.097 1.084 0.699 0.760 0.841 0.768 0.708 0.837 

4 1.219 1.193 1.203 1.115 1.095 1.196 1.200 1.196 0.784 0.846 

5 1.815 1.196 1.728 1.718 1.193 1.347 1.402 1.367 1.314 1.383 
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Table 12. Dimensionless frequencies for a three-layer hyperbolic-cylindrical 
shell: 450: (-450): 450 

 

  Boundary conditions 
m n C-C C-F C-S S-S S-F E1-C E2-C E3-C E1-E1 E2-E2 

1 

1 0.507 0.078 0.495 0.475 0.075 0.276 0.429 0.274 0.107 0.393 

2 0.839 0.384 0.812 0.808 0.366 0.280 0.725 0.280 0.239 0.653 

3 0.926 0.722 0.903 0.897 0.721 0.695 0.844 0.702 0.288 0.743 

4 0.967 0.795 0.967 0.917 0.794 0.782 0.927 0.782 0.668 0.856 

5 1.093 0.858 1.079 1.074 0.850 0.913 1.046 0.914 0.684 0.986 

2 

1 0.460 0.073 0.457 0.453 0.073 0.297 0.453 0.287 0.259 0.445 

2 0.663 0.452 0.646 0.641 0.448 0.452 0.649 0.453 0.297 0.597 

3 1.052 0.637 1.026 1.024 0.632 0.643 0.951 0.643 0.441 0.882 

4 1.100 0.914 1.083 1.078 0.913 0.953 1.061 0.959 0.606 0.957 

5 1.211 1.074 1.193 1.160 1.071 1.044 1.105 1.048 0.914 1.066 

3 

1 0.531 0.166 0.515 0.515 0.166 0.081 0.529 0.150 0.081 0.489 

2 0.844 0.541 0.840 0.827 0.541 0.531 0.812 0.531 0.094 0.799 

3 0.994 0.846 0.981 0.981 0.833 0.846 0.994 0.849 0.542 0.944 

4 1.207 0.993 1.186 1.179 0.993 0.992 1.165 0.992 0.850 1.093 

5 1.343 1.181 1.324 1.308 1.174 1.212 1.282 1.213 1.009 1.194 

 
 
 
Table 13. Dimensionless frequencies for a four-layer parabolic-cylindrical shell: 

300 - 600 - 300 - 600 

 

  Boundary conditions 
m n C-C C-F C-S S-S S-F E1-C E2-C E3-C E1-E1 E2-E2 

1 

1 0.787 0.180 0.782 0.768 0.178 0.241 0.726 0.239 0.241 0.703 

2 1.200 0.536 1.177 1.176 0.527 0.513 1.042 0.513 0.281 1.004 

3 1.266 1.043 1.253 1.209 1.043 1.037 1.206 1.043 0.307 1.067 

4 1.431 1.206 1.375 1.361 1.200 1.163 1.3368 1.163 1.006 1.219 

5 1.570 1.265 1.564 1.545 1.216 1.351 1.456 1.353 1.099 1.391 

2 

1 0.614 0.114 0.610 0.603 0.114 0.299 0.595 0.291 0.279 0.579 

2 0.865 0.536 0.852 0.849 0.529 0.575 0.860 0.576 0.302 0.831 

3 1.314 0.881 1.255 1.255 0.877 0.873 1.254 0.873 0.491 1.112 

4 1.461 1.246 1.461 1.415 1.246 1.266 1.328 1.271 0.904 1.259 

5 1.596 1.460 1.570 1.545 1.414 1.362 1.468 1.365 1.282 1.400 

3 

1 0.733 0.207 0.716 0.715 0.202 0.041 0.731 0.114 0.041 0.689 

2 0.854 0.754 0.849 0.841 0.752 0.738 0.845 0.738 0.138 0.834 

3 1.290 0.862 1.235 1.235 0.855 0.891 1.290 0.893 0.782 1.131 

4 1.454 1.336 1.454 1.412 1.336 1.291 1.418 1.290 0.903 1.417 

5 1.829 1.454 1.742 1.745 1.421 1.507 1.540 1.515 1.434 1.471 
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Table 14. Dimensionless frequencies for a four-layer parabolic-cylindrical shell: 
150 - 750 - 150 - 750 

 

  Boundary conditions 
m n C-C C-F C-S S-S S-F E1-C E2-C E3-C E1-E1 E2-E2 

1 

1 0.645 0.167 0.629 0.629 0.166 0.166 0.626 0.252 0.229 0.607 

2 0.963 0.405 0.953 0.953 0.402 0.402 0.963 0.379 0.247 0.962 

3 1.262 0.931 1.219 1.219 0.918 0.918 1.140 0.922 0.300 1.103 

4 1.461 1.099 1.392 1.392 1.098 1.098 1.349 1.090 0.734 1.205 

5 1.672 1.327 1.671 1.671 1.259 1.259 1.556 1.342 1.114 1.478 

2 

1 0.544 0.092 0.525 0.525 0.091 0.091 0.530 0.305 0.312 0.516 

2 0.699 0.501 0.691 0.691 0.490 0.490 0.699 0.501 0.315 0.698 

3 1.217 0.735 1.171 1.171 0.732 0.732 1.181 0.735 0.439 0.171 

4 1.387 1.192 1.313 1.313 1.190 1.190 1.284 1.187 0.768 1.217 

5 1.507 1.245 1.555 1.555 1.209 1.209 1.425 1.261 1.139 1.357 

3 

1 0.689 0.202 0.683 0.683 0.202 0.202 0.689 0.113 0.152 0.689 

2 0.727 0.698 0.714 0.714 0.692 0.692 0.725 0.699 0.152 0.742 

3 1.224 0.750 1.174 1.174 0.746 0.746 1.215 0.761 0.726 1.210 

4 1.357 1.229 1.281 1.281 1.197 1.197 1.309 1.253 0.775 1.279 

5 1.657 1.355 1.566 1.566 1.323 1.323 1.430 1.399 1.295 1.384 

 
 
The calculation results show the possibility of studying the behavior of free 

vibrations of inversely coupled composite laminated shells under generalized 
boundary conditions. Two lenticular shells were back-connected at both ends of the 
cylindrical shell. Individual shells were connected by a continuous condition, and 
the boundary and continuous conditions were generalized by the artificial spring 
method.  

The displacement field at an arbitrary point of the connected shell was 
determined using the theory of first-order shear deformation, and the displacement 
function was expanded by Haar wavelet series in the meridional direction and 
trigonometric series in the circumferential direction. A boundary condition was 
added to the control function of the main system to satisfy the Haar wavelet integral 
constant. 

 The accuracy and reliability of the proposed method were verified through 
convergence studies and precision testing. The influence of certain parameters on 
the free vibration behavior of inversely coupled composite shells was then 
investigated. Based on the study of parameters, the following conclusions can be 
drawn. 

The critical value of the stiffness of the composite laminated shell material has 
been determined. This value can be considered as a free boundary condition. The 
excess of the stiffness over the critical value corresponds to a fully clamped 
boundary condition. In addition, if the stiffness value of the laminated composite 
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material is less than the critical value, then this state can be considered as an elastic 
boundary condition. 

As the length of the cylindrical shell in the middle part increases, regardless of 
the coupling design and boundary conditions, it initially increases slightly, but when 
the length exceeds a certain value, the frequency decreases quickly.  

The frequency of the coupled shell structure changed symmetrically along the 
90° fiber direction as the fiber direction changed from 0° to 180°. 

As the number of layers increased, the frequency increased or decreased 
depending on the boundary conditions. 

All fundamental frequencies were in the region in which the circumferential 

wave number was 0  n  4.  

Relative changes  = fmax/fmin of dimensionless frequencies of four-layer and 
three-layer shells for all types of boundary conditions from С – С and to Е2 – Е2 
corresponded to the following characteristic numerical intervals (A: 150-750-150-750 
and B: 450-(–450)-450):   

A)    (2.3  2.6), m = 1;    (2.6  2.7), m = 2;    (2.0  2.4), m = 3 

B)    (2.1  2.5), m = 1;    (2.4  2.6), m = 2;    (2.4  2.5), m = 3. 
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CHAPTER 5 
WAVELET TRANSFORMS 
 

In numerous works [123 – 187] devoted to the continuous wavelet transform, 
the potential field was introduced and widely used as an effective tool for 
estimating the source parameters of homogeneous fields: the depth to the source 
z0 and the structural index N. It is often defined as the rate of decay of the field with 
distance from the source. It can be argued that methods using continuous wavelet 
transform belong to the class of multiscale methods for estimating source 
parameters. The construction of a wavelet basis for operator equations was carried 
out in the work of Dahmen. 

Assuming a two-dimensional function f(x, y)  L2(R2) and an analyzing wavelet 

(x, y)  L2(R2), its continuous wavelet transform Wf with L1 norm is defined as 
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where 
r (x, y) is the position vector; 

a  R+ is the scale or dilation of the wavelet ; 
   is its complex conjugate; 

r-  the rotation of the wavelet with respect to the angle ; 

b  R2 is the position of the wavelet. 
 Equation (5.1) means that for any extension, a continuous wavelet transform 
can be expressed as a convolution of the field by any admissible wavelet y. In fact, 
we can write equation (5.1) as 
 

   *,, fabWf  ,                                         (5.2) 

 
where symbol “*” denotes convolution. 
 Thanks to the properties of the convolution integral, we can write for any 

wavelet x
k =  k/ x k 
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k
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where 

 is the so‐called smoothing function; 
k is the derivation order; 
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a is the scale or dilatation. 
 Therefore, in the Fourier domain we can write 
 

k

a

k
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,                                            (5.4) 

 
where 
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, f̂  and  

k
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k
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k

a̂ , respectively.  

 Similar relationships are obtained when choosing wavelets such as 
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 The continuous wavelet transform of potential fields has a special property 
when wavelets constructed on the kernel of the Poisson semigroup are used. In fact, 
Wf is mathematically equivalent to the well-known upward continuation of the kth 
order horizontal derivative of f, except for the scale factor. In order to continue 
considering the analogy, let us write down a mathematical expression for the 
following wavelet 
 

 
k

k
k

x
x

p
r




 ,                                                  (5.6) 

 
where p is the smoothing function for the Poisson kernel 
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where for the Fourier transform we can write 
 

     expP̂ ,                                      (5.8) 

 
where 

P̂  is the Fourier transform of p; 

 = ( 2 +  2)1/2; 

 and  are the wave numbers in the frequency domain. 
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The wavelet transform f with respect to x,a
k can be written in the following 

form 
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 Formula (5.9) allows us to conclude that the value Wx,a

kf can be considered as 
the kth derivative with respect to x of f, which is calculated for parameters from z1 
to z, with the exception of the scale factor ak, where z1 is the measurement level for 
the field  f, and z is the fixed trend parameter. For a simple ideal source such as a 
pole, and assuming the z-axis is positive downward from z1 = 0, we can accordingly 
say that a field f, singular at z0, will have an extension a = ∣z − z0∣ at any level z.  
 Likewise 
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 Continuous wavelet transform analysis allows the detection and 
characterization of features contained in a signal. The wavelet transform is analyzed 
using the so-called maximum lines of the wavelet transform modulus. These lines 
are formed by connecting the maxima of the absolute values of the continuous 
wavelet transform at several scales. 
 In the case of a potential field, the singularities correspond to the positions of 
the source: in fact, the field at the source level is singular and its derivatives are not 
defined. In this case, we can say that the singularities of the potential field are 
located far from the measurement plane. So, in order to obtain the initial 
parameters of a homogeneous potential field from their continuous wavelet 
transformations, it is necessary to compare the value of log(Wx,a

kf/ak) not just in 
comparison with log(a), but in comparison with the scaled value log(a + z^0),  where 
z^0 is the estimated source depth. For general extended sources, the lines of 
maxima of the modulus of the wavelet transform intersect each other at the 
boundary of the body under study for the case when a sufficiently high order is 
chosen k. 
 Since the field is measured at some distance from the source, it can be 
assumed that it is highly non-singular on the measurement scale. Let's assume that 
in the Cartesian coordinate system the z-axis has a positive downward direction. 
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Next, we can place the origin of coordinates in the measuring surface, so that z1 = 
0. Let us now consider the force field f(x, y, z1), created by a bipolar source at point 
Q (x0, y0, z0). 
 The field f (x, y, z1) under study can be considered as a field fQ, singular at point 
Q, extended to the interval a1 = |z1 – z0| 
 

 
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 Poisson wavelet can be represented in the following form 
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 Then for any extension а > a1 we can write 
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 Equation (5.13) shows that Wx,a 

k f, obtained at a-scale a using Poisson wavelets 
does not depend on whether it is calculated in steps, for example, using a single 
convolution step allocated to two scales a0 and a, or multiple convolution , relating 
first to the scales {a0, a1}, and then to the scales {a1, a}, where a > a1. 
 Let us now consider some other form of admissible wavelet 
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where 
u is the corresponding smoothing function. 
 Wavelets built on the smoothing function u allow one to analyze the measured 
field for a continuous wavelet transform 
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 It can be argued that this time the continuous wavelet transform includes 
more types of wavelets and can only be defined as a multiple convolution, this time 
associated with wavelet mixing, namely a Poisson wavelet for the expansion from 
a0 to a1 and any wavelet u for extensions from a1 to а.  
 In order to remove the restriction in choosing wavelets other than those 
belonging to the Poisson kernel, a new method can be proposed called the 
composite continuous wavelet transform, which consists of changing the definition 
of Wx,a

k f(u) by introducing a composite wavelet operator 
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 This operator is the convolution between the inverse Poisson smoothing 

function (for example, the continuation-down operator P^(r) = ea) and any scaling 
function u. Applying this transformation to the potential field on the measurement 
plane, on a scale a1, we can replace the measured field f (p, a1) = fQ*pa1 with the 
corresponding function f (u, a1) = fQ*ua1, obtained on the same scale by dilation with 
wavelet other than the Poisson wavelet. 
 Now we can write the following relation for any scale а > a1 
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 Equation (5.17) is similar to equation (5.13). However, the entire field can now 
be treated as a fully expanded field using any scaling function ua. It should be noted 
that in equation (5.13) this field has been fully expanded using the Poisson operator 
pa. Equation (5.15) allows us to expand the field by mixing the operators ua and pa, 
which is an inhomogeneous expansion. 
 Note also that due to the properties of convolution, equation (5.17) can be 
written equivalently as 
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 Equation (5.18) is especially useful when the composite continuous wavelet 
transform is performed using a wavelet formulated without a smoothing function.  
 The method for calculating smoothing scaling wavelets assumes that the 
operators pa1

−1 and ua1 refer to the same scale interval ranging from a1 to a0 for pa1
−1 

and from a0 to a1 for u. Thus, the continuous wavelet transform operator is a 
combination of smoothing operators using the same scales. A consequence of these 
facts is that the convolution of operators will be a stable transformation. 
 This is confirmed by studying the frequency response of the operator va1 for 
sources at different depths z0. In the case of a Gaussian wavelet, the smoothing 
function g is expressed in the frequency domain as 
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 sing the extension from а to а1 allows us to write the following relations 
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 Thus 
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 Calculations show that the smoothing effect due to the "Gaussian" expansion 
is stronger than the high-frequency enhancement effect introduced by the 
downward extension operator pa1

-1. Therefore, the result is a bandpass filter effect. 
 It is of interest to use the wavelet transformation technique to describe the 
dynamic response and simulate damage in a plate-shaped laminated piezoelectric 
composite sample. The laminated composite plate has a rather complex stress 
state. This state should be described by a three-dimensional elasticity matrix. In the 
general case, displacements at an arbitrary point of such a composite plate can be 
expressed by the following relations 
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where 

u0, 0 and w0 are the mid-plane displacements; 

x, y and z are additional rotations due to shear deformation; 

x, y, z, x, y and z are functions of variables x and y. 
 Based on the mechanical condition of the upper and lower free surfaces of the 

composite plate, i.e. z = zx = zy = 0, a set of complex strain constraint conditions 
can be expressed as 
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where 
h is the thickness of the composite plate. 
 Substituting (5.23) into (5.22) allows us to write the following relations for 

the unknown quantities x, y, z, x, y and z   
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 In this case 
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 The ratios of deformation and displacement are determined by the 
expressions 
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 For a standard specimen in the form of a composite plate, the strain–stress 
relationship in the kth layer with anisotropic behavior is given by 
  

  }{}{  Q ,                                                (5.27) 

 
where 

{} and {} are the stress and strain vectors, respectively; 
|Q| is the elasticity matrix, and it depends on the elastic moduli E1, E2 and E3, shear 

moduli G12, G23 and G31, Poisson’s ratios 12, 23 and 31, and the kth ply fibre 

orientation angle k. 
 In piezoelectric plates built into a composite plate as sensors and actuators, 
the direct and inverse piezoelectric equations regarding the x - y - z axes can be 
written as follows 
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     }{}{}{ EeD   ,                                 (5.29) 

where 

{P} and [QP] is the stress vector and the transformed elasticity matrix of the 
piezoelectric material, respectively; 
{E} is the electric field strength vector; 
{D} is the electrical displacement vector; 

[ ] is the relative permittivity matrix; 
[e]T is the transposed matrix with respect to [e]. 
 
 The matrix of piezoelectric stress coefficients [e] is expressed through the 
matrix of strain coefficients [d] by the equations 
 

    pQde  .                                            (5.30) 

 
 he elasticity matrix of a piezoelectric material can be represented in the 
following form 
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 Due to the approximate isotropy of the sample, a sufficiently large number of 
elements of the [QP] matrix are identical, in particular 
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where 
EP is the elastic modulus; 

P is the Poisson’s rat io of piezoelectric materials. 
 The piezoelectric constant matrix [d] indicates the quantitative relationship 
between the excitation voltage acting on the piezoelectric material and the induced 
voltage in the piezoelectric material. For a three-dimensional model, the specified 
matrix can be written in the form 
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 The matrix [d] of a piezoelectric has some features that are due to the special 
characteristics of the material, that is, all elements are equal to 0, with the 

exception of d31 = d32  0, d15 = d24  0 and d33  0. 
 Consider the case when the piezoelectric sensors and actuator are polarized 
only along the z-direction thickness, that is, the excitation vector {E} is equal to {0; 
0; V3}T , where V3 is the electric field strength acting on the piezoelectric materials 
along the z-direction for equation. Moreover, it should be noted that stresses and 
strains have non-zero components only along the main diagonals associated with 

the coordinate axes. At the same time, for quantities  and  only non-diagonal 
components should be considered as non-zero quantities. 

Then (5.28) and (5.29) can be written as 
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 According to the damage theory of composite micromechanics, when 

delamination occurs in the Dl  Db region of the composite structure, a numerical 
damage model can be created by analyzing the microstructure. The mechanical 
parameters of a thin composite plate depending on the damage delamination can 
be expressed as 
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where 

𝐸1
𝑑

 ,  𝐸2
𝑑, 𝜇12

𝑑
  and 𝐺12

𝑑  are the two elastic moduli, Poisson’s ratio and shear modulus 
of the composite plate with delamination damage, respectively; 
𝐸1
0

 ,  𝐸2
0, 𝜇12

0  and 𝐺12
0  are the elastic moduli, Poisson’s ratio and shear modulus of 

the intact composite plate, respectively. 

 Let us denote by the symbol d a variable that reflects the damage from 
delamination in a composite plate, and which is related to the size and distribution 
density of the delamination area. The expression for the delamination damage 
variable can be written as 
 

Cd r  ,                                                        (5.37) 

 
where 

 is the delamination distribution density of the composite region. 
 The delamination distribution density of a region is equal to the ratio of all 
delamination areas in an element to the entire area of the element where multiple 
delamination areas occur. Let us denote by the symbol rС the average radius of all 

delamination sections in this element. Values  and rС can be written according to 
the following relations 
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 The values C3, C6, C9 and C12 are material coefficients that do not depend on 
deformations and damage, but depend on the configuration of the composite, i.e. 
geometry and fiber orientation. In addition, these values depend on the volume 
fraction of fibers in the sequence of laying layers. 
 Typically, delamination damage results in a decrease in the elastic modulus of 
the composite plate. Among other things, it can be argued that the smaller the 
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delamination area, the less the impact on the change in the mechanical 
characteristics of the composite plate. Consider the case where the delamination 

area is very small, for example,  < 1%. Then we can assume that this delamination 
affects only the local mechanical properties of the plate. Therefore, it is logical to 
assume that in the dynamic model of a composite plate, a change in mechanical 
properties occurs locally only in the damage zone, and the mechanical properties 
of other areas do not change. 
 Hamilton's principle is used to derive the equations of motion of a multilayer 
composite plate with integrated piezoelectric sensors and actuator. Hamilton's 
principle can be written as follows 
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where 
t1, t2 are the two arbitrary time instants; 
T is the kinetic energy; 
U is the strain energy; 
W is the work done by an external electric field; 

 is a first order variation. 
 The shift in the deformation field in an element can be expressed as the 
following formulas 
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where 
Ni (x,y) is the element shape function; 
n is the number of nodes in an element; 

u0i, 0i, w0i, xi, yi and zi are the values of u0, 0, w0, x, y and z at the ith node, 
respectively. 
 The elementary equations of motion satisfy the following relation 
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where 
[M]e and [K]e are the element mass and stiffness matrices; 
𝑈𝑝
𝑒 is the voltage applied to the piezoelectric actuator; 

{FP}e is the vector indicating the force magnitude produced by unit voltage applied 
to the piezoelectric patch, it converts the applied actuator voltage to the induced 
force; 

{}e is the element's nodal displacement vector, which can be expressed using the 
following formula 
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   Tyixiiiii wu  ,,,, 000 .                           (5.43) 

 
 When a piezoelectric actuator embedded in a damaged structure is driven by 
an input voltage signal with multiple frequency components to excite vibration of 
the structure, a significant difference will be observed between the dynamic 
response energy and the energy of the intact structure in the same frequency range. 
The reason for these features is that structural damage will suppress or enhance 
certain components of the response signal in special frequency ranges, i.e. 
structural damage can cause an increase in the energy of some components of the 
response signal, as well as a decrease in the energy of other components of the 
response signal. 
 It can therefore be argued that the energy of structural dynamic response 
signals with different frequency components contains extensive information about 
structural damage, and changes in the energy of one or more frequency 
components of the signals can indicate a particular structural damage status. Many 
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vibration parameters such as natural frequency, mode shape, modal damping can 
be used to determine the structural damage status. 
 Wavelet analysis of time-varying signal is a kind of localization analysis method 
in the time and frequency domain, and the time and frequency windows can be 
changed. This method of signal processing is characterized by higher frequency and 
time resolution.  
 The continuous wavelet transform of the function f (t) is determined using the 
relation 
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where 

’ = (t - b)/a; 
b is the translation parameter; 
a is the scale parameter; 

 (’) is the mother wavelet. 
 The recomposition equation can be expressed as 
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 The basic wavelet function can be represented in many ways. One of the most 
developed methods in practice is wavelet packet analysis of the base function. In 
particular, suppose that 𝑔𝑗

𝑛(𝑡) ∈ 𝑈𝑗
𝑛 then the value 𝑔𝑗

𝑛(𝑡) can be represented as 

the following relation 
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 Calculation formulas for the quantities {𝑑𝑙
𝑗,2𝑛

} and {𝑑𝑙
𝑗,2𝑛+1

} have the 

following form 
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 In this case, the recomposition {𝑑𝑙
𝑗+1,𝑛

} can be represented in the following 

form 
 

 







k

nj

kkl

nj

kkl

nj

l dgdhd
12,

2

2,

2

,1
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 The choice of a fixed frequency band in accordance with the characteristics of 
the analyzed signal can be carried out using packet wavelet analysis. At the same 
time, resolution in the frequency and time domains can be improved. 
 Obtaining a formation about structural damage from a response signal 
involves preliminary decomposition of the signal into several subsignals in different 
frequency ranges using a packet wavelet transform. Let us assume that the original 
signal S(t) of the structural response has the following form 
 

   






1
2

0
,

k

j
jk tStS ,                                           (5.51) 

 
where 
Sk,j (t) is the decomposed wavelet sub-signal with orthogonal frequency band; 
k indicates the kth layer of the tree structure of wavelet decomposition. 
 The total number of decomposed wavelet signals does not exceed 2k-1. 
 The signal energy with index j is equal to 
 

 
T

jkjk dttSU
0

2

,, ,                                       (5.52) 

 
where T is the sampling time. 
 The response signal is characterized by a total energy  
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 The dimensionless components of the intact index vector for a laminated 
composite plate are determined using the following formulas 
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where 
index “0” corresponds to an undamaged composite plate; 
index “d” corresponds to a damaged (detached) composite plate. 
 Typically, a comparison of V0 and Vd indicates whether there is delamination 
of the plate. As additional information, it can be argued that the change in the 
relative value of V0/Vd in each element can more clearly indicate the degree of 
delamination of the plate. The above serves as a basis for exploring the 
delamination region using a similar index vector, which is defined as follows 
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 For composite plates with different delamination zone sizes, changes in local 
elastic moduli can be calculated using experimental data for delamination 
parameters C3, C6, C9 and C12. Numerical modeling of the dynamic responses of 
composite plates with different sizes and locations of delamination zones was 
carried out. 
 The energy spectrum of the decomposed wavelet signal from the structural 
dynamic response may indicate a state of structural delamination. This is based on 
the fact that when small and local damage occurs in the structure under the same 
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excitation condition, the change in the contribution of each vibration mode is 
different, i.e., some modes are enhanced and others are weakened. 
  In the numerical simulation, the output signals of four piezoelectric patch 
sensors are decomposed into 16 sub-signals using wavelet packet analysis, and the 
frequency band does not overlap due to the orthogonality of the adopted 
Daubechies wavelet base. Time domain wavelet decomposition waveforms from 
intact and damaged composite plates cannot directly indicate the damage state of 
the plate. However, their energy spectrum can clearly reflect the status of structural 
damage. In practical problems, one of the most interesting questions is to find the 
smallest degree of detectable structural damage. 
 Wavelet analysis was applied to the results of a basic stress clamp experiment 
on a composite plate that consisted of a glass fiber and epoxy matrix material with 
17 layers with orientation angles of 0 and 90°. The elasticity parameters of the intact 

composite were in the range E0  (4.58  47.52) GPa, G0 = 2.2 GPa. The density of 

the composite material was  = 1.85103 kg/m3. 
One piezoelectric sensor mounted in a composite plate was used as a signal 

source-actuator, and four more piezoelectric sensors were used as receivers. The 

results of the experiment are presented in Table 15 (parameter  is equal to the 
ratio of the delamination area to the total area of the composite plate, N is the 
wavelet serial number). 
 
Table 15. Damage index vector VC (%) of a composite plate for different sizes of the 
delamination zone  
 

N 
, % 

0.003 0.018 0.030 0.060 0.100 0.120 0.167 0.212 

Vc, % 

0 0.005 0.130 0.389 0.765 1.277 2.096 2.434 2.005 

1 0.601 2.791 4.914 7.323 7.642 5.528 5.957 13.31 

2 -0.072 -0.359 -0.662 -0.576 0.157 1.249 3.668 2.218 

3 -0.043 -0.113 -0.214 -1.129 -1.110 1.021 2.160 0.757 

4 0.602 2.594 3.951 1.790 -8.499 -27.82 -44.33 -31.11 

5 0.819 3.974 7.507 12.38 12.58 7.341 5.212 18.21 

6 0.062 0.325 0.470 -0.089 0.043 1.103 1.519 2.514 

7 0.481 2.164 3.903 6.813 7.298 4.598 5.441 11.89 

8 -0.128 -0.612 -1.013 -0.694 0.454 1.918 3.031 0.582 

9 0.516 2.344 4.003 4.917 3.784 1.813 -0.045 3.172 

10 -0.142 -0.589 -0.929 -1.108 -0.155 2.585 4.544 1.944 

11 -0.055 -0.328 -0.651 -0.575 0.041 0.447 1.226 0.132 

12 0.348 1.405 1.878 -0.487 -7.626 -19.97 -31.15 -23.84 

13 0.549 2.420 4.108 5.765 4.383 -0.665 -2.673 5.849 

14 -0.131 -0.579 -0.932 -0.896 -0.062 1.819 3.910 2.169 

15 -0.039 -0.142 0.192 -0.276 0.130 1.896 3.312 7.829 



98 
 
 

 Numerical data indicate that variations in multiples of the damage index vector 
Vc indicate the presence of a delamination zone in the composite plates. If the 
maximum absolute value of an element in the index vector exceeds some threshold, 
such as 20%, this data set can be used to indicate delamination damage to a certain 
extent. Thus, it can be found that the smallest detectable delamination area S’ will 

be S’  0,12 % of the total area of the composite plate.  
The set of all data, which contains all the sizes and locations of damage from 

delaminations, was created using numerical modeling. Such a set can be used for 
online detection of damage to structures in service, subject to the necessary 
condition of sufficient accuracy of the simulations. A comparison of the results of 
numerical simulation A and experiment B (deviation С’) is given in Table 16. 
 
 

Table 16. Vector of delamination index Vc (%) of composite plate obtained by 
simulation and experiment 
 
 

N 

, % 
0.11 0.167 0.22 

A B C’ A B C’ A B C’ 

VC, % 

0 1.543 1.703 10.3 2.433 2.491 2.35 0.895 0.908 1.4 

1 7.162 8.053 12.4 5.956 6.078 2.04 21.13 21.32 0.9 

2 0.377 0.403 6.79 3.668 3.178 1.38 -0.991 -1.005 0.9 

3 -0.569 -0.634 11.4 2.160 2.197 1.70 -1.759 -1.818 3.3 

4 -13.79 -14.10 2.24 -44.32 -45.38 2.38 -6.506 -6.603 1.4 

5 11.38 12.83 12.7 5.212 5.221 0.17 35.48 36.42 2.6 

6 0.381 0.395 3.52 1.518 1.546 1.80 3.599 3.626 0.7 

7 6.593 6.811 3.28 5.441 5.449 0.15 17.18 17.76 3.4 

8 0.863 0.961 11.3 3.030 3.068 1.24 -2.687 -2.736 1.8 

9 3.262 3.575 9.58 -0.045 -0.045 0.91 8.339 8.691 4.2 

10 0.551 0.561 1.77 4.543 4.663 2.62 -1.228 -1.279 4.1 

11 0.164 0.165 0.15 1.226 1.226 0.04 -2.321 -2.389 2.9 

12 -11.02 -12.30 11.6 -31.15 -31.89 2.30 -7.936 -8.129 2.4 

13 3.063 3.143 2.58 -2.673 -2.751 2.91 16.31 17.04 4.4 

14 0.397 0.412 3.88 3.910 4.026 2.97 -1.147 -1.193 4.0 

15 0.554 0.602 8.59 3.311 3.390 2.36 0.218 0.225 3.1 
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 The results shown in Table 16 indicate that the larger the maximum absolute 

value V c, max of an element in the index vector, the smaller the deviation between 
simulations and experiments will be. These phenomena mean that only differences 
in the wavelet energy spectrum between undamaged and damaged composite 
plates are noticeable, and the simulation results are reliable.  
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CHAPTER 6 
LAMB WAVES 
 

Such features of composite material samples as homogeneity on the one hand 
and the presence of deformations on the other have traditionally been assessed 
using non-destructive testing. Monitoring the condition of structures can be 
considered as a modernization of this technique and the purpose of ensuring 
guarantees of the operability of structures. For active diagnostics, which use 
ultrasonic transient waves for damage detection, localization and subsequent 
damage assessment, understanding the wave propagation characteristics of 
composites is essential for the successful application of these techniques.  

Wave propagation in composites is complex due to the nature of the 
inhomogeneity of the components, the intrinsic anisotropy of the material and the 
multilayer structure, which leads to the fact that the speed of the wave mode 
macroscopically depends on the laying of the laminate and the direction of the 
wave. conditions of its distribution and frequency. 

In the case of wave propagation in isotropic plate structures, they will 
experience repeated reflections alternately on the upper and lower surfaces, and 
the resulting wave propagation as a result of their mutual interference is directed 
by the surfaces of the plates. A guided wave can be modeled by imposing surface 
boundary conditions on the equations of motion. 

A significant disadvantage of this approach is the presence of dispersion, that 
is, the speed of propagation of a directed wave along the plate is a function of 
frequency or wavelength. Dispersion relations for an inelastic isotropic plate with 
an infinitely extended plane-strain state were first obtained by Lamb. As a rule, 
directed waves propagating along the plane of an elastic plate with boundaries free 
from mechanical stress are called Lamb waves.  

Wave interactions in multilayer composites depend on the properties of the 
composite layers, geometry, direction of propagation, frequency and interfacial 
conditions. In the case where the wavelengths significantly exceed the dimensions 
of the components of the composites, namely, the diameters of the fibers and the 
distance between them, each plate can be considered as an equivalent 
homogeneous and isotropic material with an axis of symmetry parallel to the fibers. 
A fairly large number of works are devoted to wavelet transforms using the Lamb 
wave algorithm [188 – 202]. Damage assessment in composites using Lamb waves 
was carried out by Paget, Su and Lemister. The theoretical basis of the interaction 
of Lamb waves with deformations in composite structures was discussed in the 
work of Alleyne and Cawley. 

Symmetric laminar composites are characterized by symmetric and 
antisymmetric Lamb wave modes. For symmetric modes, one type is designated 
quasi-extended (qSn), where the dominant component of the polarization vector is 
along the propagation direction, and the other type is quasi-horizontal shear 
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(qSH2n), where the polarization vector is predominantly parallel to the plane of the 
plate. It can also be argued that for antisymmetric types of wave modes, quasi-
flexural (qAn) and quasi-horizontal shear (qSH2n-1) are generated.  

In general, in composite materials there are transient waves that propagate in 
an arbitrary direction, and which generally cause disturbances involving all three 
displacement components, namely, the generalized plane strain due to the 
anisotropy of the material.  

Consider a Cartesian coordinate system in which the Z-axis is perpendicular to 
the midplane of the composite laminate, spanned by the X and Y. The two outer 
surfaces of the laminate are at z = ± h/2. The propagation of a Lamb wave packet in 

the -direction can be considered as occurring counterclockwise with respect to the 
x-axis. Each layer of a composite laminate with an arbitrary orientation in the global 
Cartesian coordinate system (x, y, z) is considered as a monoclinic material having 
an x-y symmetry plane. Taking this into account, the dependence of stress on strain 
can be represented in the following matrix form 
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 When the global coordinate system (x, y, z) does not coincide with the main 

material coordinate system (x, y, z) of each layer, but makes an angle  with the x-
axis, the stiffness matrix Cij (i, j = 1, 2, 3, , 6) in the syste (x, y, z) can be obtained 

from the plate stiffness matrix Cij in the system (x, y, z) using the transformation 
matrix method. The composite plate is orthotropic or transversely isotropic with 

respect to the principal axes of the material at (x, y, z), and its plate stiffness matrix 

Cij can be calculated from the elastic properties of the plate material Ek, kl and Gkl 
(k, l = 1, 2, 3). 
 The relationship between the deformation and displacement coefficients is as 
follows 
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where 

u,  and w are the displacements in the x, y, and z-directions, respectively. 
 For the case of the absence of mass forces, the equations of motion have the 
following form 
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where 

 is the mass density of composite. 
 The boundary conditions on the upper and lower faces have the form 
 

0 yzxzz  ,      at  2/hz  .                        (6.7) 

 
 Wave motion can be expressed as a superposition of plane harmonic waves 
due to the fact that Lamb waves propagate along the plane of the plate with 
boundaries free from adhesion forces, but are standing waves in the z direction of 
the plate. For each plane harmonic wave that propagates in the direction normal to 
the wave front, we can write the following relation 
 

            tykxkizWzVzUwu yx   exp,,,, ,      (6.8) 

 
where 
k = [kx, ky]T,  

k = |k| = (𝑘𝑥
2 + 𝑘𝑦

2 )0.5 =  / cP = 2 /  is the wave number; 

 is the wavelength; 

 is the angular frequency; 
cP is the phase velocity. 
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 Substituting (6.8) into (6.1) and (6.3) allows one to obtain relations for 
mechanical stresses in each layer of the composite 
 

  WiCVkCUkC yxx 131211  

 

     tykxkiiVkUkC yxxy  exp16               (6.9) 

 

  WiCVkCUkC yxy 232212  

 

     tykxkiiVkUkC yxxy  exp26              (6.10) 

 

  WiCVkCUkC yxz 332313  

 

     tykxkiiVkUkC yxxy  exp36             (6.11) 

 

     WikUCWikVC xYyz 4544  

 

   tykxkii yx  exp                                          (6.12) 

 

     WikUCWikVC xYxz 5545  

 

   tykxkii yx  exp                                          (6.13) 

 

    VkUkCWiCVkCUkC xyyxxy 66362616  

 

   tykxkii yx  exp                                          (6.14) 

 
where the prime denotes the derivative with respect to z. 
 Substitution (6.9) – (6.14) into (6.4) – (6.6) allows us to write the equations of 
motion for each layer separately. These equations can be divided into symmetric 
and asymmetric, which simplifies the analytical representation 
 

zAU SS cos ,    zBV SS cos ,    zCW SS cos        (6.15) 
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              zAU aa cos ,      zBV aa cos ,    zCW aa cos ,     (6.16) 

 
where 

 is an unknown variable to be determined later; 
subscripts «s» and «a» represent symmetric and anti-symmetric modes, 
respectively. 
 Let us consider the case of symmetric modes. Substituting (6.15) – (6.16) into 
the equations of motion for each layer allows us to write the relationships in matrix 
form 
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where the bar indicates the complex conjugate. 

 The elements in the above matrix defined by (Г - 2I) are listed as follows 
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where I is a 3  3 identity matrix. 
 Relation (6.17) is a standard linear problem on the eigenvalues of the 
Hermitian matrix Г. If the matrix is positive definite, it can be shown that the 

eigenvalues .2 of the matrix Г are positive and non-zero, moreover, the right 
eigenvectors satisfy the orthogonality property. 
 For non-trivial solutions As, Bs and Cs in equation (6.17), by vanishing the 

determinant of the matrix (Г – .2 I) we can obtain the following sixth-order 

polynomial in  
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where 

i (i = 1, 2, 3) are real-valued coefficients of Cij; k and .2. 
 Analysis of the ratios leads to the fact that only three positive, non-zero and 

discrete values of i (i = 1, 2, 3) can be obtained. For each i in symmetric modes, 
we can write the formal dependence of BS and CS on AS in the form 
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 Relations of a similar type (Ba = RAa and Ca = - iSAa) can also be written for the 
antisymmetric case. Now we can write down the general solution for the system 
(6.15) – (6.16) 
 

   



3

1

sin,cos,cos,,
j

jjjjjSjSSS ziSzRzAWVU        (6.27) 

 

   



3

1

cos,sin,sin,,
j

jjjjjajaaa ziSzRzAWVU   .     (6.28) 

 
 Substitution (6.27) into (6.9) – (6.14) allows us to write the following relation 

for the quantities z, yz and xz 
 

     ,cos,sin,, 2

3

1
12/

 



zHzH jj

j
jjhzxzyzz  

 

  0cos3  jjj AzH  ,                                 (6.29) 
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where 1..=..0 and 2..=../2 can be associated with symmetric and antisymmetric 
modes of Lamb waves, in addition 
 

 jxyjjjyxj RkkCSCRkCkCH  363323131            (6.30) 

 

   jxjJyjjj SkCSkRCH   45442                                 (6.31) 

   

   jxjJyjjj SkCSkRCH   55453                                 (6.32) 

 
 Analysis of the equations allows us to assert that the presence of a nontrivial 
solution to equation (6.28) is the cause of dispersion relations in closed form, such 
as 
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
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
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3223332211

h
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
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
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2
tan 2

3321312312
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  







 



2
tan 3

3122322113

h
HHHHH .                      (6.33) 

 
 This solution is expressed in the form of a transcendental equation that 
implicitly relates the quantity x to k. For a fixed h a numerical iterative root-finding 
method is used to calculate the allowable x for a range of k values. This feature is 
the basis for the appearance of dispersion relations for the Lamb wave modes in 
the direction of its propagation. Dispersion relations assume that the frequency x 
of each mode is a unique function of k. 
 The appearance of Lamb waves in a laminated composite indicates that the 
interfaces between the layers are perfectly connected. The z-axis displacement 
components of each layer in equation (6.15) and (6.16) must be modified in 
exponential form to account for the heterogeneity of the multilayer laminate 
 

 ziAU exp ,     ziBV exp ,      ziiCW exp .        (6.34) 

 
 In addition, the coefficients in (6.33) can be written in matrix form 
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    0,,
2

 CBAI .                                (6.35) 

 
 Further, the general solution (6.33) for each layer of the laminate can be 
represented as 
 

     tykxkiWVU yx  exp,, .              (6.36) 

 

 The interlaminar stress components z, yz and xz  in each plate can be 
expressed as 
 

       tykxkiik yxxzyzz  exp,,  

 

   



6

1
321 exp,,

j
jjjjj ziHHHA  , 

 

  jj HH 111  ,     jj HH 212  ,    jj HH 313  ,  5,3,1j . (6.37) 

 
 In conventional laminar layers, symmetric and antisymmetric modes cannot 
exist separately. However, when creating composite structures, symmetrical 
laminates are practically used. Imposing boundary conditions on both the top and 
middle surfaces of the plane can, however, serve as a reliable method for separating 
the two types of wave modes. The boundary conditions for the absence of strong 
bonding on the top surface of the laminate are determined by the expression 
 

  0,,
2/


hzxzyzz  .                              (6.38) 

 
 The presence of symmetrical geometry and isotropic properties of the 
laminate material leads to the need to take into account only half of the volume of 
the laminate. In this case, it seems convenient to take into account the following 
conditions on the stress and displacement components in the midplane for 
symmetrical modes 
 

  0,,
0


zxzyzw  .                                   (6.39) 
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 The presence of an antisymmetric mode is the reason for the existence of 
boundary conditions for the average plane of the laminate, which can be written in 
the form 
 

  0,,
0


zzu  .                                    (6.40) 

 
 The dispersion relation for each Lamb wave mode can be represented as an 

explicit function W (k,  ), which can be considered as a conical surface in a three-
dimensional domain. In addition, to describe the dispersion relation between 

frequency and wave vector, we will use the function G (, k). In this case, the group 
velocity of waves can be represented by the relation 
 

 
 




/

/

G

kG
cg .                                        (6.41) 

 
 For the Cartesian components of the group velocity we will use the following 
matrix relation 
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where the subscripts x and y represent the components in x- and y-axes, 
respectively. 

 The moduli of group velocity cg and angle  are equal 
 

  5.022

gygxg ccс  ,      

















gx

gy

g
c

c
1

tan .                   (6.43) 

 
 The spatial direction of the group velocity vector for all sets cg from the origin 
of the coordinate system at a given frequency can be defined as a wave curve. It is 
worth noting that the radius vector connecting the origin (or source point) to a point 
on the wave curve represents the distance traveled by the elastic disturbance per 
unit time. Thus, the wave curve gives the location of the wave front per unit time 
from the disturbance emitted by a point source acting through the origin at 
time t = 0. 
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 The dispersion relation can be expressed as the relationship between 

quantities W, k and  
 

0















Wk

k

W
.                                     (6.44) 

 
 Taking into account the previous relations, we can also rewrite the formula for 
the Cartesian components of the group velocity 
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 For practical calculation of the wave curve at a given frequency, a method can 
be used that consists of performing a finite difference of the exact solutions of two 
slowness curves. These curves represent the locus of points for two fairly close 

frequencies 1  2. Then the partial derivative of the quantity W with respect to 
the wave vector is equal to 
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kkk
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
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,                               (6.46) 

 

where k1 and k2 are explicit functions of . 
 

 Spectral dependences of the dimensionless group velocity cg = cg/cT for fixed 

values of the dimensionless frequency f = .h/cT  along the  direction of laminates 
А1 (+456/-456)s and A2 (+45/-45/0/90)s are given in Table 17 and Table 18. Data are 
given for symmetrical (index “S”) and asymmetrical (index “A”) modes. 
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Table 17. Spectral dependence for Lamb waves of laminate А1 (symmetrical 

modes) 
 

f 
cg 

f 
cg 

S0 SH0 S1 S2 SH2 
0.5 3.325 2.384 5.0 0.962 0.001 0.001 

1.0 3.218 2.321 5.3 0.947 0.001 0.002 

1.5 3.085 2.305 5.6 0.921 0.002 0.003 
2.0 2.798 2.208 5.9 0.903 0.854 1.099 

2.5 2.237 2.126 6.2 0.824 1.512 1.264 
3.0 1.749 2.111 6.5 0.805 2.134 1.452 

3.5 0.764 1.872 6.8 0.841 2.358 1.587 
4.0 0.387 1.564 7.1 0.893 2.583 1.604 

4.5 0.901 0.695 7.4 0.935 2.857 1.698 

5.0 1.400 0.631 7.7 0.964 2.940 1.736 
5.5 1.399 0.681 8.0 1.045 3.042 1.762 

6.0 1.310 0.735 8.3 1.028 3.082 1.829 
6.5 1.223 0.761 8.6 1.018 3.110 1.852 

7.0 1.182 0.786 8.9 1.066 3.100 1.921 

7.5 1.125 0.802 9.2 1.089 3.043 1.964 
8.0 1.087 0.811 9.5 1.088 3.002 1.993 

8.5 1.022 0.824 9.8 1.081 2.987 2.031 
9.0 1.010 0.832 10.1 1.070 2.804 2.057 

9.5 1.001 0.840 10.4 1.020 2.451 2.111 
10.0 1.000 0.846 10.8 0.993 2.220 2.125 

10.5 1.000 0.853 11.1 0.987 1.963 2.134 

11.0 0.981 0.859 11.4 0.968 0.995 2.173 
11.5 0.980 0.871 11.7 0.969 0.729 2.180 

12.0 0.974 0.880 12.0 0.970 0.484 2.186 
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 Table 18. Spectral dependence for Lamb waves of laminate А1 (asymmetrical 
modes) 

 

f 
cg 

f 
cg 

f 
cg 

A0 A1 A2 A3 SH3 

0.5 0.651 2.5 0.882 8.5 0.593 0.003 0.001 

1.0 0.847 2.9 2.456 8.6 0.612 0.227 0.001 
1.5 0.851 3.3 2.614 8.7 0.715 0.418 0.002 

2.0 0.856 3.7 2.913 8.8 0.783 0.623 0.003 
2.5 0.623 4.1 3.111 8.9 0.805 0.701 0.003 

3.0 0.678 4.5 3.152 9.0 0.890 0.862 0.004 
3.5 0.699 4.9 3.112 9.1 0.904 0.871 0.125 

4.0 0.734 5.3 3.087 9.2 0.928 0.885 0.364 

4.5 0.790 5.7 2.924 9.3 0.957 0.889 0.541 
5.0 0.802 6.1 2.631 9.4 0.981 0.896 0.683 

5.5 0.813 6.5 2.185 9.5 1.061 0.900 0.754 
6.0 0.845 6.9 1.598 9.6 1.082 0.882 0.974 

6.5 0.887 7.3 1.273 9.7 1.106 0.874 1.116 

7.0 0.902 7.7 0.832 9.8 1.125 0.856 1.277 
7.5 0.883 8.1 0.401 9.9 1.143 0.830 1.452 

8.0 0.879 8.5 0.368 10.0 1.162 0.795 1.583 
8.5 0.872 8.9 0.420 10.1 1.175 0.791 1.986 

9.0 0.870 9.3 0.468 10.2 1.188 0.784 2.178 
9.5 0.868 9.7 0.502 10.3 1.205 0.781 2.376 

10.0 0.867 10.2 0.539 10.7 1.203 0.791 2.715 

10.5 0.865 10.8 0.584 11.1 1.200 0.799 2.854 
11.0 0.864 11.2 0.615 11.4 1.192 0.825 3.185 

11.5 0.861 11.6 0.661 11.7 1.195 0.843 3.239 
12.0 0.859 12.0 0.690 12.0 1.146 0.906 3.378 

 
 The dispersion curves of Lamb waves in two types of laminated composites A1 
and A2 are presented in Tables 17 – 20. The results are given for five symmetric 
(Tables 17 and 19) and five antisymmetric (Tables 18 and 20) wave modes. All Lamb 
waves, with the exception of the fundamental modes (A0, S0 and SH0), have cutoff 
frequencies. Note that the interaction of Lamb waves with delamination has been 
most studied in the low-frequency range, where only fundamental modes exist. The 
SH0 and S0 modes have low dispersion in the low-frequency range, below the 
frequency xh/cT = 0.5. 
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Table 19. Spectral dependence for Lamb waves of laminate А2 (symmetrical 

modes) 
 

f 
cg 

f 
cg 

S0 SH0 S1 S2 SH2 
0.5 3.042 1.803 5.0 1.527 0.041 0.005 

1.0 3.005 1.752 5.3 1.743 0.097 0.214 

1.5 2.910 1.685 5.6 1.832 1.184 0.679 
2.0 2.805 1.599 5.9 1.801 0.811 1.112 

2.5 2.609 1.485 6.2 1.709 0.913 1.563 
3.0 2.308 1.361 6.5 1.687 1.099 1.952 

3.5 1.814 1.224 6.8 1.564 1.286 2.037 
4.0 0.726 1.100 7.1 1.500 1.485 2.206 

4.5 0.437 0.895 7.4 1.301 1.701 2.311 

5.0 0.948 0.556 7.7 1.238 1.715 2.318 
5.5 0.925 0.611 8.0 1.105 1.723 2.325 

6.0 0.911 0.674 8.3 1.098 1.668 2.305 
6.5 0.918 0.701 8.6 0.984 1.600 2.297 

7.0 0.926 0.725 8.9 0.851 1.449 2.184 

7.5 0.931 0.761 9.2 0.826 1.417 2.137 
8.0 0.937 0.792 9.5 0.794 1.284 2.000 

8.5 0.940 0.803 9.8 0.762 1.208 1.915 
9.0 0.945 0.805 10.1 0.731 1.142 1.806 

9.5 0.950 0.810 10.4 0.702 1.051 1.585 
10.0 0.954 0.815 10.8 0.701 0.984 1.658 

10.5 0.955 0.822 11.1 0.700 0.972 1.901 

11.0 0.956 0.829 11.4 0.702 0.900 1.052 
11.5 0.958 0.830 11.7 0.703 0.899 0.935 

12.0 0.960 0.842 12.0 0.704 0.898 0.854 
 
 It should be noted that the different frequency components within the wave 
packet propagate at almost the same speed. This fact is the reason why the wave 
packet retains its shape during its movement. In addition to this desirable feature, 
lower attenuation compared to waves for the А0 wave mode and high sensitivity to 
delamination are two other reasons that have increased interest in the use of 
symmetric modes as diagnostic waves. 

The symmetric mode S0 is relatively weak in magnitude compared to the A0, 
mode if the two modes are excited simultaneously. As a result, the mode of using 
the А0 wave mode is preferable when diagnosing damage to the structure of 
composites. 
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Table 20. Spectral dependence for Lamb waves of laminate А2 (asymmetrical 

modes) 
 

f 
cg 

f 
cg 

f 
cg 

A0 A1 A2 A3 SH3 
0.5 0.898 2.5 1.218 8.5 0.924 0.003 0.002 

1.0 0.898 2.9 1.530 8.6 0.895 0.008 0.164 

1.5 0.897 3.3 1.809 8.7 0.861 0.012 0.308 
2.0 0.897 3.7 2.184 8.8 0.837 0.016 0.407 

2.5 0.897 4.1 2.394 8.9 0.820 0.021 0.593 
3.0 0.896 4.5 2.426 9.0 0.815 0.028 0.699 

3.5 0.895 4.9 2.385 9.1 0.793 0.089 0.715 
4.0 0.894 5.3 2.288 9.2 0.765 0.187 0.805 

4.5 0.894 5.7 2.235 9.3 0.737 0.352 0.881 

5.0 0.893 6.1 1.980 9.4 0.718 0.605 0.973 
5.5 0.893 6.5 1.684 9.5 0.694 0.831 1.113 

6.0 0.893 6.9 1.295 9.6 0.711 0.927 1.188 
6.5 0.892 7.3 1.064 9.7 0.725 1.164 1.246 

7.0 0.892 7.7 0.845 9.8 0.740 1.235 1.358 

7.5 0.891 8.1 0.555 9.9 0.756 1.380 1.455 
8.0 0.891 8.5 0.485 10.0 0.768 1.486 1.557 

8.5 0.891 8.9 0.316 10.1 0.773 1.604 1.618 
9.0 0.890 9.3 0.484 10.2 0.791 1.728 1.735 

9.5 0.890 9.7 0.587 10.3 0.804 1.872 1.882 
10.0 0.890 10.2 0.615 10.7 0.809 1.914 1.912 

10.5 0.889 10.8 0.684 11.1 0.816 2.055 1.975 

11.0 0.888 11.2 0.700 11.4 0.822 2.083 1.994 
11.5 0.887 11.6 0.752 11.7 0.824 2.099 2.026 

12.0 0.886 12.0 0.801 12.0 0.825 2.001 2.048 
 
 The calculation results indicate that the A0 mode provides higher resolution 
than the S0 and SH0 modes. The reason for this is the fact that the wavelength of 
the A0 mode is always shorter than that of the S0 mode, especially in the low 
frequency range. In the higher frequency range, Lamb wave propagation in a 
relatively thick symmetrical corner laminate (+456/-456)s has a rather complex 
behavior. 
 The group velocity for the SH0 and S0 modes has a fairly high level of dispersion. 
In addition, targeted analysis showed that the symmetric mode dispersion in the 
quasi-isotropic laminate A2 (+45/-45/0/90)s is significantly stronger. On the other 
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hand, the dispersion of the antisymmetric wave mode A0 in both laminates is 
weaker beyond frequency xh/cT = 1. 
 The results of calculations of group velocity dispersion surfaces for wave 
modes in the laminar composites used make it possible to represent the polynomial 

dependence cg = cg ( f ) in matrix form 
 

 kikig fdc 
, , 5...,,1,0k ,  

2121 ,0,0,0,0 ,,, AAAA SHSHSSi   (6.47) 

 



























584.1469.0307.0047.0002.0

759.1231.1637.0092.0004.0

264.2813.1096.1182.0009.0

798.3514.1467.1631.0076.0

ikd .                (6.48) 
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AFTERWORD 
 

The kinetics of surface and volume localization of deformation of laminar 
composite structures can be studied using various wavelet analysis techniques. In 
particular, the results of the use of acoustic emission for wavelet analysis of laminar 
composites, the use of the zero-order energy moment of a pulse load to identify 
damage, Haar wavelet methods, the distribution of potential deformation fields 
under continuous wavelet transformations, as well as the kinetics of Lamb wave 
propagation in isotropic composite structures. 

Analysis of the pulsed effect of acoustic emission on samples of carbon fiber 
composites with fiber filling made it possible to determine the spectral distribution 
of average energy, average entropy, and energy coefficient. Estimates of both the 
critical values of threshold values for choosing the maximum and minimum 
parameters “threshold max” and “threshold min” and the distribution density of 
wavelets in the min-max band were obtained. It should be noted that a significant 
number of wavelets were recorded outside the threshold values, in particular Haar- 
and Daubechies- wavelets. Preference analysis indicates different types of wavelets 
for distributions according to the specified types of parameters: Haar- and 
Daubechies- wavelets for H - distribution, Daubechies- and Dmeyers- wavelets 

for Е - distribution and only Dmeyers-wavelet for  – distribution. The result of the 
final preferences for the min-max parameter indicates the Daubechies-wavelet.  

However, the specified restriction on the choice of wavelet types is not 
absolutely strict and final, since, for example, the first element in the chain of 

ranking the distribution of wavelets within threshold values is the -parameter. 

Consequently, decomposition with respect to the -parameter can be carried out 
using, in particular, the Haar-wavelet. In addition, a separate study on the relative 
amount of spectral energy for different types of acoustic signals favors coif5- and 
dmey-wavelets.  

Difficulties in determining local deformations in two-component laminar 
composites by analytical methods indicate the need to study the moduli and 
direction of wave propagation in composite samples. The work carried out an 
analysis of the first acoustic mode, which includes information on transverse 
deflection, phase and group velocities. The critical values of the relative frequencies 
at which the phase velocity reaches saturation are obtained. 

Features of the spectral distribution of the applied load for plates made of a 
two-component composite indicate a decrease in the arrival time with increasing 
frequency due to an increase in group velocities. The results obtained can be used 
for both isotropic and anisotropic composites.  

The work evaluates the influence of noise on the arrival time of signals. The 
spread of directions in which group velocities change complicates the numerical 
analysis procedure. Therefore, to solve the problem, calculated group velocities 
from the dispersion relations of wave propagation are used. It was found that the 
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presence of noise up to 2% and 5% does not have a significant effect on either the 
spatial distribution of the applied load or the spectral distribution of the arrival time 
of noisy signals.  

A significant variation in the directions of group velocities causes an increase 
in the probability of errors occurring during numerical analysis. One of the options 
for overcoming these difficulties may be the use of calculated group velocities 
obtained from the dispersion relations of wave propagation.  

Numerical evaluations based on the presence of the influence of geometric 
parameters of composite samples, the direction of reinforced inclusions on the free 
vibration of inversely bonded composite laminated shells, allowed us to identify 
trends in the spectral distribution for composite spherical, elliptical and cylindrical 
shells. The possibility of imposing generalized boundary conditions on inversely 
coupled laminated composites when studying free vibrations inside their volume 
has been discovered. In particular, in order to interface with the Haar wavelet 
integral constant, a boundary condition was added to the control function of the 
main system. 

It is shown that the nature of the connections in the composite shell structure, 
as well as the type of boundary conditions, significantly affect the frequency within 
volumetric vibrations only when a fixed threshold value is exceeded. Characteristic 
numerical intervals of relative changes in dimensionless frequencies of three- and 
four-layer shells are determined for all types of boundary conditions. 

The dependence of the damage index vector of the composite plate on the 
relative delamination area is analyzed in detail. Variations in multiple values of the 
damage index vector are associated with the presence of a delamination zone in 
composite plates. It is shown that the results of wavelet analysis of damaged 
composites make it possible to detect delamination areas of less than 1%. 

It was found that only the fundamental modes for Lamb waves in laminated 
composites do not have cutoff frequencies. On the other hand, only the presence 
of fundamental modes in the low-frequency range makes it possible to analyze the 
correlation of Lamb waves with the location of delamination volumes. Low 
attenuation, as well as high sensitivity to stratification, are the reasons that have 
increased interest in the use of the symmetric А0 mode as a diagnostic wave. It 
should be noted that the preferred choice of mode types is difficult for the high-
frequency range of thick laminated composites, in which the propagation of Lamb 
waves has complex behavior. 

The calculation results indicate a high level of group velocity dispersion for the 
symmetric modes SH0 and S0. In addition, a cutoff frequency was discovered, above 
which the dispersion of the antisymmetric wave mode A0 becomes significantly 
weaker. The results of wavelet analysis made it possible to present the dispersion 
dependences of the group velocity for symmetric and antisymmetric wave modes 
in polynomial form. 
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D Midlin's theory,  46 
damage index vector,  97 Morlet wavelet,  11 
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Fourier transform,  7 polynomial term,  12 
function space,  8 R 
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Hermitian matrix,  54 shear correction factor,  49 
Hilbert space,  36 shear modulus,  91 
Hilbert-Huang transform,  17 soliton,  7 
stiffness matrix, 93 U 
structural diagnostics,  35 unsupervised clustering,  21 



134 
 

T V 
thermal conductivity,  4 Voigt-Reuss estimate,  4 
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