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PREFACE

Industrial composite materials consist of a large number of microstructural
components with different characteristics, the combination of which determines
the properties of the material as a whole. The processes occurring in composite
materials are described by differential equations with rapidly oscillating
coefficients, the numerical solution of which requires significant computational
effort, since it involves the use of a very small grid size.

This led to the development of a new area of mathematical research, the goal
of which is to construct methods for averaging partial differential operators such
that the solutions of the resulting equations with averaged coefficients are close to
the solutions of the original equations and adequately describe the behavior of the
composite. The averaged (effective) characteristics of composite materials are
determined experimentally or numerically, and there are also a number of
analytical estimates.

Existing analytical estimates of the properties of composites (for example,
Hashin-Shtrikman estimates and Voigt-Reuss estimates for elastic constants,
thermal and filtration properties), as a rule, provide a fairly wide range of possible
values of material properties and can only be used for rough estimates.

Currently, numerical methods have been developed for obtaining effective
characteristics of materials with a periodic structure in problems of linear elasticity,
thermal conductivity, diffusion, etc. - this is the asymptotic averaging technique.

However, in this case it is necessary to solve problems in the class of functions
that are periodic on a cell, which complicates the implementation of this method.

Only in the case of a certain symmetry of the sample and material under study
can periodic boundary conditions be replaced by non-periodic boundary conditions.
The insufficiency of classical averaging methods encourages the development of
new mathematical approaches. The basis of one of the approaches was the use of
wavelets - a class of basis functions that are used in digital signal processing,
information compression, pattern recognition, etc.

One of the main advantages of the wavelet transform is the ability to obtain a
representation of quantities at the scale level of interest. Using the wavelet
transform, an averaged representation of the function is obtained (coarse scale -
“low resolution”) and its local components are isolated (fine scale - “high
resolution”). This transformation property allows the introduction of multiscale or
variable resolution analysis of the function under study.

The properties of wavelets suggest that the wavelet transform will also be
useful in averaging solutions to partial differential equations.

This work is devoted to some basic wavelet analysis methods used to diagnose
the spatial structure and analyze the dynamics of mass and energy flows of
composites.
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The first chapter deals with the analysis of general features and problems of
using continuous and discrete wavelet transforms.

The second chapter is devoted to the peculiarities of using acoustic sounding
of composite structures and subsequent wavelet processing.

The use of wavelets for identifying damage in composite structures is
discussed in the third chapter.

Features of the use of Haar wavelets in the study of compositional structures
are discussed in the fourth chapter.

An analysis of the specifics of using wavelet transformations for the study of
composite materials is given in the fifth chapter.

The sixth chapter is devoted to the theoretical and experimental study of
composites using Lamb waves.



CHAPTER 1
INTRODUCTION

The term "wavelet" was introduced by Grossman & Morlet in the mid-80s in
connection with the analysis of the properties of seismic and acoustic signals [1].
The subject of the study was signal analysis, and the set of basis functions was
redundant. Meyer showed the existence of wavelets that form an orthonormal
basis in L? (R) [2]. Discretization of the wavelet transform was described in
Daubechies' paper [3], which built a bridge between mathematicians and signal
processing specialists. Daubechies developed a family of wavelet filters that have
maximum smoothness for a given filter length. The popularity of wavelets increased
after Mallat introduced the concept of multiple-scale analysis [4]. He was
apparently the first to use wavelets for image encoding. Some ideas of wavelet
theory were partially developed a very long time ago. For example, Haar published
a complete orthonormal system of basis functions with local domain in 1910. These
functions are now called Haar wavelets [5].

The word wavelet (from the French “ondelette”) literally translates as “short
(small) wave. Despite the fact that the theory of wavelet transform has already been
largely developed, there is, as far as is known, no precise definition of what a
“wavelet” is and what functions can be called wavelets. Usually, wavelets are
understood as functions whose shifts and dilations form the basis of many
important spaces, including L? (R). These functions are compact in both the time
and frequency domains. Wavelets are directly related to multi-scale signal analysis.

The continuous wavelet transform Tf is the scalar product of f(x) and basis
functions

v, () v (x)=va,aeR",beR, x=ax+b, (1)

T, (a,b)= \@Tw(x’) f(x)dx. (1.2)

The basis functions w,» € L?(R) are real and oscillate around the x-axis. They
are defined over a certain interval. These functions are called wavelets and can be
thought of as scaled and shifted versions of the prototype function y(x).

When analyzing signals, it is often useful to represent a signal as a set of its
successive approximations. For example, when transmitting a signal, you can first
transmit a rough version of it, and then successively refine it. This transfer strategy
is beneficial, for example, when selecting signals from a database, when you need
to quickly scan a large number of files.
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In most applications we deal with discrete signals. Therefore, from a practical
point of view, discrete analogs are of interest, which convert a discrete signal into
continuous and discrete signals, respectively.

Wavelet analysis is a rapidly developing technique that covers such practical
applications as pattern recognition problems, processing and synthesis of various
signals, image analysis of various natures, studying the properties of turbulent
fields, convolution (packing) of large amounts of information, and in many other
cases.

In many areas, significantly better results can be expected by using wavelets.
Let's list some of them: the use of wavelet transform for signal compression, the
use of wavelet transform for multiple-scale curves, the use of wavelet transform for
surfaces, wavelets are successfully used in quantum physics, in the study of atomic
structure, in laser technology, problems of analysis of non-stationary signals (this
kind of problem arises in medicine (tomography, electrocardiography),
hydroacoustics and other fields), removing noise from noisy signals.

Wavelets can be orthogonal, semi-orthogonal, biorthogonal. These functions
can be symmetrical, asymmetrical or non-symmetrical. There are wavelets with a
compact domain of definition and those without one. Some functions have an
analytical expression, others have a fast algorithm for calculating the associated
wavelet transform. Wavelets also differ in the degree of smoothness. For practice,
it would be desirable to deal with orthogonal symmetric (asymmetric) wavelets.

It seems important to carry out a preliminary comparative analysis of the
Fourier and wavelet transforms. The wavelet transform of a one-dimensional signal
consists of its expansion into a basis constructed from a soliton-like function
(wavelet) with certain properties through scale changes and translations. Each
function of this basis can be characterized as a certain spatial (temporal) frequency
and its localization in physical space-time. Thus, in contrast to the Fourier transform
traditionally used for signal analysis, the wavelet transform provides a two-
dimensional sweep of the one-dimensional signal under study. A necessary
condition for such a procedure is to consider frequency and position as independent
variables. As a result, it becomes possible to analyze the properties of a signal
simultaneously in physical (time, coordinate) and frequency spaces.

The scope of application of wavelets is not limited to the analysis of the
properties of signals and fields of various natures obtained numerically,
experimentally, or through observations. Wavelets are beginning to be used for
direct numerical modeling - as a hierarchical basis well suited for describing the
dynamics of complex nonlinear processes characterized by the interaction of
disturbances in wide ranges of spatial and temporal frequencies.

The results of numerous experiments indicate that at large values of the
Reynolds number, a significant part of the volume of the turbulent fluid remains
passive with respect to energy dissipation and, consequently, with respect to its
inverse cascade. Wavelet analysis turns out to be very convenient for analyzing
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processes with intermittency. This analysis allows us to identify the spatiotemporal
properties of the object being studied, determine the presence of intermittency and
the distribution of dissipation regions, and obtain local high-frequency and global
large-scale information about the object.

Processing short high-frequency signals or signals with localized frequencies is
a difficult procedure. The wavelet transform turns out to be a convenient tool for
adequately deciphering such data, since the elements of its basis are well localized
and have a moving time-frequency window.

Another example is the application of the wavelet transform to the turbulent
velocity field in a wind tunnel at high Reynolds numbers, which for the first time
provided visual confirmation of the presence of the Richardson cascade.

The application of wavelet analysis to invariant measures of some well-known
dynamical systems that model the situations of transition to chaos observed in
dissipative systems turned out to be even more effective.

For practical application, it is important to know both the basic definition and
the characteristics that a function must have in order to be a wavelet.

Any localized R-function w € L? (R) is called a wavelet if for it there is a function
w*e L? (R) such that the families {yu} and {yw*i}, constructed according to the
relations

v i(t) = 2j/2‘//(2jt - k)' HWJ'ng =lyl, =1 jkel (1.3)

l//jk(t):w*jk (t):2j/2w*(2jt—k), J,kel (1.4)

are paired bases of the function space L? (R).
Each wavelet y, defined in this way, regardless of whether it is orthogonal or
not, allows any function f € L? (R) to be represented as a series

ft)= ) ws

j k=—0

whose coefficients are determined by the integral wavelet transform f with respect
to w*.

The orthogonality of the wavelet and the presence of an orthogonal basis
presupposes the following relations: v* = y, {yi} = {w*i}.

For many practical purposes, it is sufficient that the wavelet  has the
property of semi-orthogonality, i.e. so that its Riesz basis { yj} satisfies the condition
(Wi, wimy=0forj=1, j kI, mel.
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A wavelet is called non-orthogonal if it is not a semi-orthogonal wavelet.
However, being an R-wavelet, it has an analogue w* and the pair (v, w*) allows us
to form families { i} and {w*i}, that satisfy the biorthogonality condition (i, wim)
= 0iokm, j, k, |, m € | and allowing to construct a full-fledged wavelet series and
reconstruction formula.

Most of the restrictions imposed on the wavelet are associated with the need
to have an inverse wavelet transform (or reconstruction formula).

he wavelet transform, unlike the Fourier transform, uses a localized basis
function. The wavelet must be localized both in time and in frequency.

Often for practical use it turns out to be necessary that not only the zero

Jw(t)dt=0 (1.6)

but also all the first m moments

[ty (t)dt =0 (1.7)

were equal to zero.

Such a wavelet is called a wavelet of order m. Wavelets with a large number of
zero moments allow, ignoring the most regular polynomial components of the
signal, to analyze small-scale fluctuations and high-order features.

An assessment of such a necessary property as localization and boundedness
of a wavelet can be presented in the following form

)< tf)” L8

or
\g&(a))\<(l+\ k —a)o\n)‘l, (1.9)

where ap is the dominant frequency of the wavelet, the number n should be as
large as possible.

A characteristic feature of a wavelet transform basis is its self-similarity. All
wavelets of a given family yim(t) have the same number of oscillations as the basic
wavelet y/(t).
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As an orthogonal discrete wavelet generating an orthonormal basis, we can
specify the Haar wavelet

1, 0<t<1/2
w"(t)=4-1, 1/2<t<1 (1.10)
0, t<0,t2>1

The disadvantages of this wavelet are its non-smoothness, i.e. the presence of
sharp boundaries in t-space. As a result, there is no symmetry of shape in k-space
and infinite (decreasing as k) «tails» appear. However, for some analysis tasks
these disadvantages are insignificant, and sometimes the one-sidedness of the
wavelet even becomes an advantage.

Often, a very similar, also discrete, but symmetrical FHAT wavelet is used to
describe the signal function

-

1, |t|<1/3
w(t)=<-1/2, 1/3<|t|<1 (1.12)

0, [t]>1
(k)= 3®(k)(3i2 k_ S‘g fkj 112

where ©(k) is the Heaviside function (®(k) = 1 for k >0 and ®(k) =0 for k < 0.

The FHAT wavelet, which is irregular in time space and does not decay quickly
enough in frequency space, and the LP wavelet (Littlewood & Paley), on the
contrary, which has sharply defined boundaries in k-space and does not decay
quickly enough in t-space, can be considered as intermediate cases between which
Almost all wavelets are found.

The wavelet transform can be thought of as a dot product that analyzes the
wavelet at a given scale and the signal being analyzed. The choice of analyzing
wavelet is usually determined by what information needs to be extracted from the
signal. Each wavelet has characteristic features both in time and in frequency space,
so sometimes with the help of different wavelets it is possible to more fully identify
and emphasize certain properties of the analyzed signal.

Real bases are quite often constructed on the basis of derivatives of the
Gaussian function
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" am t?

v, (t)=(-1)"07| exp | (1.13)
t2

v (k)=m(ik)" exp (— Ej’ (1.14)

where o™ =0"[...]/0t™, m>1.

Higher derivatives have more zero moments and allow you to extract
information about higher order features of the signal.

In particular, the parameters m =1 and m = 2 can be associated with a MHAT
wavelet. The MHAT wavelet has a narrow energy spectrum and two moments equal
to zero (zero and first). These circumstances make it possible to analyze complex
signals. The MHAT wavelet generalized to the two-dimensional case is often used
to analyze isotropic fields. Calculating the derivative in only one direction results in
a non-isotropic basis with good angular selectivity.

The well-known Dog wavelet is also constructed based on the Gaussian
function

tf tf

w(t)=exp —0.5exp 5 | (1.15)

k[

exp| ——— —exp(— 2\k\2). (1.16)

The most commonly used complex basis is based on the well-known Morlet
wavelet in k- and r-space

2
w(r)=exp(i kor)exp(— %j (1.17)

2
y(k)=0(k)exp ko) _2k°) , (1.18)
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in which the plane wave is modulated by a Gaussian of unit width. As ko increases,
the angular selectivity of the basis increases, but the spatial selectivity deteriorates.
In quantum mechanics, the Paul wavelet is often used

w(t)=T(m +1)#, .19
W (k)=0(k)- (k)" exp(=k). (1.20)

A large numerical value of the parameter m corresponds to an increased
number of zero moments of this wavelet.

Wavelet analysis allows you to obtain objective information about the signal
being analyzed, since some properties of the wavelet transform do not depend on
the choice of the analyzing wavelet, which makes these properties very important.
Let's point out some of these basic properties.

The wavelet transform W [f] = W (a, b) of the vector function f(t) is a vector
with components representing the wavelet transform of each component of the
analyzed vector separately

Wla £,(t)+ B f,()]= aW [ f, ]+ W[ f,]=
= aW,[a,b]+ SW,[a,b] . (1.21)

Invariance under shift and, as a consequence, commutativity of differentiation
W[ f(t—b,)]=W(a,b—b,). (1.22)

Conditions (1.21) and (1.22) lead to the commutability property for derivatives
of vector analysis.
The wavelet differentiation operation can be represented as follows

Wlort =@y [ f®)orly <, Oldt. (w2

Thus, to ignore, for example, large-scale polynomial terms and analyze high-
order features or small-scale variations of the function f, it makes no difference
whether to differentiate the analyzing wavelet or the function itself the required
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number of times. This property is very useful considering that often the function f
is a series of numbers, and the analyzing wavelet is given by a formula.

Invariance under stretching (compression) or the property of scale invariance
is described by the relation

W] f i =iW 33 . (1.24)

a'0 a'0 aO aO

Consider the function f € C™(to). Such a function is continuously differentiable
at the point to up to a derivative of order m. The wavelet transform coefficients of
this function at b = to must satisfy the inequality

W(a,t,)<a™? a—0. (1.25)

If f e A%to), i.e. the analyzed function belongs to the space of Holder functions
with exponent a (f is continuous, | f(t+to) — f(t) | = c|to]*, o < 1, ¢ = const > 0), then
the coefficients of its wavelet transform at b = tp can be written in the form of the
formula

W(a,t,)=ca*™"? a—0. (1.26)

All information about a possible feature of f(t) (localization to, intensity c,
exponent o) is contained in the asymptotic behavior of the coefficients W(a, to) for
small a. If the coefficients diverge on small scales, then f has a singularity at to and
the singularity index o is determined by the slope of the dependence log |W(a, to)]
tolog a. If, on the contrary, they are close to zero in the vicinity of tp on small scales,
then fat the point tois regular.

The signal energy Ef can be calculated through the amplitudes (coefficients) of
the wavelet transform (analogous to Parseval’s theorem)

[ 4O, Ode=c* jjwl(a,bwz*(a,b)%, 1.27)

dadb

a?

E, =[f*(t)dt=C'[[W?(ab) (1.28)

The energy density of the signal Ew(a,b) = W?(a,b) characterizes the energy
levels (excitation levels) of the signal f (t) under study in space (a, b) = (scale, time).
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Knowing the energy density Ew(a,b), we can determine the local energy density
at point by (or to)

E.(at,)= [E, (a,b)-g(b_to)db. 1.29

a
The window function & “maintains” a range around tp and satisfies the equality

[£(b)db=1. (1.30)

If we choose the Dirac function as & then the local energy spectrum takes the
form

E (at,)=W?3(a,t,). (1.31)

This characteristic makes it possible to analyze the time dynamics of the energy
transfer of a process by scale - the exchange of energy between the components of
the process of different scales at any given point in time.

Most often, studies concerning the practical use of the wavelet transform
contain the results of calculations in which discrete wavelets are used. This
preference is due to the fact that commonly used continuous wavelet bases are not,
strictly speaking, orthonormal, since the elements of the basis are infinitely
differentiable and decay exponentially at infinity, which contradicts strict
orthonormality. There are no such problems with discrete wavelets. Because of this,
discrete wavelets usually lead to more accurate transformation and representation
of the signal and, in particular, its reverse recovery after the compression
procedure.

The wavelet coefficients hc and g« an be uniquely determined within a
multiscale analysis. They can be calculated directly, knowing the definition

o(x) =23 h, p(2x—k) (1.32)

w(x)=+23" g, p(2x k) (1.33)
k
and properties of orthogonality of scale functions

[o(X)p(x—m)dx = 5,,, (1.34)
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From (1.34) and the orthogonality of wavelets to scale functions, we obtain
the following equation for the coefficients

> hhyom = Som (1.35)
k

2N Gisom =0. (1.36)
k

In a particular case, we can get a well-known filte

1 1
h, :m(l'i'\/g), h, =m(3+\@)

1 1
h, :m(S—\@), h, :m(l—\@). (1.37)

These coefficients define the simplest wavelet D* from the well-known
property of orthonormal Daubechies wavelets with finite support. D*
wavelets appear to be smoother at some points than others. Choosing the sign in
the expression for hz will not change the general form of the scaling function, but
will only renumber the coefficients.

Daubechies wavelets with zero moments, the number of which is equal to M,
have uM continuous derivatives. Numerical calculations show that for large M we
have p= 0.2. This shows that about 70 — 80% of zero moments cannot be used for
further analysis. As the smoothness of a wavelet increases, the size of its domain of
definition usually increases. For sufficiently smooth functions, Daubechies wavelets
are much smaller (by a factor of 2¥) than the Haar wavelet coefficients. Therefore,
using Daubechies wavelets the signal can be compressed much more. Since these
wavelets are noticeably smoother, the inverse transformation (synthesis) is also
more efficient.

The presence of relationships at two scales for multiscale analysis is a
characteristic feature of the construction of wavelet packages. The main idea of
their creation is to sequentially iterate the frequency band splitting while
maintaining the same pair of filters. Let us denote the scaling function by the symbol
av, then the wavelet packet can be constructed using the following relations

@, (X)= Zk:hka)n (2x—k), (1.38)
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Dy,1 (X) = D 9@, (2X—K) (1.39)
K

For the “mother wavelet” the symbol @ is used. This family of wavelets forms
an orthonormal basis in L?(R) called the fixed-scale wavelet packet basis.

Wavelets with a scale factor of 2 are most convenient for numerical
calculations. However, within the framework of multiscale analysis, this factor can
be any rational number. Therefore, it is possible to construct circuits with other
integer or fractional scale factors. Sometimes their use can lead to better frequency
localization.

Multiscale analysis can also be carried out with multidimensional functions, for
example, by constructing tensor products. The tensor product method represents
a direct path to the development of r- regular multiscale decomposition, which, in
turn, leads to the appearance of multidimensional wavelets with compact support.
This makes it possible to analyze any space of ordinary or generalized functions in
n dimensions with a regularity of up to r.

The usual way to construct a two-dimensional orthogonal wavelet basis y;«(x)
= 2/2y(2x—k) is to form the corresponding functions from two one-dimensional
bases using the tensor product

W itkes ioka (Xl’ X2 ) Vi (Xl)'//jz,k2 (Xz ) (1.40)

In this basis, two variables x; and x, are compressed differently.

For many applications, a technique is used in which the resulting orthonormal
wavelet basis is scaled across both variables in the same way and the two-
dimensional wavelets are given by the following expression

21y (2 x—k,2ly-1), jklez, (1.41)

but wis no longer the only function; on the contrary, it will be formed from three
elementary wavelets. To create an orthonormal basis Wy, we now have to use three
families

p(x—K)w(y—1), w(x=Kk)p(y—-1), w(x—Kw(y-1). @42

Then two-dimensional wavelets will be written in the form

223 x—k (27 y—1), 27y (29 x—k )p(27y—1)
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21y (20 x—k Jy(2'y-1). (1.43)

As an intermediate step, analysis can be performed on a two-dimensional
plane along horizontals, verticals and diagonals with the same resolution in
accordance with three wavelets (1.42).

There are 2n-1 functions that form an orthonormal basis and perform
multiscale analysis of any function from L?(R) in the general n-dimensional case. The
normalization factor is equal to 272,

Wavelets are used both in purely theoretical work in functional analysis
(regularization of gauge theories, conformal field theory, nonlinear chaos theory)
and in the analysis of observational data (experimental work on quasi-crystals,
meteorology, acoustics, seismology, nonlinear dynamics in accelerators, fluid
dynamics and turbulence, surface structure, cosmic ray fluxes, solar wind, galaxy
structure, density fluctuations in cosmology, properties of dark matter,
gravitational waves, etc.).

In this paper we will consider the problems associated with the use of wavelets
to study the structure of such complex systems as composites. The widespread use
of polymer composites in the mechanical engineering, aviation, aerospace,
shipbuilding and automotive industries has created the need to develop suitable
structural diagnostic methods and tools that will be applicable to heterogeneous
materials. Due to the increasing requirements for the technical condition of
composite structural elements in the above-mentioned industries, diagnostic
methods must be non-destructive and non-contact if possible. These methods
should be sensitive to different types of damage in fiber composites and should
provide damage detection, possibly at an early stage. Modal methods, together
with advanced signal processing methods, satisfy all these requirements in most
cases. Among other methods including random decrement signature analysis,
Hilbert-Huang transform, temperature analysis and Poincaré maps of damaged
structures, wavelet analysis is the most promising method. The most commonly
used wavelet methods include collocation procedures [6 - 9], calculation formalism
based on finite elements [10 - 19], analysis of heat flows in composite structures
[20 - 29], multiscale analysis [30 - 36], application of algorithms for spaces with Riesz
potential [37, 38], wavelet filtering of wave numbers [39].
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CHAPTER 2
ACOUSTIC EMISSION

A large number of experimental techniques (Oskouei, Qi, Qiao and others [40
- 72]) are used to study the process of strain accumulation in composites. These
techniques are usually divided into two main groups: active techniques and passive
techniques. In the case of active methods, the composite structure is excited by an
external source. The superiority of passive methods over active methods lies in their
ability to perform structural health monitoring during the operation of a composite
structure. The most common passive technique is acoustic emission.

Acoustic emission is defined as the transmission of an elastic stress wave
through a material that is subjected to stress.

Mechanical stress usually arises from an internal source such as crack initiation
and growth.

The necessary equipment for monitoring acoustic emissions consists of:

structures under load;

a network of acoustic emission sensors to record the slightest vibrations of
the surface during testing of a composite structure and convert these
vibrations into analog signals.

preamplifiers, which increase the intensity of analog signals;

acquisition and recording sections, where amplified signals are recorded
and converted from analogue to digital;

data processing sections where recorded digital acoustic emission signals
are analyzed.

Acoustic emission analysis is typically performed using signals or features
extracted from waveforms. Figure 1 shows a typical acoustic emission waveform.
The following are the most important features of acoustic emission:

presence of a threshold: only acoustic emission signals with an intensity
above the threshold are recorded by the system;

amplitude, namely the maximum voltage of the signal. It is usually indicated
in units of dB;

duration, i.e. time interval between the first and last crossing of the
threshold (indicated in ps);

rise time, namely the time interval between the first crossing of the
threshold and the maximum amplitude (indicated in pus);

counters that index the number of times a signal crosses a threshold in an
increasing direction within the duration of the signal,;

energy, which is proportional to the area of the area under the rectangular
signal within the duration of the signal. usually stated in attojoules (al) (1
al = 1078 Joules);



19

e peak frequency, corresponding to the highest value in the frequency
distribution obtained as a result of the fast Fourier transform of the signal
(indicated in units of kHz).

Rise time

Peak amplirude

Amplitude

® Count

VVVVV' o

i

Duration

Figure 1. Typical acoustic emission.

Acoustic emissions can be divided into two main groups: damage diagnosis and
damage prediction. The first group consists of three subgroups: detection of
damage occurrence, localization of damage and identification of damage. The
second group contains studies related to predicting the residual service life and
residual strength of composite structures using acoustic emission.

Quite often, the acoustic emission technique is used to detect the onset of
damage to layered composites. The studies cover a variety of loading conditions
and configurations of composite structures: tension, compression, double
cantilever beam stress, end-notch bending, mixed bending, 3-point and 4-point
bending, buckling, quasi-static transverse indentation, low-velocity loading and
compression after impact on a real composite structure subjected to arbitrary
loading. Research covers a wide range of composite materials, including
thermosets; glass/epoxy and carbon/epoxy, thermoplastic material; glass/polyester
and glass/polyamide, sandwich and hybrid composites.

The sensitivity of damage detection is usually improved by combining acoustic
emission data and mechanical data by introducing a so-called watchdog function.
The sentinel function is defined as the logarithm of the mechanical energy to the
acoustic emission energy:



20

f(x)=1In Enlx) , (2.1)

where

Em(x) is the mechanical energy (area under the load-displacement curve);
Eae(x) is the cumulative acoustic emission energy;

x is the displacement.

Depending on the damage state of the composite structure, the function f(x)
can change as follows: 1) increase: i.e. the function shows that the structure is still
intact and no damage or any microdamage has occurred in the material; 2) a sharp
decrease in function: this trend shows that the material has suffered enormous
damage; 3) constant trend: this shows that there is a balance between the
mechanisms of destruction and the mechanisms of bridging in the fibers; 4) gradual
decrease in f(x): it is emphasized that the load-bearing capacity of the composite
structure is gradually lost. Accordingly, the moment of onset of damage is
considered to be the first large drop in the guard function curve.

The term “significant acoustic emission activity” is defined using the so-called
historical indicator. The calculation of the historical index is preceded by
determining the tensile strength of the sample using monotonic loading until its
final destruction. A similar sample is then subjected to several load/overload cycles.
During these cycles, acoustic emission signals are recorded until the maximum load
of the previous cycle is reached. The historic index is defined as follows:

H(t)= ARl (2.2)

where

H(t) is the historic index at time t;

N is the number of acoustic emission hits up to time t;
Soi is the amplitude value of i-th hit;

K is a parameter that is depended to the number of hits.

Factors such as amplitude, pulse duration, rise time, center frequency, peak
frequency and energy, and specimen geometry affect the reliability and
repeatability of acoustic emission results in assessing damage in laminated
composites.
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The uncertainty of the probability amplitude distribution of the acoustic
emission signal shape can be described by Shannon’s entropy. An increase in
Shannon’s entropy indicates the occurrence of an internal change in the composite
material, which may be associated with the occurrence of damage. The Shannon’s
entropy of each waveform is calculated using the following formula

n

H = Z p(Xi ) |ng[p(xi )]' (2.3)

i=1

where
H is the Shannon’s entropy;
p(xi) is the probability mass associated with waveform’s numerical values x..

The second level of damage assessment of composite structures is the
separation of acoustic emission signals from different damage mechanisms. This
process is typically performed in one of four ways: 1) manual recognition of acoustic
emission data, 2) unsupervised clustering, 3) supervised classification, and 4) signal
processing.

However, sometimes different mechanisms of damage are not fully
differentiated using only one acoustic emission signature. In this situation, it is
better to use several acoustic emission functions simultaneously to determine the
type of damage with greater confidence. In this case, due to the complex
relationships between different acoustic emission functions, the data separation
process is usually performed using machine learning methods: unsupervised and
supervised methods.

Unsupervised clustering methods such as k-means, genetic k-means, fuzzy c-
means, Gaussian mixture distribution, self-organizing map, and hierarchical models
are often used to cluster damage in composites. Typically, all unsupervised
clustering methods attempt to separate a set of acoustic emission signals {X1, X, ...,
Xn}. Each signal can contain p features Xi = [x1, X2, ..., Xp], i =1, 2, ..., nink (k<n)
clusters {Ci;, C;, ..., Ck}.

Among the unsupervised clustering methods, k-means is widely used in
numerical experiments to distinguish between different damage mechanisms in
laminated composites. The K-means calculation technique involves clustering
acoustic emission data in two stages. At the first stage, the centroid of the initial
clusters should be randomly selected. Each data point is then assigned to a cluster
with the centroid of the nearest cluster. In the second step, the new centroid of
each cluster is updated to the average of all data points within the cluster

c =X, o|x, ~mO <|x, —mO v ja<j<k|
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mt =" 3 X, (2.4)

where
Cf¥ is the i-cluster;
mi¥ is the center of i-cluster at t-iteration.

Although this method is simple and requires little computational effort, there
is no guarantee that it will always produce optimal results. In other words, there is
a possibility that the algorithm is not partitioning the data correctly. This is due to
the random selection of the centroids of the initial clusters.

Overcoming this limitation can be achieved by adding a fuzzy parameter to k-
means, which is called fuzzy c-means, or by combining k-means with a genetic
algorithm, which is called genetic k-means algorithm. The process of clustering
using k-means algorithm is similar to k-means with the difference that in the said
procedure a membership parameter is defined which allows a data point to belong
to more than one cluster at the same time with different membership values
ranging from 0 to 1. To find the best clustering, for k- means algorithm needs to
minimize the objective function J (X; C)

k n a
J(X,C)= i:1§(7ij) HXJ _CiH2
Dz=|x,-c[ =(x,-c.J (X, -C,) (2.5)

where

yijis the membership parameter;
ais the fuzzier.

The conditions for the minimum of the objective function can be represented
as

. 2/(a-1)71

D,
m=1 ij

and
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Zn:(Vij )a
C, ="

| Zn:(Vij)

j=1

; 1<i<k. (2.7)

X

Genetic k-means algorithm is used to create the best clusters associated with
the centroids in new iterations by intersecting the centroids of previous clusters.

It should be noted that the Gaussian mixture distribution algorithm assumes
that the entire data set can be expressed as a weighted sum of several Gaussian
densities with unknown parameters p(x)

K
p(x)= > @, 9(X |4, %) (2.8)
k=1
~0.5-(X _/Uk)T
o\ X [y, 2, )= exp (2.9)
( ‘ ‘ k) (272')k‘2k‘ Z, (X _,Uk)
K
> o =1 (2.10)
k=1
where

g is the Gaussian density function with mean vector t« and covariance matrix 2;
X is data;
ax is the mixture weight function.

The algorithm first estimates random initial numerical values for the mean
vectors and covariance matrices of the density distributions. It then calculates the
weighting function values for all data points and mixture distributions. After this,
new mean vectors and covariance matrices are updated. This process is repeated
until the stopping criterion is met, which can be the maximum number of iterations

=N w X, 1<k<K  (2.11)

S =N o (X =) (X =)', 1<k<K 2a2)
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o, =N, N7, 1<k<K, (2.13)

where
Nk is sum of membership weight for k component defined as Nk = T

A frequently used signal processing method for recognizing types of damage
in composite materials is the wavelet transform, in which the signal is decomposed
into low-frequency and high-frequency components.

Depending on the type of wavelet transform, both the low-frequency and high-
frequency parts (batch wavelet transform) or only the low-frequency part (discrete
wavelet transform) will be decomposed into other levels until the original signal is
finally decomposed into several subcomponents with different frequencies. Then,
depending on the frequency of the subcomponents, one or more subcomponents
are correlated with specific types of damage. For acoustic emission type signals, the
packet wavelet transform is usually preferred over the discrete wavelet transform
because the valuable information is generally contained in the high frequency
components (e.g. fiber damage signals).

The frequency range of each subcomponent in the wavelet wavelet transform
tree is calculated using the following formula

[nfS 270 (n+1) f, 2‘(”1)] , (2.14)

where
fs is the acoustic emission sampling rate, index i shows the level of decomposition,
and index n shows the label of subcomponent, which is equalton =0, 1, ..., 2" for
decomposition level i.

The relative energy of each subcomponent, compared to the original signal,
can be related to the damage mode in the composite structure using a system of
equations

e = S 2.1

T=t{

pr i

1 2i—1

> YE

) (2.16)

where
E" is the energy of subcomponent n located in level j;
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fi" is the wavelet subcomponent;

t." and t;" show its time period;

P/ represents the energy percentage of the subcomponent respect to the original
signal.

An analysis of the effectiveness of the wavelet technique was carried out using
experimental results on acoustic emission [58]. The theoretical part included a
study of the shift in the spectral density of the signal during damage to a composite
sample, the use of entropy as a basis for selecting the wavelet transform of the most
effective form and, as a final stage, the implementation of this transformation to
identify damage to the composite structure.

The spectral density of the signal can be determined in the following form

S(f)=,A"" (Ne f “)_l , (2.17)

where
A is the signal amplitude;
N is the number of structural elements;
fis the frequency;
a, [, y are the constants.
Without loss of generality, S can be represented as a value inversely
proportional to the value f

S(f):%. (2.18)
Let's transform the value S
log[S(f)] =logy—alog(f). (2.19)

The characteristics of the signal and its shift can be classified by the slope
coefficient, which is determined by the coefficient a.

The shift in spectral density and signal characteristics based on different types
of noise is also used to analyze composite materials. Fluctuations recorded in these
systems have a low-frequency component. The term 1/f noise or flicker noise is
usually used for fluctuations of a specified type or shift.

The entropy of the waveform is used as the main identifier to select the
appropriate wavelet for analysis. For a signal having a random amplitude
distribution as {s3, s, s3, ..., S}, the generalized form of entropy Hs(S) can be written
as
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n

SROR) N o S

k=1

where
P(Sk) is the discrete probability distribution of the amplitude.

The generalized form of entropy defined in equation (2.20) can be described
as Rényi entropy. The value of the parameter a (a > 1 or a < 1) is related to the
distribution of the analyzed data. For the case a — 0 equation (2.20) is transformed
to obtain the maximum entropy or Hartley entropy

H,(S)=logn. (2.21)

Shannon entropy corresponds to the case a =1

H,(S)= > P(S, log [P(S, )] 222

k=1

And, accordingly, the Rényi entropy corresponds to the value a = 2

H(S)=-log {i[P(Sk)]Z}- (2.23)

k=1

The selection of the optimal wavelet for processing acoustic signals in this work
is performed using Rényi entropy. Maximum information about the waveforms in
their time-frequency domain and the distribution of spectral energy in different
frequency ranges is based on the selection of the best wavelet.

Waveform entropy is a measure of the randomness or instability of the
waveform and therefore it is safe to assume that a lower entropy value determines
the stability of the acoustic waveform. In addition, the case of maximum energy can
be analyzed using certain wavelet transforms of the energy coefficients of the
acoustic signal. The mathematical form of these trends is the relation

(2.24)

where
Ewr is the energy coefficient of the waveform measured using wavelet transform.
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A brief description of the procedure for calculating the quadratic Rényi entropy
can be expressed as follows. The Ewr and H(S) values are calculated using the
discrete wavelet transform.

The acoustic waveform f(t) can be expressed as follows

f(t):{Sq,Sz,...,Sn}T, (2.25)

where
nis the length of the waveform.

If the waveform f(t) is decomposed using the wavelet y(t), then the
deformation wavelet transform can be expressed as

WT, = f(t)w,(t), (2.26)

where
jis the number of the selected wavelet.
The result of the wavelet transform is the operator relation

\/\/'I'j = {a)tl, wt,,..., ot }T. (2.27)

The energy factor Ewr is calculated as follows

n
2
Eur =Z‘a)tJ k‘ . (2.28)
k=1
The discrete probability for calculating the quadratic Rényi entropy is
2
wt,
p(x, )= n‘ | -~ (2.29)
W,
i=1

However, the choice of the value of 7 must be carried out quite accurately,
because this quantity represents the coefficient of entropy and energy, which can
generally be measured from the transient and unstable waveform of the acoustic
signal.

The wavelet transform uses 3 wavelets to decompose the acoustic signal for
three different levels N. In this case, the spectral energy with the number of
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components equal to C = 2V =8 is necessarily obtained. Namely, the functional
meaning

WPT ; = f(t).w(t) (2.30)

J

corresponds to form

WPT, :y\/vj,l,wjlz,...,wj,8

) (2.31)

where
W, is the spectral energy of the waveform distributed in the component C.

The wavelet that recovered the maximum spectral energy in the dominant
frequency band, max W, {for C=1, 2, ..., 8} can be selected as the best wavelet for
further analysis.

In this work, the best wavelet was determined from a list of 24 wavelets using
the procedures described earlier. The result of the decomposition of the acoustic
waveform was the appearance of eight components. Each of these components
contains the spectral energy of the signal distributed in the time domain of a specific
frequency band. Generally, in the CFRP material used in this research work, the
macroscopic damage modes can be generalized into matrix cracking, delamination,
matrix-fiber bond failure, fiber rupture, fiber pullout, and through-laminar
(interlaminar) crack growth.

The characteristic frequency ranges depended on the nature of the
deformation. In particular, cracking or delamination of the matrix results in a
characteristic frequency range of 150-200 kHz. At the same time, a fiber break
corresponds to a frequency above 300 kHz or 350 kHz. Three samples of composite
material A1, A2 and A3 were analyzed with test durations in the range (390 + 440)
s and the number of acoustic shocks, respectively, in the range (1.9 =+ 2.1)-103.

The wavelet family included Haar- (Haar k = 1); Daubechies- (db k, k=2, ..., 11);
Symlet- (sym k, k =12, ..., 18) and Coiflet- (coif k, k =19, ..., 23) Dmeyers- (Dmey k =
24); wevelets. The results of determining the average entropy, average energy, as
well as 77 values are presented, respectively, in Figures 2,3 and 4.

The diagrams display the results of assessing the critical values of the threshold
values for selecting the maximum and minimum parameters “threshold max” and
“threshold min”. In addition, for a series of wavelets, the distribution density of
wavelets in the min-max band was estimated using the formula

NWk - Zmin, max

O = N ) k=H,E, .7, (2.32)
Wk
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where

Nw is the total number of wavelets in the series;

2minmax iS the number of wavelets, the corresponding parameters are outside the
threshold values.
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Figure 2. H-distribution for wavelets according to the average entropy parameter.

The H-distribution is characterized by a sufficiently large number of wavelets,
the average entropy of which is outside the threshold values.

In particular, the following wavelets are located above the maximum
threshold: Haar- and Daubechies- (subseries db k, k = 2, 5, 15). Three wavelets,
namely: Daubechies- (db 3), Symlet- (sym 12) and Coiflet- (coif 19) have an average
entropy value less than the minimum threshold value (= 1.52). It is quite natural
that preference in terms of the min-max parameter for entropy should be given to
Daubechies wavelets with indices k = 2, 3 and 5. Accordingly, Haar- and Coiflet
wavelets should be excluded from further analysis in terms of the entropy
parameter.
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Figure 3. E-distribution for wavelets according to the average energy parameter.
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Figure 4. n-distribution for wavelets.

The average energy distribution is characterized by a maximum difference
2max - 2min = 4. Exceeding the maximum threshold for average energy is typical for
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wavelets: Daubechies- (db k subseries, k = 10, 11) and Dmeyers- (Dmey k subseries,
k = 22 - 24). Below the minimum threshold for average energy there is only one
wavelet: Daubechies- (db 2). Preference for the min-max parameter for the average
energy should be given to the Daubechies wavelet with index k = 2. Accordingly,
Dmeyers wavelets with indices k = 22, 23 and 24 should be excluded from further
analysis for the average energy parameter.

In turn, only one wavelet, namely, Dmeyers- (db 24), exceeds the maximum
threshold in the 77-parameter. Wavelets: Haar 1 and Daubechies- (db 2) are located
below the minimum threshold in the 7-parameter. The absence of repeating
wavelets from one, fixed series makes it difficult to select wavelets based on the
min-max parameter for the value 7.

As a result of the analysis, recommendations for choosing the optimal wavelet
having average energy, average entropy and 7-parameter, that satisfy the min-max
parameter should be pointed to Daubechies-wavelet (db 2). Ranking the
distribution density of wavelets within threshold values for average energy and
entropy, as well as the n-parameter, leads to the following chain:

@wn (=0.875) > @we (=0.75) > own (=0.71).

The generation and propagation of acoustic waves strictly depends on the
properties of the material and the specific configuration.

Using a transform with wavelets dmey, coif5 and coif4, acoustic signals can be
decomposed into 8 components WF;, i =1, 2, ..., 8. Processing of the responses of
composite structures to acoustic emission signals was carried out for each WF;
component separately for eight frequency ranges in interval 0 + 500 kHz. The width
of each subband was 62.5 kHz.

The dominant frequency of each waveform is different from each other.
Because each of these dominant frequency bands represents different types of
damage from which acoustic signals are emitted.

The spectral distribution of dimensionless relative energy was studied for
wavelets of three characteristic shapes, namely: Dmey-, coif 4- and coif 5 wevelets.
The results are presented in Fig. 5, 6 and 7.

The Dmey-wavelet recovered most of the spectral energy in all selected
waveforms. However, the coif5-wavelet recovered most of the spectral energy,
although it is not observed among all the selected 8 signals. When comparing the
spectral energy of a large number of signals, it can be noted that a significantly
larger number of signals that recovered most of the spectral energy occur when
they are decomposed using a dmey-wavelet. Therefore, dmey-wavelet is selected
as the best wavelet for acoustic signal processing in this study.
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Figure 5. Spectral distribution E'w = f (Fw) for dmey-wavelet.

Figure 6. Spectral distribution E’'w = f (Fw) for coif 4-wavelet.
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Figure 7. Spectral distribution E’w = f (Fw) for coif 5-wavelet.

The resulting spectral distribution for dmey- and coif-wavelets indicates the
predominant contribution of the WF k components (k = 1, 6). Based on these facts,
a separate analysis of the frequency dependence in matrix form was carried out for
WF k

E =" FOy, i=0,1..,5 k=16. (2.33)

The explicit form of the matrix coefficients « (i,k) is presented below for Dmey-
wavelt

-1 -2 -4 -6 -9 -12
a(i,k)=["3'2'10 ~12:10% 4.10* -3.10° 610° -510 j(2.34)

3.32 ~27-10% 49.10° -3.10° 6.10°% -5.10™%

for coif 4-wavelet:

1 -4 -6 -9 -12
a(i,k)z(_4 11100 -9-10* 3.10° -6-10° 4.10 }(2_35)

~-73 4.2.10% 19.10° -2.10° 4.10°% -3.10™
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and for coif 5-wavelet:

-2 -5 —6 -9 -12
a(i’k):(—m 22107 9-10° -1.10° 4.10° -3.10 j (2.36)

-6.7 29.10% 2.10° -2.10° 4.10°% -3.10™

From the above observations, it can be concluded that wavelet analysis of
acoustic emission response signals has the potential to identify the damage process
of composite structures since it can distinguish acoustic signals based on frequency
and time domain characteristics. However, it should be emphasized that these
waveforms are representative of load stages. Extracting the dominant frequency
band using the wavelet transform using the best wavelet still makes it possible to
distinguish the process of damage to the internal structure of two-component
composites, the inclusions for which differ in size by no more than an order of
magnitude.
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CHAPTER 3
DAMAGE IDENTIFICATION

The widespread use of polymer composites has created the need to develop
suitable methods and tools for structural diagnostics applicable to heterogeneous
composite materials. In connection with the increasing requirements for the
technical condition of composite structural elements in a wide variety of industrial
sectors, diagnostic methods [73 - 89] must meet a number of conditions: they must
be sensitive to various types of damage occurring in fiber composites and must
provide damage detection [90 - 102], possibly at an early stage of their distribution,
and, finally, they must allow testing under environmental conditions [103 - 112] and
be inexpensive. Among the works devoted to damage detection, studies Ashory,
Katunin, Yan should be highlighted.

Classical modal analysis, that is, the analysis of natural frequencies and modal
shapes, can only detect large damage, which is confirmed by numerous
experimental studies. Given the fact that polymer-fiber composites are
characterized by high variability in their mechanical properties, and the fact that
these properties can be influenced by many factors (for example, changes in
environmental and working conditions), natural frequency analysis is ineffective.
when assessing damage in these materials.

Continuous wavelet transform with vibration signal analysis was first used to
detect and localize cracks in beams. The first application of discrete wavelet
transforms (Daubeches wavelets) was aimed at detecting damage in composite
laminates.

Improving the sensitivity of wavelet methods for solving damage identification
problems is directly related to the high accuracy of assessing the presence and
position of damage. In particular, the technique of using the zero-order energy
moment to identify damage based on continuous wavelet transforms using 8th
order Daubechies wavelets is quite popular. B-spline wavelets are used in the
development of discrete wavelet transform-based algorithms for identifying
damage in composite beams and plates. Despite the limitations of the discrete
wavelet transform, where only compactly supported orthogonal wavelets could be
applied, the application of B-spline wavelets shows the highest sensitivity to
damage compared to all other compactly supported orthogonal wavelets.

Improving damage identification algorithms also involves the use of auxiliary
methods. In particular, researchers have widely used a damage detection algorithm
based on continuous wavelet transform supported by artificial neural networks.
This technique is used to detect delaminations in composite beams. The 2D discrete
wavelet transform, together with particle system optimization in composite
structures, constitutes a two-stage damage detection mechanism. In turn,
structural diagnostics often rely on discrete wavelet transform using B-spline
wavelets. This technique can be improved by using fractional B-spline wavelets.
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Qualitative analysis of these wavelets makes it possible to select their most
appropriate parameters in order to increase the sensitivity of the method.
Fractional wavelet transforms allow for a combination procedure with a genetic
algorithm, which was used to select the optimal parameters of fractional B-spline
wavelets.

The continuous wavelet transform is based on the integration of square-
integrable functions f(x) € L2(R) into Hilbert space. This transformation can be
viewed as the convolution of a wavelet function ¢ (a, b), wherea € Z,a >0 and
b € R denote the scaling and shift parameters, respectively. The transformation can
be represented by the following equation

W f(ab,s)=57 | f(s)z//(XT_bjdx, (3.1)

—00

where
Wfla, b, s) is a set of wavelet coefficients.

It should be noted that the continuous wavelet transform does not have such
a strong restriction on the type of wavelet function, i.e. these functions can be
almost arbitrary. The only condition that must be satisfied is the admissibility
condition

Jw(ab)dx=0. (3.2)

In the vast majority of cases, wavelets can be characterized by the following
points

[ x“w(x)dx =0. (3.3)

Representing a discrete transform as a signal with variable resolution forms a
descending sequence of function spaces V; = L? (R)

N;cV,cV,cV,cV,,cV,cV.,. (3.4)

which have the following properties

Jv;=LR). [V;={0} 35)

jez jez
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The orthogonal complement in the space V; for anyjin the space V;-; is a space
with an orthonormal base ¢ i, j, kK € Z. Thus, there is a constraint on the wavelet
and the scaling function: they must be orthonormal or (semi-, bi-) orthogonal.
During the discrete wavelet transform, the signal f(x) is decomposed into a set of
approximation coefficients and a set of detail coefficients at each level of
decomposition, the signal can be represented in the following form

f(x)=

o0
0
f2p(x—n), (3.6)
N=—0o0
where
@ (x-n) denotes the scalable function translation procedure.
The discrete wavelet transform decomposition can be represented by a set of

filters. In this case, the resulting sets of approximation and detailing coefficients can
be represented in the form

fn(j) (x)= > ﬁ2n—| fl(j_l) ) (3.7)
|

4% (x)= Y. Gonr 40, 59
I

where
h, g are the impulse responses of the low-pass and high-pass filters, respectively.
The downsampling procedure during the discrete wavelet transform causes
the resulting sets of coefficients to be half the length of the original signal in the
case of single-level decomposition. In turn, as a result, with each subsequent level
of decomposition, a half decrease in the resulting length of the sets of obtained
coefficients is observed.
The stationary wavelet transform can be considered as a redundant transform.
Therefore, the downsampling procedure is omitted during decomposition.
Therefore, expansion relations (3.7) and (3.8) take the form

0 ()=2h 107, 39)
|

di? (x)=2>.g,d' "%, (3.10
I
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and the length of the resulting sets of coefficients remains the same as for the
original signal.

Lifting wavelet-transform is a two-stage wavelet transform that starts with a
decomposition based on the classical discrete wavelet transform and then
preliminarily performs a lifting procedure. Lifting is based on the prediction of one
part of the signal based on a set of filters applied to that part, in accordance with
the fact that these parts are correlated. The decomposition procedure represented
by filters is as follows

() — (i)
fjoj,ko (X)_Izhjo,ko,l fjoj+1,| ) (3.11)

€)) _ (j)
djoj,ko (X)_Izgj()’konjojﬂ,l' (3.12)

This operation causes problems in the frequency domain. To resolve this issue,
an update procedure is performed that updates the first signal based on the second.

Fractional scaling functions do not have compact support and are not
symmetric unless their order is integer. This means that they could not be used in
discrete wavelet transforms. However, to avoid this problem, the fractional wavelet
transform algorithm can be constructed based on Fourier series. The general
difference between discrete and fractional wavelet transforms is that the detailed
wavelet transform is defined by fractional order filters. The orthogonal high-pass
filter and low-pass filters in the z-domain for the fractional wavelet transform are
as follows

_ A2a+1 jo
Hf(ejw): H a(ejw) A2a+1((ee2ja))) (3.13)
G (el”)=eoH%(—e 1) (3.14)
where
i a+l
He(el”)=~2 “%J (3.15)

it is a non-orthogonal scaling filter for fractional B-spline wavelet and



39

A“(e ) e ”“”jﬂ X)B%(x +n)dx (3.16)

Ne

is an autocorrelation filter B-spline;
Pis a scaling factor;
a means fractional order of the scaling function.

Let us consider the propagation of a pulse load wave of two types, which
simulate the peak change in the stiffness of a composite material in the form of a
rectangular beam. The first type of load is a narrow peak band sinusoidal base

£(t)=P| H(t)-H _% | 1=cos| 21t |sin(2x .1), (317

0 Np

where
H (t) is the unit step function,
fois the constant frequency,
Np = consti, B = consty,
P=B-N.
The second type of load is a broadband pulse of a triangular shape, which can
be represented in the following form

F(t)=P[H()-H(t—A )] {1—@ _0.5A1)Signg.;£1'5Al)}, (3.18)

where
A; = const.

A narrowband pulsed load was used to demonstrate the non-dispersive
characteristics of this type of load. The definition of narrow and wide bandwidth
refers to the frequency spectrum of the signals and depends on the ratio of the
bandwidth to the center frequency.

It makes sense to use the wavelet approach to find the shortest arrival time
for various frequency components of the signal. The continuous wavelet transform
of a function is defined by the formula

1 % t—Db
ab ﬁ{of ( " jdt (3.19)
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where a > 0.
The kernel of the wavelet transform

Wap(t)= Jlaw(t_b) (3.20)

a

is determined by the shift and scaling of the mother wave v/ (t).

The parameter a represents the scale variable in the wavelet transform, which
is similar to the frequency variable in the Fourier transform. The value b represents
the shift parameter. In the time domain, the quantity @4 (t) is centered at b with a
spread proportional to a. In this study, the relationship between the frequency w
and the scale variable a is w = wo/a, where wy is the center frequency, which is the
dominant frequency of the mother wavelet. The function o can be viewed as a
window function in both the time and frequency domains, and we can change the
size of the window by changing the variable a to obtain a suitable resolution. This
multi-resolution is the main characteristic of wavelet analysis.

The wavelet function y(t) satisfies the admissibility condition, which means
that the integration Cy, must be finite

c, - | p (@)

y \a)\ dw < o, (3.21)

—0o0

where

P (w) denotes the Fourier transform of y(t).
For further purposes, we can use the Garbor function

2
“o

—~L 2 t% expliogt). (3.22)

The Garbor function has good resolution in both the time and frequency
domains.
The Fourier transform of the Garbor function can be represented as
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. 2w |y @ )
l//g(t)zﬁo.% w_eXp —%(a)—a)o) , (3.23)

where
y=m(2/In2)°, ao=2r.

The Garbor function can be thought of as a Gaussian window function
centered at t = 0 in the time domain and at w = wo in the frequency domain.

If the Fourier transform lﬁ(a)) has a center at w = wo, and, accordingly, y(t)
is centered at t = 0, then the transform l/?a b (a)) has a center corresponding to w

= wo/a in the frequency domain and a center corresponding to b in the time domain.
Fourier transforms allow us to obtain the following relations

= [w(t)exp(-iot)dt, (3.:24)

Vap(@ IIW[ bjexp(—ia)t)dt. (3.25)

Considering this ratio, we can get
Vap(@ f jz// (r)explio(ar +b)ladr =

= Jay(am)exp(—iwb). (3.26)

Therefore, the maximum conversion value 1/}(aa)) corresponds to an/a.

Let us consider the propagation of wave group velocity pulses. The transit
times of samples made of composite materials, determined by the wavelet
transform, are related to the group velocities. In general, the deformations at
different points in response to a broadband load consist of a range of frequencies,
so the wave can be assumed to propagate in an arbitrary direction, for example, x
as follows
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U(X,t):ZCj exp[—l(ij—a)jt)], (3.27)
j=1
where
ki is the wave number corresponding to each frequency @ of the j harmonic
component.

Let us consider two harmonic waves of equal unit amplitude and several
different frequencies w; and w;, propagating in the direction x

u(x,t)=exp[—i(kx — at)]+exp[—i(k,x—w,t)].  (3.28)

The restrictions imposed on the wave numbers have the form

m:kc, ki—Ky _ Ak (3.29)
2 2

o, + @, - w,, L N, (3.30)
2 2

Then equation (3.28) can be written as

u(x,t)=exp[—i(ke + AKX — (@ +Aw)t]+
+exp[—i(ke —AK)X — (0. —Aw)t]=

= 2cos(Ak x — Awt)exp[—i(k.x — ao.t)]. (3.31)

Formula (3.31) describes the base wave with frequency wc¢ and phase velocity
wc/kec and modulation cos (Akx - Awt) with frequency Aw and propagation speed
Aw/Ak. This wave can be described as a sequence of moving shocks (or groups, or
wave packets). Phase and group velocities are designated cr and ¢y, respectively.

The relationships between these velocities correspond to the following
situations: A) cg > cp: wavelets appear in front of the group and disappear at the end
of the group; B) ¢y < cr: wavelets accumulate at the end of the group, move through
the group and disappear at the front.

Now we can analytically specify the time it takes for the wavelet transform to
pass through a sample of a composite material. The wavelet transform u(x,t)
provided that the Gabor wavelet is used as the mother wavelet, can be written as
follows
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1 0
WT,(x,a,b)= T'[o ( jexp i(k X — o,t)]dt +

%Z ( jexp[ i(k,x —m,t)]dt =
:%exp ik,x) jl//g( abjexp(la)l )dt +

1 t-b
+Eexp ik, X fl//g( N jexp(la)z )dt. (3.32)

Let us introduce the following notation: r7= (t - a)/b.
Then for the wavelet transform WT, (x, a, b) we can write:

WT,(x,a,b)= %exp |kxjgyg Jexpliw,(na+b)ladn +

%exp(—ikzx)_m (n)explio, (a-+b)Jadn =

aexp[—i(k,x— b j v, (1)explioma)dn +

+~Jaexp[—i(k,x —w,b) ng Jexp(iw,na)dn =

a exp[— i(klx - a)lb)]'ﬁg (aa)l)+

+~aexp[-i(k,x—w,b)ly  (aw,). (3.33)

Now we can enter variables:
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o =ob-KX, @, =m,b-k,X. (3.34)

Then we will get
WT, (x,a,b) = Valy, (a, expli,) + 7, (2, Jexplio, ). (239

WT, (x.a,b) =Va | [y (aey ) + [ (2, ) +

0.5

+ 27, (aw, o (am, Jcos(p — 9, ) [ =
= [y (am)] +[7, (@e, ) +
+2y7,(am 7, (aw, )cos(Awb— Ak x) . (336
The following formulas should be considered valid

v,(aw)=zy,(am,)z v (am. ). (3.37)

In this case we can write:
WT,(x,a,b) =a ¢ (aw.)-[L+2cos(Awb - Ak X)]. (3.38)

Calculating the peak values for 1/3g (a, wc) and [1+cos(Awb - Ak x) ] allows us
to obtain the peak value for the wavelet coefficient. The value tﬁg(a, wWe) is

centered on the value @ = avw/a. Therefore, the argument in brackets will be
maximum at Aw/Ak = x/b or

(3.39)

Therefore, we can conclude that the time shift b, maximizing the wavelet
transform coefficient, should be the arrival time of the envelope wave at the circular
frequency w, related to the scale a by the relation w= an/a for the coordinate x.

The results of calculating the arrival times of wavelet transform pulses of
recoded signals are shown in the following Figures 8 - 9. Arrival times 7’ and
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frequencies f’ are given in relative units for characteristic values = 103s and fo =
9.5-10° Hz. The ratio of the dimensionless characteristic size of inclusions to the
average distance between the nearest particles of a two-component composite
(samples: X1 —X3,X=A, B, C) varied intherange r’ e (1.6 —2.2).

4,5
,.cl

4

—4—B1

—ad— B2

315 —— B3
3
2,5
2

9 25 45 65 85 f 105
1

Figure 8. Spectral distribution of arrival time for a two-component
composite withr' =1.9.

Solution of the inverse problem, i.e. estimating the location of a point load
requires drawing up a set of nonlinear equations. Direct computational methods
lead to difficulty in determining the location of the point load, the direction of the
scattering waves, and the magnitude of the group velocities. Therefore, it is useful
to study wave propagation in samples consisting of two-component composite
materials and dispersion relations, as well as to find the relationship between the
direction of propagating waves and velocities.

It follows that this technique requires a detailed check of the dispersion
relationship in a plate or beam of a composite structure. Plate theories are the most
common methods for deriving dispersion relations. One approach to solving the
problem of wave scattering in plates is to represent the scattered field by expanding
the wave function. To represent the scattered wave field as a wave function
expansion, it is necessary to establish the eigenfunctions of displacement and
voltage. Dispersion equation for a homogeneous isotropic plate using elasticity
equations.
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Figure 9. Spectral distribution of arrival time for a two-component
composite with r' =2.2.

To represent the scattered wave field as a wave function expansion, it is
necessary to establish the eigenfunctions of displacement and voltage.

Let us consider the dispersion wave relations in the plates according to Midlin's
theory. Midlin's theory takes into account the effects of shear and rotational inertia.
Here we consider a composite plate in the x-y plane without external loads. It is
assumed that the displacements have the following coordinate components

u(x,y,z)=u’(x,y,t)+zy (x,y,t) (3.40)
vxy,2)=v(x, y,t)+ 2y, (X, y,t) (3.41)
w(x,y,z)=w’(x,y,t), (3.42)

where

u, v, w are displacements of a point at (x,y,z) on the plate;
u°, V*, w? defines the displacements of the mid plane;

W, Wy are cross section rotations.



47

The generalized in-plane stress resultants (Nx, N, and Ny,) and the generalized

bending moments (Mx, My and M,y are defined as in classical plate theory in vector
form

|
Il
=2 Z2 =2

M
y [ M=iM,+. (3.43)
M

The relative dimensionless shift relations have the form

“oox Y 6y'7xy oy Ox '

Now we can rewrite the equations (3.44)

_ .0
&, =&, T1IK,

(3.45)
E, = 80 + 7K 3.46
y %y y (3.46)
)
Yy = Vxy + ZKXy, (3.47)
where
&, &, & are strain components;
superscript O denotes the mid plane.
Strain (&9, §° and ,°) and curvature (&, &y and &) can be defined as
0 8U0 0 GVO 0 5U0 81/0
Ex = Ey = Yy = + (3.48)
OX oy oy ox
0 oy 0 oy
K, = Vx , K, = L Ky = Vx +—r (3.49)
OX oy oy OX

For further transformations it is necessary to introduce the following notation
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gX KX
E=1¢,7, K=1K, (3.50)
6‘Z KZ

Then the ratio of mechanical stress and deformation in a sample of a two-
component composite has the form

N A B] (¢
= . (3.51)
M B D| |x

where submatrices A known as extensional stiffness, B, bending-extension stiffness,
and D bending stiffness are defined as

A A Ag By By By
A=A, Ap Ay B=|B, B, By
[As Ay Ags Bis By Bes
Dy Dy, Dy
D=D,, D, D,/ (3.52)
[Dis Dax D |

where

N —
D; =%;(Qij )k (Zf —Zk3_1). (3.53)
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And (jij are the transformations of stiffness matrix Qj:

Q,, = E, Q, = Vi, Ey
17 127
— ViV —VioVy
E
_ 2 _
Q,, = 1 Qg =Gy,
— V1oV

Qu=06pn Qi =05 Qi =0Cyu-0;. (3.54)

Applying the definition of the resultants of the transverse force, we obtain an
additional constitutive relation that includes the transverse shear.
Let us introduce the parameter k into this defining relation for the transverse

shear and obtain
{qyz} _ K |:A44 A45:|{7/yz}’ (3.55)
qxz A45 A55 7xz

where interlaminar shear strains are determined by the relations

o ow_ow
P =0 T ox TV x

A, (3.56)
v =5 oy Yy oy '

The shear correction factor (k) is chosen to be 5/6. Using the fundamental
equations of motion in terms of resultant stresses and moments, we have

ON, ON,, o°u’
+ = ph >
OX oy ot

(3.57)

oN OoN 821/0
oXx oy ot*

(3.58)
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al\/Ix oM Xy azl//x
™ + o -dq,, = og; (3.59)
oM, oM 0°
. Y 4+ p L —q, = (’;[/;y (3.60)
X y
a 2

ox oy ot*

where | is the mass moment of inertia.
Using the equations of motion and previous formulas, we can obtain the
following relations

22u° 52u° 52u° o%/0 o%,/0
+ +
AL o2 A’16 o0y Aea A16 (A12 Aee) ox0y
2.0 2 o2
+A268—V2+Blla—"yzx+2816%+B668"Vz"+B16 W2y+
oy OX OXoy oy OX
2 2 2.0
W o'y o°u
B.,+B +B Y = 3.62
( 12 66)8X8y 26 ayz P ot? (3.62)
azuo 82u0 62 0 82 0 62 0
A PYE (A1 A66)6X8y A ay A66 +2A 8X8y
0%V’ o0’y 0%y, O’y o’y
Azz 2 BlG X2 (Blz + B66) X Bzes?"‘ 866 zey T
2 2
P 2.0
2B, . lg;/’ +B,, aw?_y =ph a@tvz (3.63)
X y



o°u° o°u° o°u° o%° o%°
B ey 2Bg % + By 8—y2 + B PYE. (Blz 866)6)(
0% 0%y, 0%y, %y, o’y
+By——5 +Dy _%”2 + 2Dy 2 ¥ Dee —l/jz Djs— 5 +
oy OX OX oy OX
2 2
v o0y
+(D12 + D66)6X—a;; D26 Wzy
oW oy
—k +— [+ A +—||=1 X 3.64
|:A55(Wx aXJ 45(‘//y ayj} o2 (3.64)
o°u® o°u’ o°u® o%v° o%v°
Bis PN +(812 BG6)8X + BzaWjL Bee PYE: +2By ox
ov® | 'y, Oy, Oy,
+B,, V"' Dig o2 +(D12 + D66) ox + Dy —5+
0° o° 0°
+Dgg Y 42Dy Y 4 Dy
OX OXoy oy
oW oW 0%y
—k| A +— |+ A —||= Y (365
{ 45(‘//x ﬁxj M(Wy @)/ﬂ o2 (3.65)
2 2
k| A 81//X+6\;v A, 8"”X+ l/jy+28W +
oX  OX oy OX OXoy
oy, o°w 0°w
+ Ay, o + oy =p el (3.66)
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In the case of harmonic wave propagation, it is further assumed that the
displacement functions take the form

(UO,VO’WO’WX,Wy):(U,V,W,‘PX,‘Py)-

-exp[i (kxx+kyy—a)t)] : (3.67)

where
the capital letters are complex-valued constants;
kx, ky are the x and y-components of the wave vector, respectively;
wis the circular frequency.

Substituting equation (3.65) into the equations of motion (in particular, into
equations (3.60) — (3.64) for a laminated two-component composite gives the
following generalized eigenvalue problem:

Kyp Ky K Ky Kg
Ko Ky Kyu Ky Ky
K13 K23 K33 K34 K35 B
K14 K24 _K34 K44 K45
K Ky =Ky Kg Ky
ph 00 0 O} =
U 0
0 ph O 0 0 v
0 0 ph 0 0 0
—w? h3 W 2 =20;, (3.69)
o o o 2 o
12 Wy 0
3
0 0 0 Ay L0
| 12 |

where p is the density that is assumed to be the same in all layers of a composite
material sample;
h is the thickness of the laminar composite sample.
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The Kj; coefficients depend on the wave vector and stiffening elements of the
laminar composite sample and are determined by the following relations

Ky = AkZ +2A6KK, + Agk?,
K, = Alakf "‘(A12 + A66)kxky + Azakir Ky =0,
Ky = Byikg + 2Bk K, + Bk,

K, = Bk? +(B,, + By, )|<X|<y + Bzeki,

K, = Agky + 2Ak K, + AykS, Ky =0,
K, =Bk +(By, + Bgg KK, + Byky,
Kas = Bgky +2Bygk K, + Byky,
Kas = Ackk? + 2A,5kk K, + Ay kk?,
Ky =—i(Asskk, + Ak, ),
Kas = —i(Aykk, + Agkk, ),
K = Dyky + 2Dk Kk, + Deky + Agk,
K = Digky +(Dy, + Dgg Ky K, + Dk + Ak,
Kgs = Dgsky + 2Dk K, + Dyky + Ayk. (3.69)

For given wave vector components kx and k, the generalized eigenvalue
problem of equation (3.66) gives five eigenfrequencies, which are real w, since K is
a Hermitian matrix. In addition, it should be borne in mind that the elements K34
and K3ss are purely imaginary quantities.
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Knowing the dependence of w on kxand ky, the phase and group velocities are
determined from the relations

(3.70)

) do
CP:E C, =

° dk
For the convenience of further calculations, the dimensionless phase velocity

and circular frequency are defined as

o | p
C, =— | — 3.71
P = (3.71)

(3.72)

The first three modes obtained in the calculations are acoustic modes, which
can also propagate at lower frequencies. The lowest of them corresponds to the
bending mode, the second to the planar shear, and the third to the tensile mode.
The frequency at which the other two modes, known as optical modes, begin to
propagate is called the cutoff frequency, and these modes are related to ¢x and ¢y,
which are the rotations of the cross section.

In this study, the first acoustic mode, which is the lateral deflection W, was
analyzed and its group and phase velocities are shown in Figures 10 to 13 for
composite plates. For composite plate type 1 we have three axes of symmetry
around & = 0°, 459, 90°, and for composite plate 2 we have two axes of symmetry
around 9 = 0% 90° and this fact is clearly shown in these pictures.

The phase velocity for a composite of the first type ceases to change
significantly at @s = 1.2-10°. The phase velocities of the second type composite
sample practically reach saturation at ax = 1.5-10°. The numerical value of the
saturation frequency for group velocity increases compared to the case of phase
velocity and is ax = 3.2-10° for the first sample and @ = 4.3-10° for the second
sample.

The components of the wave vector satisfy the equation

@ = arctan k—y , (3.73)

X
where
0 is the wave propagation angle.
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Figure 10. Phase velocity of the first acoustic mode in composite 1.
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Figure 11. Phase velocity of the first acoustic mode in composite 2.



4

)

0
45

F N TN TN N SN TR NN S

—a
——t
3

56

1111!111111111'111111111

S S — o T O VA O S OO T B S Y [ () oy Y (] T O ey N D O [ Y s ) Y (o Y o o Y V) )

Figure 12. Group velocity of the first acoustic mode in composite 1.
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Mathematically, the wavelet transform can be understood as the inner
product of the recorded signal and the wavelet function in a function space that
measures the similarity between the waveform and the wavelet function. When the
parameters a and b are the values to which the waveform and wavelet function
best fit, the calculations yield the maximum value of the wavelet coefficient. The
time shift that maximizes the inner product of the wavelet function for scale a and
the signal recorded at each sensor is the arrival time associated with the frequency
associated with that scale, the relation

Wy
w=— o f=—t-, (3.74)
a At a At

To estimate the location of the applied load, it is necessary to use the arrival
times of the dominant frequency content of the signal, specified using the
presented wavelet approach, and also formulate a system of nonlinear equations.
For the case of a composite plate, the velocities from the dispersion relations are
used.

In addition, it is necessary to use a system of nonlinear equations and solve it
with respect to the unknowns ;. Without loss of generality, the point load is shown
within a triangular sensor arrangement. The same equations will apply for the non-
triangular impact load case, taking into account the convention of the signs of the
angles. Having found the time of arrival at each sensor S; for frequency f, we can
find

At (F)=t,(F)-t,(f)=— 1 — 1 .79

At (F)=t,(F)=ty(f)=— i 2 5

where
liis the distance between sensor i and the impact location;
At is the arrival time difference between points j and j;
tiis the arrival time to point j;
Cyi is the group velocity in the & direction.
The position of the composite material sample and the fixation of the wave
arrival registration points is determined by the triple of angles &, 8 and &; for which
we can write the relations

l,sin(8,)=1,sin(6,) (3.77)
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|, cos(6,)+1, cos(6,)=S,S,
from here we get

o 5,5,
" sin(6,)-[cot g(6,)+cot g (6, )]

515,

2= sin (6, )-[cotg(6;)+cotg(6,)]’

where
SiSjis the distance between points i and .
By writing the same equations for /5, I3, 0, and 65, we have

S,S,

sin(SA2 —92)- [cot (6, )+ cot g(§2 -0, )]
5,5,

sin(6’3).[cotg(83)+C0tg(§z—6'2)] |

’ —
I, =

I, =

Let's substitute equations (3.77) —(3.80) into equations (3.73), (3.74)

1 1
cot g(6,)+cot g(6, )(sin(ﬂ)cgl )

B 1 AL,
sin(8, )cg,

SIS2

1 1
cot g(6, )+ cot g(§2 —92) Lsin(SA2 —02) cg,

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)
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— 1 Aly _ 0, (3.84)

sin(6;)cg, ) $,S;

where

cotg(6,) = S,S,sin(é,)-[cotg(8,)+cotg(b,)]
’ 5,S,sin($, -6, )

—cotg($, -, )(3:85)

Solving the resulting set of nonlinear equations allows us to find ¥: and 0.,
from which we can determine x, and y,, i.e., the coordinates of the load location for
each frequency f.

The results obtained for samples made of two-component composite material
are shown in Table 1. The given values indicate a decrease in arrival time with
increasing frequency due to an increase in group velocities. Moreover, the results
are in good agreement with the actual location of the applied load in the case of an
anisotropic plate. Note that the error in estimating the coordinates of the load
location is less than 1.2% for all different types of loading of both isotropic and
anisotropic samples.

Table 1. Spatial distribution of applied load for composite plates

Narrow
, Wide Band Load, 103 Hz Band
Composite Load,
10° Hz
9.6 15.8 23.6 31.6 39.6 100.4
sample 1 x | 0.4877 | 0.4847 | 0.5025 | 0.4881 | 0.4877 |0.5025
y | 0.6864 | 0.7059 | 0.7002 | 0.7040 | 0.6864 | 0.7002
sample 2 X | 0.4847 | 0.5025 | 0.5025 | 0.4881 | 0.5025 | 0.5025
y | 0.7059 | 0.7002 | 0.7002 | 0.7030 | 0.7002 |0.7002

It should be noted that the processed sensor signals can differ significantly
from the numerical simulation signals, and this is due to the fact that the data is
often distorted by measurement noise. Let's consider the effect of noise on the
results. An analytical consideration of the influence of noise on the results obtained
can be presented as follows

y(t) = x(t)+n(t), (3.86)
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where

x is the original signal;

y is the noised signal,;

n(t) is the measurement noise which can be expressed as

n(t)=rms-s-r(t), (3.87)

where

rms is the root mean square of the signal x;

r(t) is a function which generates arrays of random numbers whose elements are

normally distributed with mean 0O;

sis the noise level, i.e. a quantity inversely proportional to the signal-to-noise ratio.
Adding a certain percentage of white noise to the system and denoising the

signal using the usual moving average method allows the described method to be

used to determine the location of the impact. The results were tested for different

noise levels (2% and 5%) and are shown in Tables 2 — 4.

Table 2. Spectral distribution of arrival time of noisy signals (composite type 1)

Frequency 23.8 31.8 39.8 23.8 31.8 39.8
Point Arrival times, 10* s
Level 2% Level 5%
S1 2.74 2.59 2.49 2.65 2.455 2.73
S 3.025 2.97 2.83 3.015 2.805 2.995
S3 2.435 2.435 2.2 2.31 2.275 2.455

Table 3. Spectral distribution of arrival time of noisy signals (composite type 2)

Frequency, 23.8 31.8 39.8 23.8 31.8 39.8
103 Hz
Point Arrival times, 10% s
Level 2% Level 5%
S: 2.725 2.485 2.81 2.725 2.575 2.82
S 3.05 2.85 3.165 3.045 2.84 3.21
S3 2.45 2.33 2.57 2.405 2.395 2.545
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Table 4. Spatial distribution of applied load for signals contaminated by noise

Frequency,
10° Hz 9.6 15.8 23.6 31.6 39.6 100.4
Location, 102 m

Composite Noise level 2% Noise level 5%
sample 1 x | 0.5176 | 0.4976 | 0.4980 | 0.4985 | 0.4976 |0.5176
y | 0.7140 | 0.6898 | 0.7130 | 0.7199 | 0.6898 |0.7140
sample 2 x | 05123 | 0.4978 | 0.5125 | 0.5128 | 0.5170 | 0.4981
y | 0.7106 | 0.6966 | 0.7106 | 0.7170 | 0.6897 |0.7130

A general approach to solving the inverse problem of detecting sudden
structural damage in isotropic and composite plates can be formulated as follows.
The impulse load is the cause of the damage, then the numerical response data is
presented in matrix form. The deformation maps are subject to wavelet transform
analysis and, accordingly, the wavelet coefficient map of each signal is used to
estimate the arrival time of the flexural waves by determining the peak value of the
wavelet coefficients. The final stage is to determine the location of the applied load

using a system of nonlinear equations.

The spread of directions in which group velocities change complicates the
numerical analysis procedure. Therefore, to solve the problem, calculated group

velocities from the dispersion relations of wave propagation are used.
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CHAPTER 4
HAAR-WAVELETS

Haar wavelet methods, used to solve differential and integro-differential
equations, are known for their simple implementation as well as their ability to
capture local effects. Haar wavelets are generated from pairs of piecewise constant
functions and are not differentiable. In the case of differential and integro-
differential equations, the latter disadvantage can be overcome by regularizing
quadratic waves (for example, smoothing using interpolating splines) or by
expanding the higher derivative involved in the differential equation, namely, into
a series of Haar functions instead of a solution.

The Haar wavelet transform technique has been successfully implemented to
solve a wide class of problems covering solid mechanics, mathematical physics,
evolutionary equations, nuclear reactor dynamics, numerical integration of
multidimensional strongly and smoothly oscillating integrands, nonlinear
differential equations with nonlocal boundary conditions, as well as singular
perturbed two-point boundary value problems [113 — 122]. Among the analytical
works devoted to the use of Haar wavelets, one can point out the works of Kumar
and Majak. Experimental studies were carried out by Kim, Xie, Fan, Dai and others.

Fractional differential, integrodifferential and integral equations can be
considered as a challenging area of research for the development and adaptation
of numerical methods. In particular, Haar transforms are used to solve Volterra and
Fredholm fractional integral equations, as well as fractional order differential
equations involving harmonic vibrations. The Haar wavelet transform has been
adapted to solve partial differential and integro-differential equations, respectively.

A large number of both analytical and experimental works on the analysis of
structures made of composite materials were based on the Haar wavelet transform.
In particular, the free vibrations of a multilayer composite plate and the
delamination of a composite beam, respectively, were analyzed in sufficient detail.
The Haar wavelet transform allows one to study functionally graded structures. A
wide range of studies is devoted to vibration analysis of conical and cylindrical
shells. Vibration analysis allows one to generate a general approach to solving
boundary conditions.

It is known that layered composite shells of cylindrical, conical, spherical and
biconvex shapes are widely used in many fields of technology. Over the past
decades, many accurate and effective methods for studying the vibration
characteristics of cylindrical shells have appeared. A significant number of analytical
and experimental studies are devoted to the study of free vibrations of both conical
shell structures and spherical shell structures, as well as shell structures of double
curvature. However, many mechanical structures are made by combining individual
shells. Because these structures operate under challenging conditions and under
varying loads, it is important to clearly understand their vibration characteristics.
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Calculus of variations methods underlie the analysis of free vibrations of
various shell structures connected by conical, cylindrical and spherical shells. The
behavior of free vibrations of a coupled shell structure with an arbitrary boundary
condition is simplified by applying the Jacobi-Ritz method. In addition, with the
same method it is possible to analyze the free and forced vibration of a sealed vessel
associated with a volume that has a shape with a double curvature and a cylindrical
shell. A large amount of research is devoted to free vibration, which is associated
with a composite laminated shell.

Analysis of free vibrations of a connected composite layered shell of a
cylindrical-conical or cylindrical-spherical structure involves the use of the spectral
collocation method.

A local-global B-spline approach is used to analyze the vibration characteristics
of a conical-cylindrical coupled shell. The local-global B-spline can be extended by
using a wave solution in combination with a power series expansion approach. The
Fourier spectrum element method is used to analyze free vibrations of conical-
cylindrical spherical coupled shells with arbitrary boundary conditions.

Recently, because the Haar wavelet discretization approach has high accuracy
and computational simplicity, it has been widely used in vibration analysis of various
structures such as beams, plates, and shells. Therefore, the Haar wavelet transform
is applied to analyze the free vibration of double composite laminar structures. To
generalize boundary and continuous conditions, the artificial spring method is used.
Natural frequencies of laminar structures are subject to a detailed analysis
procedure.

Let us consider a theoretical model for the analysis of free vibrations of laminar
composite structures, the equation of motion of a coupled shell, and a discretization
method using the Haar method. Among other reasons and assumptions for this
model, it should be mentioned that the individual shells that make up the paired
shell are made of the same material and have the same thickness.

This model describes the behavior of a double laminated shell. The orthogonal
coordinate system of the laminated shell is fixed to the middle surface, which is the
geometric middle surface. In the meridional, circumferential and radial directions
(¢, 0, z) the displacement shells are u, v and w. The symbols R, and Ry denote the
radii of curvature of the meridian and normal surfaces of a doubly curved shell. The
distance between the geometric axis of the meridian curve CoC; and the z axis of
rotation is defined as Rs, Oy, and Oy - center points of the two main radii of curvature
(Ry, Ro).

The doubly curved shell contains elliptic, parabolic and hyperbolic shells, which
are commonly used in practice. The individual shells are connected by a continuous
state. The quantities @, 4, z;r serve as the basis for the coordinate system for the
left and right shells of double curvature, and the quantities x., &, zc allow us to
determine the coordinate system for the middle cylindrical shell, in which the
indices /, ¢, r mean left, middle and right shells in a paired shell, respectively. The
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displacements of individual shells in the direction ¢, 6, z are equal to ug, v¢, we (=
l,c,r). ltisassumed that both ends of the connected shell are supported by artificial
springs. There are three linear springs and two rotational springs at both end
boundaries, and the boundary conditions are determined depending on the
stiffness of these springs.

For an elliptical shell of double curvature, we can write the following relations

a’b?
R, ()=
’ \/<aZSin2(D+b2C032(D)3
a’ R
R = +—, a=R., b=L ., 41
o(#) Jalsin?p+b?cos’p Sing : N
where

a, b are the length of the semimajor and semiminor axes of the elliptic meridian,
respectively.
Besides

@, = arctan bR, @, = arctan bR, (4.2)
’ aJja’-R2) aja?-R? )

For a parabolic shell of doubly curvature, we can write

K k R
R (p)=——=—, R,(p)= +—S, 43
o(?) 2¢0s° ¢ o(#) 2c0sp  sing 3

where k is the characteristic parameter of the parabolic meridian. Specially,

2 2
k = u (4.4)
L

2R, 2R,
@, = arctan I ¢, = arctan ! (4.5)

For a hyperbolic shell of doubly curvature we can write
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—a’b’
R, ()= - (4.6)
\/(a2 sin? ¢ —b? cos? )

a’ R,
P)= 2 ain 2 2 2 ta ’
\/a sin“p—b°cos“ ¢ SINg

R,( (4.7)

where
a, b are the length of the semi-transverse and semi-conjugate axes of the hyperbolic
meridian, respectively. Specially,

. al
_\/Rz—az—\/Rz—a2 e
0 1
¢, = arctan bR, — Rg) (4.9)
a\/(Ro - Rs) -a’
¢, = arctan b(R, ~Rs ) (4.10)

a\/(Ro ~Rg)" -a’

In this paper, the structure motion equation of inversely coupled composite
laminated shells is obtained using first-order shear deformation theory. Using this
theory, the displacement of any point in the shell with index ¢ is divided into the
average surface and the cross-sectional rotation component

u-(,0,2,t)=u’(p,0,t)+2¢, (0,0,
Ug(go,é’, Z,t) = 02(¢,9,t)+ Z¢(p,§((o,9,t)

a)g(qp,é?,z,t): a)g(go,é’,t), (4.11)

where
usl, v°, w2 are the displacements along the meridional, circumferential and radial
direction at any point in middle surface of shell with index ¢;
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@gc and @g are the rotation ones along #and ¢ direction.
Deformations at any point of the shell with index { can be determined through
displacements and rotations of the middle surface as

_ &0 0
Epc =€pc T LUy €or =€0r T LYo,

0 0 0
Voo =Vooc T Zpocr Vore Voror Yore =Vprgr  (412)

where

&y, Egcand yp9c denote the normal and shear strains at any point of the shell with
index ¢;

Y&, and yg,c denote transverse shear strains;

£0,c° 0% and 7,0, denote the meridional, circumferential and shear strains in the
middle surface of the shell with index ¢;

Ya6 yocand ygac present the mid-plane curvature and mid-plane twist changes,
respectively;

Yor,c° and g, % denote the transverse shear strains in the middle surface. the
membrane strains of middle surface are defined as

0 18u§ 02 OA a)g 0 1805 ug aB+a)2

Eos = + €9 =
Adp, ABOO, R, Bo6, ABdp, R,,

7/ A 5 ﬁ B 8 i Py 1 a¢(pg ¢9,g OA
0.0 — ’ ‘4
< B0, A Adp.| B )F T Adg,  AB G,

P _1090;  Ppr B
7 B a6, " AB op,

V4 :é 0 Voo +E£ ¢6_§
"< Boo,\ A ) Adp.\ B

10w U’ 10w, v

0 ¢ "¢ 0 ¢ Y

Vorc = +¢¢,g; Yoz, = +¢9’§, (4.13)
Adp, R, Bad, R,,

where A, B are the Lam¢é parameters.
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The relationship between the resulting force components and the midsurface
deformation components is expressed as follows

[N 0.¢ 11 Ay A, Ag By By B ] ‘9(2,4
N 0.c A, Ay A B, By By & g,g
N 00,5 | _ A Ax A B By By 17 (29,4
M 0.0 By By, Bg Dy Dy Dy X g,g
M 0.C B, By By Dy D, Dy Zg,g

] M 00,0 | L Be By Be Dig Dy D _7((29,4 |

Q(p,é _ A Ay . ng,g
Qe,g A Ay 7/gz,§

(4.14)

The relationship between force components and deformation components
can be expressed through stiffness coefficients

13 k(-3 3) . -
D, :§ZQij (Zk+1—Zk), i,j=1,..,6, (4.15)

where (jijk are the elastic coefficients.

Haar wavelet series are used to discretize derivatives in the governing
equations of the entire system, including boundary and constraint conditions. A
number of Haar wavelets are defined in the region [0, 1]. Therefore, linear transfer
is necessary for the actual shell length region [0, L].

That is,
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The Haar wavelet series determines the higher order derivatives of the
displacement components, and the lower order derivatives can be obtained by
integrating this wavelet series. The higher order derivative of displacements in the
basic equations of motion and expressions of boundary conditions is of second
order. The derivative value can be obtained using the Haar wavelet series

T Sane, D-Son e

(4.17)

where
a;, bi, ¢ci and d; are unknown coefficients of the Haar wavelets.

The first-order derivatives of displacements and displacement functions for
transformation type U are written as follows

du ( ) dU,(0)

-3 aR O+

+§#+U§(O). (4.18)

Similar relations can be written for such types of transformations as V, W, @
and 6.
Let us write matrix forms for U

d2U
° =H,a+H,f,

2




where H, P1 and Pz are the Haar wavelet and its integrals defined as
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du

d—; =Pa+P,f

U, =P,a+P,f,

(&)
n ()
n(E),

.

0

0.

(&)
= .(52)
(&)

i

0

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)
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& 0
P,, = 5;2 O (4.25)
S 0

The following notations are used in the above formulas

~ U () )]
5

a=(a,a,,..,a,], f{dugé 0)'Ug(§0)}T

V. =, @V ) V)]

b=[b,b,,..b ], g= {dvg(%)’vg(fo)}T

=W )W) W DT

c=[c,c,...c.], h {dwf(f‘)),wg(go)}T

c=lo.(8) (&) (&)
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dmitodT k:{mﬂé_fd,@g(go>}T

0. =[0,(5).0.(&).0.()]

e=[e.e,,...e. [, Iz{d(@é—g"),@;(ﬁo)} , (4.26)

where
f, g h, kand/indicate the integral constants, which can be obtained by applying the
boundary condition.

The first order is the highest order of the displacements of the boundary
condition equations, and the derivatives and first-order displacements in equation
(4.18) are calculated at £=0and &= 1.

The discretization of the boundary conditions equation can be written in
matrix form as follows

dU dV,
dfb =Pya+Pyf, d—fb =Py,b+Py11g
W, _ Py1C+ Py, % =P, d+Py 1k
do
déb =P,e+P,;,/ (4.27)

U, =P,,a+P,,f, V,=P,b+P,,9
W, =P,,c+P,,h, & =P,d+P,k
O, =P_,e+P,,/, (4.28)

where notations are defined as follows
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b11 —

, Py =
P.. D pL@ - p@ | b 1

_{pl,l(o) p.,©0) - p,0) ] _F 1}
(4.29)

szzz{pz,l(o) pz,z(O) pz,n(o) P {50 1} (4.30)

p2,1(1) pz,z(l) pz,n(l)_' 2 51

The continuity equations can be expressed similarly to the equations for

boundary conditions

e Pea+P,f, ave _ P +P.g
de dg
dW dd,

dgc:Pc1C+Pc11h' dz =P,d+Pk

dO
dg

< =P, e+Py,/

Uc = I:>c2a + Pc22f' Vc - I:,czb + Pczzg
W_=P_,c+P,h, ®_ =P,d+P_)k
ec = c2e + I:’c22/'

where notations are defined as follows

. _{p&«» pia(0) - pf,n<o>}P _F 1
c11 — C c c , 1=
p1,1(1) p1,2(1) pl,n(l) 1 1

22 c2

pg,l(l) p;,z(l) pg,n(l)

p _{ps,l(O) p;,(0) - ps,n(O)}’P _FO 1]
g 1

(4.31)

(4.32)

(4.33)

(4.34)
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Thus, the equations of motion of entire systems of inversely coupled
composite laminated shells, including boundary conditions, are discretized using
Haar wavelet transforms and can be expressed in matrix form as

de I(dd Ad 2 Mdb Mdd Ad

K, K.||A, 0 0 ||A,

A, =[ab,cde], A =[fghk /T, (4.35)

where
b, d are subscripts that indicate the discrete equilibrium equations of motion and
the boundary conditions.

Numerical evaluations suggested that certain parameters, such as geometric
size, direction of reinforced inclusions, and composite material properties,
influence the free vibration of back-bonded composite laminated shells. First, a
convergence study is conducted to test the robustness of the proposed method.
Then, several parameters such as geometric size, fiber direction and material
properties are investigated at the natural frequency of the inversely bonded
composite laminated shells.

A comparison of the results obtained in this work (A) with the results of the
finite element method (B) is presented in the following tables for boundary
conditions of the type: C-C, C-F, S-S and C-S.

Table 5. Spectral distribution for a connected composite layered spherical-
cylindrical shell

C-C C-F S-S C-S

A B
332.58 | 332.06 | 66.67 | 66.20 | 314.58 | 314.58 | 316.15 | 315.83
364.77 | 366.14 | 97.02 | 97.13 | 320.62 | 321.05 | 349.82 | 350.50
378.72 | 380.01 | 124.97 | 124.85 | 346.62 | 347.17 | 361.36 | 362.21
455.70 | 454.72 | 126.26 | 126.16 | 442.53 | 441.44 | 447.22 | 446.18
449.04 | 494.92 | 208.83 | 208.89 | 478.98 | 479.15 | 488.06 | 488.88
494.64 | 495.24
555.62 | 555.84 | 302.51 | 303.13 | 555.62 | 555.43 | 555.62 | 555.63
643.65 | 643.94 | 317.45 | 317.23 | 635.77 | 635.82 | 638.70 | 638.83
676.34 | 678.14 | 320.77 | 322.85 | 660.25 | 661.23 | 669323 | 670.54
700.09 | 701.91 | 342.36 | 342.18 | 700.09 | 701.27 | 700.09 | 701.59
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Table 6. Spectral distribution for a coupled composite layered elliptical-cylindrical

shell
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—h
<

N

36.85

35.47

60.92

60.98

80.71

80.97

83.88

83.77

150.52

150.33

151.40

151.45

202.44

202.30

232.89

233.32

274.48

274.11

|
Blo|lo|N|jo|u|b|wiN(-|T

313.51

313.54

Table 7. Spectral distribution for a coupled composite layered parabolic-cylindrical

shell

C-C

C-F

S-S

C-S

—h

~

N

A

B

A

B

A

B

A

B

356.59

356.98

30.46

29.80

337.31

337.50

337.97

338.10

402.98

401.13

38.92

37.80

365.94

364.84

402.78

401.67

404.01

403.51

55.63

55.59

384.65

383.93

404.07

403.50

471.44

469.50

126.38

126.41

459.09

456.58

460.51

458.26

531.66

532.84

168.21

169.13

467.08

467.81

531.66

532.81

583.64

584.07

204.55

206.81

535.31

536.89

583.64

583.15

617.61

620.10

208.83

209.34

583.64

583.12

617.61

620.87

643.28

644.63

301.98

303.96

618.35

620.44

643.87

644.05

709.26

712.18

403.97

402.15

643.15

644.28

709.25

712.67

|
Blo|lo|N|jo|u|d|w N1

753.90

754.24

405.31

404.29

707.80

710.19

716.12

719.88

For ease of calculation, it is assumed that the individual shells are made from
the same laminated composite material and have the same thickness. The following
properties of laminated composites were used for calculations: E; = 150 GPa, E; =
10 GPa, 1£1=0.25, G12 = G13 = G23 = 5 GPa, p = 1500 kg/m?3, ar=[0°/90°].



Table 8. Spectral distribution for a coupled composite layered hyperbolic-cylindrical

shell
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C-C

C-F

S-S

C-S

—h
<

A

N

B

A

B

A

B

A

B

223.54

223.69

16.48

16.08

216.13

216.20

217.34

217.42

323.36

321.74

27.93

22.48

313.33

311.88

313.54

312.08

332.45

332.58

33.38

32.59

332.78

332.49

332.37

332.28

375.23

374.89

83.71

83.24

356.45

356.20

371.19

371.67

388.62

389.01

150.51

150.93

364.95

365.06

374.47

373.12

394.65

395.18

166.79

167.53

371.19

371.67

388.62

389.01

431.35

432.33

195.37

196.08

403.36

404.13

403.38

404.15

471.47

472.68

232.53

234.15

449.36

449.59

449.83

450.05

483.47

485.39

329.74

335.39

453.27

454.81

453.21

454.83

|
Blo|lo|N|jo|u|b|wiN(-|T

526.25

526.67

353.54

355.39

511.92

512.78

511.93

513.37

In all numerical results m denotes the meridional wavenumber and n denotes
the circular wavenumber. In addition, for convenience of expression, the

dimensionless frequency is introduced (2= @Rc(p/E2)Y>.

The following tables show the results of numerical calculations of the

dimensionless frequencies of some inversely coupled composite layered shells.

Table 9. Dimensionless frequencies for a three-layer elliptical-cylindrical shell:

0°%-90°-0°

Boundary conditions

S-S

S-F

E1-C

E2-C

E3-C

E1-E1

E2-E2

0.263

0.082

0.257

0.252

0.081

0.169

0.259

0.169

0.113

0.255

0.428

0.190

0.422

0.416

0.187

0.249

0.425

0.246

0.239

0.421

0.761

0.440

0.745

0.736

0.431

0.433

0.744

0.434

0.262

0.737

0.806

0.616

0.795

0.778

0.616

0.585

0.790

0.587

0.386

0.766

0.109

0.808

1.072

1.057

0.781

0.807

0.998

0.807

0.574

0.969

0.265

0.045

0.257

0.250

0.045

0.256

0.260

0.257

0.245

0.257

0.410

0.257

0.402

0.393

0.248

0.283

0.406

0.276

0.281

0.403

0.649

0.442

0.609

0.607

0.435

0.437

0.601

0.439

0.285

0.599

0.651

0.627

0.650

0.611

0.593

0.622

0.650

0.622

0.457

0.603

0.985

0.725

0.939

0.933

0.724

0.733

0.843

0.737

0.651

0.833

0.387

0.102

0.379

0.373

0.102

0.234

0.385

0.221

0.234

0.382

0.450

0.396

0.442

0.431

0.385

0.397

0.447

0.398

0.234

0.443

0.616

0.460

0.577

0.575

0.454

0.461

0.557

0.463

0.411

0.554

0.631

0.619

0.624

0.579

0.574

0.620

0.624

0.620

0.466

0.562

N
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0.949

0.674

0.898

0.888

0.673

0.706

0.790

0.712

0.692

0.785
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Table 10. Dimensionless frequencies for a four-layer parabolic-cylindrical shell:
30°: (-30°): 30°: (-30°)

Boundary conditions

CC | CF | CS | S-S S-F | E1-C | E2-C | E3-C | E1-E1 | E2-E2
0.518 | 0.095 | 0.505 | 0.489 | 0.094 | 0.272 | 0.420 | 0.049 | 0.162 | 0.391
0.718 | 0.453 | 0.683 | 0.679 | 0.435 | 0.322 | 0.603 | 0.211 | 0.234 | 0.510
0.821 | 0.587 | 0.807 | 0.787 | 0.587 | 0.658 | 0.723 | 0.278 | 0.291 | 0.615
0.930 | 0.710 | 0.895 | 0.886 | 0.711 | 0.715 | 0.831 | 0.587 | 0.538 | 0.746
1.052 | 0.785 | 1.050 | 0.963 | 0.777 | 0.853 | 0.930 | 0.659 | 0.650 | 0.855
0.431 | 0.063 | 0.427 | 0.408 | 0.063 | 0.266 | 0.376 | 0.062 | 0.256 | 0.370
0.720 | 0.428 | 0.699 | 0.691 | 0.408 | 0.351 | 0.647 | 0.254 | 0.267 | 0.605
0.861 | 0.683 | 0.841 | 0.829 | 0.678 | 0.725 | 0.749 | 0.343 | 0.340 | 0.675
0.988 | 0.828 | 0.944 | 0.940 | 0.817 | 0.831 | 0.871 | 0.687 | 0.701 | 0.771
1.126 | 0.990 | 1.126 | 1.029 | 0.984 | 0.963 | 0.988 | 0.814 | 0.817 | 0.881
0.609 | 0.130 | 0.594 | 0.594 | 0.130 | 0.104 | 0.594 | 0.129 | 0.089 | 0.574
0.702 | 0.633 | 0.700 | 0.665 | 0.630 | 0.609 | 0.614 | 0.158 | 0.104 | 0.597
0.895 | 0.706 | 0.874 | 0.868 | 0.672 | 0.773 | 0.845 | 0.633 | 0.646 | 0.793
1.103 | 0.880 | 1.055 | 1.052 | 0.876 | 0.905 | 0.930 | 0.783 | 0.783 | 0.875
1.216 | 1.122 | 1.215 | 1.131 | 1.102 | 1.102 | 1.106 | 0.891 | 0.924 | 0.951

N
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Table 11. Dimensionless frequencies for a four-layer parabolic-cylindrical shell:
159 (-30°): 15%: (-30°)

Boundary conditions

C-C C-F C-S S-S S-F E1-C | E2-C | E3-C | E1-E1 | E2-E2
0.641 | 0.182 | 0.614 | 0.595 | 0.181 | 0.258 | 0.482 | 0.253 | 0.234 | 0.454
0.796 | 0.489 | 0.772 | 0.740 | 0.474 | 0.475 | 0.696 | 0.475 | 0.257 | 0.521
1.114 | 0.677 | 1.043 | 1.029 | 0.677 | 0.725 | 0.827 | 0.739 | 0.311 | 0.757
1.198 | 0.860 | 1.164 | 1.076 | 0.809 | 0.853 | 1.147 | 0.853 | 0.680 | 0.840
1.641 | 0.948 | 1.604 | 1.596 | 0.947 | 0.936 | 1.329 | 0.937 | 0.759 | 1.281
0.534 | 0.105 | 0.509 | 0.488 | 0.104 | 0.273 | 0.449 | 0.263 | 0.274 | 0.405
0.723 | 0.469 | 0.708 | 0.683 | 0.442 | 0.472 | 0.658 | 0.473 | 0.281 | 0.566
1.142 | 0.712 | 1.055 | 1.044 | 0.701 | 0.765 | 0.788 | 0.772 | 0.338 | 0.757
1.192 | 1.019 | 1.170 | 1.074 | 0.979 | 1.069 | 1.165 | 1.075 | 0.778 | 0.801
1.705 | 1.155 | 1.640 | 1.639 | 1.089 | 1.191 | 1.338 | 1.197 | 0.975 | 1.317
0.633 | 0.142 | 0.598 | 0.585 | 0.142 | 0.097 | 0.538 | 0.036 | 0.083 | 0.520
0.675 | 0.640 | 0.662 | 0.629 | 0.597 | 0.642 | 0.658 | 0.643 | 0.111 | 0.564
1.182 | 0.703 | 1.097 | 1.084 | 0.699 | 0.760 | 0.841 | 0.768 | 0.708 | 0.837
1.219 | 1.193 | 1.203 | 1.115 | 1.095 | 1.196 | 1.200 | 1.196 | 0.784 | 0.846
1.815 | 1.196 | 1.728 | 1.718 | 1.193 | 1.347 | 1.402 | 1.367 | 1.314 | 1.383

N
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Table 12. Dimensionless frequencies for a three-layer hyperbolic-cylindrical
shell: 459 (-45°): 45°

Boundary conditions

CC | CF | CS | S-S S-F | E1-C | E2-C | E3-C | E1-E1 | E2-E2
0.507 | 0.078 | 0.495 | 0.475 | 0.075 | 0.276 | 0.429 | 0.274 | 0.107 | 0.393
0.839 | 0.384 | 0.812 | 0.808 | 0.366 | 0.280 | 0.725 | 0.280 | 0.239 | 0.653
0.926 | 0.722 | 0.903 | 0.897 | 0.721 | 0.695 | 0.844 | 0.702 | 0.288 | 0.743
0.967 | 0.795 | 0.967 | 0.917 | 0.794 | 0.782 | 0.927 | 0.782 | 0.668 | 0.856
1.093 | 0.858 | 1.079 | 1.074 | 0.850 | 0.913 | 1.046 | 0.914 | 0.684 | 0.986
0.460 | 0.073 | 0.457 | 0.453 | 0.073 | 0.297 | 0.453 | 0.287 | 0.259 | 0.445
0.663 | 0.452 | 0.646 | 0.641 | 0.448 | 0.452 | 0.649 | 0.453 | 0.297 | 0.597
1.052 | 0.637 | 1.026 | 1.024 | 0.632 | 0.643 | 0.951 | 0.643 | 0.441 | 0.882
1.100 | 0.914 | 1.083 | 1.078 | 0.913 | 0.953 | 1.061 | 0.959 | 0.606 | 0.957
1.211 | 1.074 | 1.193 | 1.160 | 1.071 | 1.044 | 1.105 | 1.048 | 0.914 | 1.066
0.531 | 0.166 | 0.515 | 0.515 | 0.166 | 0.081 | 0.529 | 0.150 | 0.081 | 0.489
0.844 | 0.541 | 0.840 | 0.827 | 0.541 | 0.531 | 0.812 | 0.531 | 0.094 | 0.799
0.994 | 0.846 | 0.981 | 0.981 | 0.833 | 0.846 | 0.994 | 0.849 | 0.542 | 0.944
1.207 |1 0.993 | 1.186 | 1.179 | 0.993 | 0.992 | 1.165 | 0.992 | 0.850 | 1.093
1.343 | 1.181 | 1.324 | 1.308 | 1.174 | 1.212 | 1.282 | 1.213 | 1.009 | 1.194

N
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Table 13. Dimensionless frequencies for a four-layer parabolic-cylindrical shell:
30°-60°- 30° - 60°

Boundary conditions

C-C C-F C-S S-S S-F E1-C E2-C E3-C | E1-E1 | E2-E2
0.787 | 0.180 | 0.782 | 0.768 | 0.178 | 0.241 | 0.726 | 0.239 | 0.241 | 0.703
1.200 | 0.536 | 1.177 | 1.176 | 0.527 | 0.513 | 1.042 | 0.513 | 0.281 | 1.004
1.266 | 1.043 | 1.253 | 1.209 | 1.043 | 1.037 | 1.206 | 1.043 | 0.307 | 1.067
1.431 | 1.206 | 1.375 | 1.361 | 1.200 | 1.163 | 1.3368 | 1.163 | 1.006 | 1.219
1.570 | 1.265 | 1.564 | 1.545 | 1.216 | 1.351 | 1.456 | 1.353 | 1.099 | 1.391
0.614 | 0.114 | 0.610 | 0.603 | 0.114 | 0.299 | 0.595 | 0.291 | 0.279 | 0.579
0.865 | 0.536 | 0.852 | 0.849 | 0.529 | 0.575 | 0.860 | 0.576 | 0.302 | 0.831
1.314 | 0.881 | 1.255 | 1.255 | 0.877 | 0.873 | 1.254 | 0.873 | 0.491 | 1.112
1.461 | 1.246 | 1.461 | 1.415 | 1.246 | 1.266 | 1.328 | 1.271 | 0.904 | 1.259
1.596 | 1.460 | 1.570 | 1.545 | 1.414 | 1.362 | 1.468 | 1.365 | 1.282 | 1.400
0.733 | 0.207 | 0.716 | 0.715 | 0.202 | 0.041 | 0.731 | 0.114 | 0.041 | 0.689
0.854 | 0.754 | 0.849 | 0.841 | 0.752 | 0.738 | 0.845 | 0.738 | 0.138 | 0.834
1.290 | 0.862 | 1.235 | 1.235 | 0.855 | 0.891 | 1.290 | 0.893 | 0.782 | 1.131
1.454 | 1.336 | 1.454 | 1.412 | 1.336 | 1.291 | 1.418 | 1.290 | 0.903 | 1.417
1.829 | 1.454 | 1.742 | 1.745 | 1.421 | 1.507 | 1.540 | 1.515 |1.434 | 1471
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Table 14. Dimensionless frequencies for a four-layer parabolic-cylindrical shell:
159-759-159-75°

Boundary conditions

CC | CF | CS | S-S S-F | E1-C | E2-C | E3-C | E1-E1 | E2-E2
0.645 | 0.167 | 0.629 | 0.629 | 0.166 | 0.166 | 0.626 | 0.252 | 0.229 | 0.607
0.963 | 0.405 | 0.953 | 0.953 | 0.402 | 0.402 | 0.963 | 0.379 | 0.247 | 0.962
1.262 | 0.931 | 1.219 | 1.219 | 0.918 | 0.918 | 1.140 | 0.922 | 0.300 | 1.103
1.461 | 1.099 | 1.392 | 1.392 | 1.098 | 1.098 | 1.349 | 1.090 | 0.734 | 1.205
1.672 | 1.327 | 1.671 | 1.671 | 1.259 | 1.259 | 1.556 | 1.342 | 1.114 | 1.478
0.544 | 0.092 | 0.525 | 0.525 | 0.091 | 0.091 | 0.530 | 0.305 | 0.312 | 0.516
0.699 | 0.501 | 0.691 | 0.691 | 0.490 | 0.490 | 0.699 | 0.501 | 0.315 | 0.698
1.217 | 0.735 | 1.171 | 1.171 | 0.732 | 0.732 | 1.181 | 0.735 | 0.439 | 0.171
1.387 | 1.192 | 1.313 | 1.313 | 1.190 | 1.190 | 1.284 | 1.187 | 0.768 | 1.217
1.507 | 1.245 | 1.555 | 1.555 | 1.209 | 1.209 | 1.425 | 1.261 | 1.139 | 1.357
0.689 | 0.202 | 0.683 | 0.683 | 0.202 | 0.202 | 0.689 | 0.113 | 0.152 | 0.689
0.727 | 0.698 | 0.714 | 0.714 | 0.692 | 0.692 | 0.725 | 0.699 | 0.152 | 0.742
1.224 | 0.750 | 1.174 | 1.174 | 0.746 | 0.746 | 1.215 | 0.761 | 0.726 | 1.210
1.357 | 1.229 | 1.281 | 1.281 | 1.197 | 1.197 | 1.309 | 1.253 | 0.775 | 1.279
1.657 | 1.355 | 1.566 | 1.566 | 1.323 | 1.323 | 1.430 | 1.399 | 1.295 | 1.384

N
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The calculation results show the possibility of studying the behavior of free
vibrations of inversely coupled composite laminated shells under generalized
boundary conditions. Two lenticular shells were back-connected at both ends of the
cylindrical shell. Individual shells were connected by a continuous condition, and
the boundary and continuous conditions were generalized by the artificial spring
method.

The displacement field at an arbitrary point of the connected shell was
determined using the theory of first-order shear deformation, and the displacement
function was expanded by Haar wavelet series in the meridional direction and
trigonometric series in the circumferential direction. A boundary condition was
added to the control function of the main system to satisfy the Haar wavelet integral
constant.

The accuracy and reliability of the proposed method were verified through
convergence studies and precision testing. The influence of certain parameters on
the free vibration behavior of inversely coupled composite shells was then
investigated. Based on the study of parameters, the following conclusions can be
drawn.

The critical value of the stiffness of the composite laminated shell material has
been determined. This value can be considered as a free boundary condition. The
excess of the stiffness over the critical value corresponds to a fully clamped
boundary condition. In addition, if the stiffness value of the laminated composite
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material is less than the critical value, then this state can be considered as an elastic
boundary condition.

As the length of the cylindrical shell in the middle part increases, regardless of
the coupling design and boundary conditions, it initially increases slightly, but when
the length exceeds a certain value, the frequency decreases quickly.

The frequency of the coupled shell structure changed symmetrically along the
90° fiber direction as the fiber direction changed from 0° to 180°.

As the number of layers increased, the frequency increased or decreased
depending on the boundary conditions.

All fundamental frequencies were in the region in which the circumferential
wave number was 0 < n <4,

Relative changes & = fmax/fmin Of dimensionless frequencies of four-layer and
three-layer shells for all types of boundary conditions from C — C and to E2 — E2
corresponded to the following characteristic numerical intervals (A: 15°-75°%-15°-75°
and B: 45°-(—45°)-45°):

A) &' e€(23+26),m=1,&'"€(26+2.7),m=2;&'€(20+2.4),m=3
B) ¢ €(21+25),m=1,&'€(24+2.6),m=2;¢&" € (2.4+2.5), m=3.
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CHAPTER 5
WAVELET TRANSFORMS

In numerous works [123 — 187] devoted to the continuous wavelet transform,
the potential field was introduced and widely used as an effective tool for
estimating the source parameters of homogeneous fields: the depth to the source
Zo and the structural index N. It is often defined as the rate of decay of the field with
distance from the source. It can be argued that methods using continuous wavelet
transform belong to the class of multiscale methods for estimating source
parameters. The construction of a wavelet basis for operator equations was carried
out in the work of Dahmen.

Assuming a two-dimensional function f(x, y) € L?(R?) and an analyzing wavelet
Yx, y) € L?(R?), its continuous wavelet transform Wf with L? norm is defined as

W (b,a,0) = a—12 [RZf (r)g?{@}dr, 5.1

where
r (x, y) is the position vector;
a € R is the scale or dilation of the wavelet y;
W s its complex conjugate;
r-e the rotation of the wavelet with respect to the angle 6;
b € R? is the position of the wavelet.
Equation (5.1) means that for any extension, a continuous wavelet transform
can be expressed as a convolution of the field by any admissible wavelet y. In fact,
we can write equation (5.1) as

WF (b,a,0)= f *y, (5.2)

usgn

where symbol denotes convolution.
Thanks to the properties of the convolution integral, we can write for any
wavelet y = F%g/ox *

kak(

k
nyaf =a ax—k

f*g), (5.3)

where
@is the so-called smoothing function;
k is the derivation order;
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a is the scale or dilatation.
Therefore, in the Fourier domain we can write

ka,af = fyk, (5.4)

where

vak,a f, f and l//a are the Fourier transforms of f, WX 5 and l//a , respectively.

Similar relationships are obtained when choosing wavelets such as

. 0°¢ A 0" ¢
= = 5.5
Vy = oy* or Yy = oxoz L ¥y oyor 52)

The continuous wavelet transform of potential fields has a special property
when wavelets constructed on the kernel of the Poisson semigroup are used. In fact,
Wf is mathematically equivalent to the well-known upward continuation of the k"
order horizontal derivative of f, except for the scale factor. In order to continue
considering the analogy, let us write down a mathematical expression for the
following wavelet

ofp
Wlx((") = o (5.6)

where p is the smoothing function for the Poisson kernel

p(r)= L L —, (5.7)
27 (14 X2 + y?)

where for the Fourier transform we can write

P(p)=exp(-a p). (5.8)

where

P is the Fourier transform of p;
p=(0£2+ﬂ2)1/2;
a and fare the wave numbers in the frequency domain.
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The wavelet transform f with respect to ¢ can be written in the following
form

VR N S R o UGN

X,a x,a an
0" .. o
:aka?(f pa):akax—kf(r,a). (5.9)

Formula (5.9) allows us to conclude that the value W, .*f can be considered as
the k' derivative with respect to x of f, which is calculated for parameters from z;
to z, with the exception of the scale factor a*, where z; is the measurement level for
the field f, and z is the fixed trend parameter. For a simple ideal source such as a
pole, and assuming the z-axis is positive downward from z; = 0, we can accordingly
say that a field f, singular at zo, will have an extension a = |z - zo| at any level z.
Likewise

W :a"if(r a) (5.10)
Va —f(r,a). .

Continuous wavelet transform analysis allows the detection and
characterization of features contained in a signal. The wavelet transform is analyzed
using the so-called maximum lines of the wavelet transform modulus. These lines
are formed by connecting the maxima of the absolute values of the continuous
wavelet transform at several scales.

In the case of a potential field, the singularities correspond to the positions of
the source: in fact, the field at the source level is singular and its derivatives are not
defined. In this case, we can say that the singularities of the potential field are
located far from the measurement plane. So, in order to obtain the initial
parameters of a homogeneous potential field from their continuous wavelet
transformations, it is necessary to compare the value of log(W, f/a*) not just in
comparison with log(a), but in comparison with the scaled value log(a + z%0), where
z"o is the estimated source depth. For general extended sources, the lines of
maxima of the modulus of the wavelet transform intersect each other at the
boundary of the body under study for the case when a sufficiently high order is
chosen k.

Since the field is measured at some distance from the source, it can be
assumed that it is highly non-singular on the measurement scale. Let's assume that
in the Cartesian coordinate system the z-axis has a positive downward direction.
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Next, we can place the origin of coordinates in the measuring surface, so that z; =
0. Let us now consider the force field f(x, y, z1), created by a bipolar source at point

Q (xo, Yo, 2o).
The field f (x, y, z1) under study can be considered as a field fq, singular at point
Q, extended to the interval a; = | z; — 20|

f, = F(% Y. 2) fgeps, (5.11)

Poisson wavelet can be represented in the following form

okp
o (r)= P (5.12)

Then for any extension a > a; we can write

Gk o~
ka,;a{p}f :akax—k(fl*pa—al):akﬁx—k( Q*pal*pa—al):
k
:aki—k( Q*pa). (5.13)

Equation (5.13) shows that W, f, obtained at a-scale a using Poisson wavelets
does not depend on whether it is calculated in steps, for example, using a single
convolution step allocated to two scales ao and a, or multiple convolution, relating
first to the scales {ao, a:}, and then to the scales {a3, a}, where a > a;.

Let us now consider some other form of admissible wavelet

ou
wi(r)= poc (5.14)

where
u is the corresponding smoothing function.

Wavelets built on the smoothing function u allow one to analyze the measured
field for a continuous wavelet transform

k k

W/ PHf = af ;(—k(fl*uaal): a" ;7( 0 Py Uy, ). (5.15)
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It can be argued that this time the continuous wavelet transform includes
more types of wavelets and can only be defined as a multiple convolution, this time
associated with wavelet mixing, namely a Poisson wavelet for the expansion from
ao to a: and any wavelet u for extensions from a; to a.

In order to remove the restriction in choosing wavelets other than those
belonging to the Poisson kernel, a new method can be proposed called the
composite continuous wavelet transform, which consists of changing the definition
of Wi.o*f(u) by introducing a composite wavelet operator

— nl=x
Val = [Z)a1 Ual. (5.16)

This operator is the convolution between the inverse Poisson smoothing
function (for example, the continuation-down operator PA(r) = e?/) and any scaling
function u. Applying this transformation to the potential field on the measurement
plane, on a scale a;, we can replace the measured field f (p, a1) = fo*pa1 with the
corresponding function f (u, a1) = fo*ua1, obtained on the same scale by dilation with
wavelet other than the Poisson wavelet.

Now we can write the following relation for any scale a > a;

k
kfupy s _ k O _
Wx,a f=a —an (f *Val *ua—al)_

k k
k

- a ;X—k( Q*pal*p;f*ual*uaal)za";?(fQ*ua). (5.17)

Equation (5.17) is similar to equation (5.13). However, the entire field can now
be treated as a fully expanded field using any scaling function u,. It should be noted
that in equation (5.13) this field has been fully expanded using the Poisson operator
pa. Equation (5.15) allows us to expand the field by mixing the operators u, and pq,
which is an inhomogeneous expansion.

Note also that due to the properties of convolution, equation (5.17) can be
written equivalently as

W"’{‘”’p}f:aki(f *U )za" f*p‘l*iu =
ox Qe @ oxk°
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—ak(f* p;ll*t//ff,a). (5.18)

Equation (5.18) is especially useful when the composite continuous wavelet
transform is performed using a wavelet formulated without a smoothing function.

The method for calculating smoothing scaling wavelets assumes that the
operators pq:~! and uqs refer to the same scale interval ranging from a; to ao for pas™
and from ao to a: for u. Thus, the continuous wavelet transform operator is a
combination of smoothing operators using the same scales. A consequence of these
facts is that the convolution of operators will be a stable transformation.

This is confirmed by studying the frequency response of the operator vq: for
sources at different depths zo. In the case of a Gaussian wavelet, the smoothing
function g is expressed in the frequency domain as

(ap)”

(5.19)
2

g = exp| -

sing the extension from a to a: allows us to write the following relations

—_ 2 2
ot =ella-a)l 0, =ew - BTV
Thus
— 2 2
‘;al - pa_llgal = €Xp (al —dg )IO_ (al aéO) P . (5.21)

Calculations show that the smoothing effect due to the "Gaussian" expansion
is stronger than the high-frequency enhancement effect introduced by the
downward extension operator pa:~. Therefore, the result is a bandpass filter effect.

It is of interest to use the wavelet transformation technique to describe the
dynamic response and simulate damage in a plate-shaped laminated piezoelectric
composite sample. The laminated composite plate has a rather complex stress
state. This state should be described by a three-dimensional elasticity matrix. In the
general case, displacements at an arbitrary point of such a composite plate can be
expressed by the following relations

u(x, y,z) =ty (X, ¥)+ 29, (%, y)+ 2%, (X, y)+ 2° B, (X, ¥)
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o(X,y,2)=vy(X, y)+ 20, (X, y)+ 2°a, (X, y)+ 2°B,(X, y)

W(x,y,2) =Wy (X, ¥)+20,(X, y)+ 2, (X, y)+ 2B, (x.y), (.22

where
Uo, o and wpare the mid-plane displacements;
@, @y and @; are additional rotations due to shear deformation;
o, oy, o, P, Py and S are functions of variables x and y.
Based on the mechanical condition of the upper and lower free surfaces of the

composite plate, i.e. 0z = 7 = 1y = 0, a set of complex strain constraint conditions
can be expressed as

h h
‘c"z:a_vv2 :O' 7/zx:|:a_u+a_w:|2 =0
oz |_h 0z OX | h
2 2
h
ov OW ||2
Vy: = —t = O; (5.23)
0z 0y | h
2

where
h is the thickness of the composite plate.

Substituting (5.23) into (5.22) allows us to write the following relations for
the unknown quantities o, oy, az, S, B and [

aX:—EQQQ o :—anz a,=0
3 OX g 3 oy

B, =——0,. (5.24)

In this case
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The ratios of deformation and displacement are determined by the
expressions

ou ou, dp, 47° (8(0)( +82W0j_ 22 9%,
3h

E,=—= +Z
oX X OX X  ox° 3 ox?

. _ov_odv, 0p, 4z (ﬁcoy Gwoj 2% 0%,
' oy 8y oy 3n2l oy oy’ ) 3 oy

o oW _[, 4z
* oz h? )7
2
]/yz:(?_vv_lrﬁ_u: 1_4% , ¢y+aWo Z 09,
oy oz h &y 3oy

oW ou 47° ( oW, Z@(pzj
V=~ t = 1-— | @y + +=
OoX 0z OoX 3 OX

ou, ov_(ouy ovy | (, 4z°)
P Ty T ax Loy T ex 3n?

(5.25)
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09, , 0p, | 22°0°p, 8z’ 0°w,
oy  OX 3 oxoy 3h® oxoy

X

(5.26)

For a standard specimen in the form of a composite plate, the strain—stress
relationship in the k™ layer with anisotropic behavior is given by

{o}=[Q K}, (5.27)

where
{o} and {&} are the stress and strain vectors, respectively;
| Q| is the elasticity matrix, and it depends on the elastic moduli E;, E2 and Es, shear
moduli Gi2, G23 and Gsi, Poisson’s ratios w12, 23 and sz, and the k™ ply fibre
orientation angle 6G.

In piezoelectric plates built into a composite plate as sensors and actuators,
the direct and inverse piezoelectric equations regarding the x - y - z axes can be
written as follows

{o.3=[Qs Ke}-[e] {E} (5.28)

{D}=es}- [ KE}, (5.29)
where

{or} and [Qp] is the stress vector and the transformed elasticity matrix of the
piezoelectric material, respectively;

{E} is the electric field strength vector;

{D} is the electrical displacement vector;

[€] is the relative permittivity matrix;

[e]” is the transposed matrix with respect to [e].

The matrix of piezoelectric stress coefficients [e] is expressed through the
matrix of strain coefficients [d] by the equations

[e]=[d ][Qp] - (5.30)

he elasticity matrix of a piezoelectric material can be represented in the
following form
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QPll QP12 QPlS 0
QPZl QP22 QP23 0

QP31 QP32 QP33 O
0 0 0 Qu O

0 0 0 0 Qu O
0 0 0 0 0 Qpl

o O o

(5.31)

o O O O

Due to the approximate isotropy of the sample, a sufficiently large number of
elements of the [Qpr] matrix are identical, in particular

B B _ Ep(l_:uP)
Qp11 = Qp2z = Qpys = (1+ ,up)'(l—zlup)
Ep
Qpas = Qpss = Qps = Z(T/Up)

QP12 = QP13 - QP21 = QP23 - QP31 = QP32 -

E
= P Hp (5.32)

(Ut ptp)- (1—2p25 )

where
Er is the elastic modulus;
Lp is the Poisson’s rat io of piezoelectric materials.

The piezoelectric constant matrix [d] indicates the quantitative relationship
between the excitation voltage acting on the piezoelectric material and the induced
voltage in the piezoelectric material. For a three-dimensional model, the specified
matrix can be written in the form

d 11 d 12 13 d 14 d 15 d 16

o
o

[d] =

n Uy Ay dy dy dy | (5.33)

31 d 32 d 33 d 34 d 35 36
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The matrix [d] of a piezoelectric has some features that are due to the special
characteristics of the material, that is, all elements are equal to 0, with the
exception of d31 =d3» #0, dis = d2a # 0 and d33 # 0.

Consider the case when the piezoelectric sensors and actuator are polarized
only along the z-direction thickness, that is, the excitation vector {E} is equal to {0;
0; V3}', where Vs is the electric field strength acting on the piezoelectric materials
along the z-direction for equation. Moreover, it should be noted that stresses and
strains have non-zero components only along the main diagonals associated with
the coordinate axes. At the same time, for quantities T and y only non-diagonal
components should be considered as non-zero quantities.

Then (5.28) and (5.29) can be written as

. )
Gy gy 0
0 & Tra17
1 r=1Qpy T ¢ —[Qp] [d] 1 O (5.34)
z-yz 7/yz vV
3
TZX ]/ZX
(Fxy | 7 xy
' gx 3
g
D, ’ 0
gZ _
D, : =[d][Qs K , »+[e]s 0 ;. (5.35)
D, g V,
Y
\?/ny

According to the damage theory of composite micromechanics, when
delamination occurs in the D;x Dy region of the composite structure, a numerical
damage model can be created by analyzing the microstructure. The mechanical
parameters of a thin composite plate depending on the damage delamination can
be expressed as

2
Eld = Elo + 20, [C3 +C6(,U102) _Clzﬂlozl ,
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2
Eg = Eg + 20, [CG +C3(ﬂ§1) _Clzﬂgll

1— 42 10
,Uldz = /1102 + @y % [C12 - 2C6,U102]
2

G =G +2w,C,, (5.36)

where

E&, EZ, ul, and G4 are the two elastic moduli, Poisson’s ratio and shear modulus
of the composite plate with delamination damage, respectively;

E2, E2, ud, and G2, are the elastic moduli, Poisson’s ratio and shear modulus of
the intact composite plate, respectively.

Let us denote by the symbol @y a variable that reflects the damage from
delamination in a composite plate, and which is related to the size and distribution
density of the delamination area. The expression for the delamination damage
variable can be written as

where
nis the delamination distribution density of the composite region.

The delamination distribution density of a region is equal to the ratio of all
delamination areas in an element to the entire area of the element where multiple
delamination areas occur. Let us denote by the symbol rc the average radius of all
delamination sections in this element. Values n and rc can be written according to
the following relations

Ng
25 1
= —= , r. = S, . 5.38
7 D, xD, © ﬂNdiz" >:38)

The values Cs, Cs, Co and C12 are material coefficients that do not depend on
deformations and damage, but depend on the configuration of the composite, i.e.
geometry and fiber orientation. In addition, these values depend on the volume
fraction of fibers in the sequence of laying layers.

Typically, delamination damage results in a decrease in the elastic modulus of
the composite plate. Among other things, it can be argued that the smaller the
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delamination area, the less the impact on the change in the mechanical
characteristics of the composite plate. Consider the case where the delamination
area is very small, for example, 7< 1%. Then we can assume that this delamination
affects only the local mechanical properties of the plate. Therefore, it is logical to
assume that in the dynamic model of a composite plate, a change in mechanical
properties occurs locally only in the damage zone, and the mechanical properties
of other areas do not change.

Hamilton's principle is used to derive the equations of motion of a multilayer
composite plate with integrated piezoelectric sensors and actuator. Hamilton's
principle can be written as follows

t
[(6T-5U+sW)dt=0, (5.39)

ty

where
ti, t2 are the two arbitrary time instants;
T is the kinetic energy;
U is the strain energy;
W is the work done by an external electric field;
ois a first order variation.
The shift in the deformation field in an element can be expressed as the
following formulas

n 423
“(X’Y’Z)=Z NilUgi | Z— =5 |Pui |~
i—1 3h
(1, 42
ox (37 74T gz 0
n 423
U(X;y,z):; NI UOI+ Z 3? ¢yi —
(1, e
ay 3 ¢ZI 3h2 Oi
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W(X, Y,2)=Y3IN,|vgi +| 2= @y |, (5.40)

where
N;i(x,y) is the element shape function;
n is the number of nodes in an element;
Uoi, Loi, Wai, @xi, @yi and @ are the values of uo, Lo, Wo, ¢, @ and @, at the i node,
respectively.
The elementary equations of motion satisfy the following relation

MRS +[KT{a) = {F, U, (5.41)

where

[M]€ and [K]€ are the element mass and stiffness matrices;

US is the voltage applied to the piezoelectric actuator;

{Fp}¢ is the vector indicating the force magnitude produced by unit voltage applied
to the piezoelectric patch, it converts the applied actuator voltage to the induced
force;

{A4}¢ is the element's nodal displacement vector, which can be expressed using the
following formula

A ={a) () () ] (5.42)

{Ai } = {UOi » Ugi» Woi» @yir @i }T - (5.43)

When a piezoelectric actuator embedded in a damaged structure is driven by
an input voltage signal with multiple frequency components to excite vibration of
the structure, a significant difference will be observed between the dynamic
response energy and the energy of the intact structure in the same frequency range.
The reason for these features is that structural damage will suppress or enhance
certain components of the response signal in special frequency ranges, i.e.
structural damage can cause an increase in the energy of some components of the
response signal, as well as a decrease in the energy of other components of the
response signal.

It can therefore be argued that the energy of structural dynamic response
signals with different frequency components contains extensive information about
structural damage, and changes in the energy of one or more frequency
components of the signals can indicate a particular structural damage status. Many
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vibration parameters such as natural frequency, mode shape, modal damping can
be used to determine the structural damage status.

Wavelet analysis of time-varying signal is a kind of localization analysis method
in the time and frequency domain, and the time and frequency windows can be
changed. This method of signal processing is characterized by higher frequency and
time resolution.

The continuous wavelet transform of the function f (t) is determined using the
relation

W, (a,b)=[a]" [ f (thy (&)t (5.44)

where
&= (t-b)/a;
b is the translation parameter;
a is the scale parameter;
¥ (&) is the mother wavelet.
The recomposition equation can be expressed as

f(t)Cy | [a™W, (a,b)¥(&")dadb, (5.45)
where
C, = 27:“‘1’(r){2 % (5.46)
0

The basic wavelet function can be represented in many ways. One of the most
developed methods in practice is wavelet packet analysis of the base function. In
particular, suppose that g'(t) € U;* then the value gj'(t) can be represented as

the following relation

g"(t)=Yd"u, (27t -1) (5.47)

Calculation formulas for the quantities {dlj'zn} and {dlj‘znﬂ} have the
following form
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d)" =Y a, ,d) " (5.48)
k

d" =3, ,d) " (5.49)
k

In this case, the recomposition {dlj“’"} can be represented in the following
form

d|j+1,n _ Z(hl_Zdej,Zn n g|_2kdkj,2n+1). (5.50)
k

The choice of a fixed frequency band in accordance with the characteristics of
the analyzed signal can be carried out using packet wavelet analysis. At the same
time, resolution in the frequency and time domains can be improved.

Obtaining a formation about structural damage from a response signal
involves preliminary decomposition of the signal into several subsignals in different
frequency ranges using a packet wavelet transform. Let us assume that the original
signal S(t) of the structural response has the following form

2k—1

S(t)= gsk,j(t), (5.51)

where
Skj(t) is the decomposed wavelet sub-signal with orthogonal frequency band;
k indicates the k™ layer of the tree structure of wavelet decomposition.
The total number of decomposed wavelet signals does not exceed 2"
The signal energy with index j is equal to

T
2
U =[IS,;(t) dt, (5.52)
0
where T is the sampling time.

The response signal is characterized by a total energy

0.5
ok-1

U= Z‘Uk,j‘z (5.53)
j=0
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The dimensionless components of the intact index vector for a laminated
composite plate are determined using the following formulas

0 0 0 A0 0
\Y ={cl,cz,c3,...,c2k_1}:

0
UI?,l UI?,Z UI?,Z Uk,z"‘1
UO ’UO ,.UO jrrn UO (5'54)
AR N A
d
_ UI?,l UI?,Z UI?,Z Uk,z"—l
- Ud ,Ud ’-Ud yreny Ud ’ (555)

where
index “0” corresponds to an undamaged composite plate;
index “d” corresponds to a damaged (detached) composite plate.

Typically, a comparison of Vp and Vy indicates whether there is delamination
of the plate. As additional information, it can be argued that the change in the
relative value of Vy/Vy4 in each element can more clearly indicate the degree of
delamination of the plate. The above serves as a basis for exploring the
delamination region using a similar index vector, which is defined as follows

d d d d

C C C C v
Ve=<1-2 [|1-=2|1-= | |1-—=2—1|}.  (5.56)

C, C, C; czk_1

For composite plates with different delamination zone sizes, changes in local
elastic moduli can be calculated using experimental data for delamination
parameters Cs, Cs, Co and Ci2. Numerical modeling of the dynamic responses of
composite plates with different sizes and locations of delamination zones was
carried out.

The energy spectrum of the decomposed wavelet signal from the structural
dynamic response may indicate a state of structural delamination. This is based on
the fact that when small and local damage occurs in the structure under the same
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excitation condition, the change in the contribution of each vibration mode is
different, i.e., some modes are enhanced and others are weakened.

In the numerical simulation, the output signals of four piezoelectric patch
sensors are decomposed into 16 sub-signals using wavelet packet analysis, and the
frequency band does not overlap due to the orthogonality of the adopted
Daubechies wavelet base. Time domain wavelet decomposition waveforms from
intact and damaged composite plates cannot directly indicate the damage state of
the plate. However, their energy spectrum can clearly reflect the status of structural
damage. In practical problems, one of the most interesting questions is to find the
smallest degree of detectable structural damage.

Wavelet analysis was applied to the results of a basic stress clamp experiment
on a composite plate that consisted of a glass fiber and epoxy matrix material with
17 layers with orientation angles of 0 and 90°. The elasticity parameters of the intact
composite were in the range E° € (4.58 + 47.52) GPa, G° = 2.2 GPa. The density of
the composite material was p = 1.85-10° kg/m?>.

One piezoelectric sensor mounted in a composite plate was used as a signal
source-actuator, and four more piezoelectric sensors were used as receivers. The
results of the experiment are presented in Table 15 (parameter £ is equal to the
ratio of the delamination area to the total area of the composite plate, N is the
wavelet serial number).

Table 15. Damage index vector V¢ (%) of a composite plate for different sizes of the
delamination zone

B, %
N | 0003 | 0018 | 0.030 | 0060 | 0.100 | 0.120 | 0.167 | 0.212

Ve, %
0 | 0005 | 0130 | 0389 | 0765 | 1.277 | 2.096 | 2.434 | 2.005
1 | 0601 | 2791 | 4914 | 7323 | 7.642 | 5528 | 5957 | 13.31
2 | -0072 | -0359 | -0.662 | -0576 | 0.157 | 1.249 | 3.668 | 2.218
3 | -0043 | -0113 | 0214 | -1.129 | -1.110 | 1.021 | 2.160 | 0.757
4 | 0602 | 2594 | 3951 | 1790 | -8.499 | -27.82 | -4433 | -31.11
5 | 0819 | 3974 | 7507 | 1238 | 1258 | 7.341 | 5212 | 1821
6 | 0062 | 0325 | 0.470 | -0.089 | 0.043 | 1.103 | 1519 | 2514
7 | 0481 | 2164 | 3903 | 6.813 | 7.298 | 4.598 | 5.441 | 11.89
8 | 0128 | -0.612 | -1.013 | -0.694 | 0454 | 1.918 | 3.031 | 0.582
9 | 0516 | 2344 | 4003 | 4917 | 3784 | 1.813 | -0.045 | 3.172
10 | -0.142 | -0.589 | -0.929 | -1.108 | -0.155 | 2.585 | 4.544 | 1.944
11 | -0.055 | -0.328 | -0.651 | -0.575 | 0.041 | 0.447 | 1.226 | 0.132
12 | 0348 | 1405 | 1.878 | -0.487 | -7.626 | -19.97 | -31.15 | -23.84
13 | 0549 | 2420 | 4108 | 5765 | 4.383 | -0.665 | -2.673 | 5.849
14 | -0.131 | -0579 | -0.932 | -0.896 | -0.062 | 1.819 | 3.910 | 2.169
15 | -0.039 | -0.142 | 0.192 | -0.276 | 0.130 | 1.896 | 3.312 | 7.829




98

Numerical data indicate that variations in multiples of the damage index vector
Vc indicate the presence of a delamination zone in the composite plates. If the
maximum absolute value of an element in the index vector exceeds some threshold,
such as 20%, this data set can be used to indicate delamination damage to a certain
extent. Thus, it can be found that the smallest detectable delamination area S’ will
be $”<0,12 % of the total area of the composite plate.

The set of all data, which contains all the sizes and locations of damage from
delaminations, was created using numerical modeling. Such a set can be used for
online detection of damage to structures in service, subject to the necessary
condition of sufficient accuracy of the simulations. A comparison of the results of
numerical simulation A and experiment B (deviation C’) is given in Table 16.

Table 16. Vector of delamination index V'c (%) of composite plate obtained by
simulation and experiment

B, %
0.11 0.167 0.22
N A B C A B c A B C
Ve, %
0 1.543 | 1.703 10.3 2.433 | 2.491 2.35 0.895 | 0.908 14
1 7.162 | 8.053 12.4 5.956 | 6.078 2.04 21.13 | 21.32 0.9
2 0.377 | 0.403 6.79 3.668 | 3.178 1.38 | -0.991 | -1.005 0.9
3 -0.569 | -0.634 | 114 2.160 | 2.197 1.70 | -1.759 | -1.818 3.3
4 -13.79 | -14.10 | 2.24 | -44.32 | -45.38 | 2.38 | -6.506 | -6.603 14
5 11.38 | 12.83 12.7 5.212 | 5.221 0.17 35.48 | 36.42 2.6
6 0.381 | 0.395 3.52 1.518 | 1.546 1.80 3.599 | 3.626 0.7
7 6.593 | 6.811 3.28 5.441 | 5.449 0.15 17.18 | 17.76 3.4
8 0.863 | 0.961 11.3 3.030 | 3.068 1.24 | -2.687 | -2.736 1.8
9 3.262 | 3.575 9.58 | -0.045 | -0.045 | 0.91 8.339 | 8.691 4.2
10 0.551 | 0.561 1.77 4543 | 4.663 2.62 -1.228 | -1.279 4.1
11 0.164 | 0.165 0.15 1.226 | 1.226 0.04 | -2.321 | -2.389 2.9
12 -11.02 | -12.30 | 11.6 | -31.15|-31.89 | 230 | -7.936 | -8.129 2.4
13 3.063 | 3.143 258 |-2.673|-2.751 | 291 16.31 | 17.04 4.4
14 0.397 | 0.412 3.88 3.910 | 4.026 297 | -1.147 | -1.193 4.0
15 0.554 | 0.602 8.59 3.311 | 3.390 2.36 0.218 | 0.225 3.1
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The results shown in Table 16 indicate that the larger the maximum absolute
value V'c max Of an element in the index vector, the smaller the deviation between
simulations and experiments will be. These phenomena mean that only differences
in the wavelet energy spectrum between undamaged and damaged composite
plates are noticeable, and the simulation results are reliable.
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CHAPTER 6
LAMB WAVES

Such features of composite material samples as homogeneity on the one hand
and the presence of deformations on the other have traditionally been assessed
using non-destructive testing. Monitoring the condition of structures can be
considered as a modernization of this technique and the purpose of ensuring
guarantees of the operability of structures. For active diagnostics, which use
ultrasonic transient waves for damage detection, localization and subsequent
damage assessment, understanding the wave propagation characteristics of
composites is essential for the successful application of these techniques.

Wave propagation in composites is complex due to the nature of the
inhomogeneity of the components, the intrinsic anisotropy of the material and the
multilayer structure, which leads to the fact that the speed of the wave mode
macroscopically depends on the laying of the laminate and the direction of the
wave. conditions of its distribution and frequency.

In the case of wave propagation in isotropic plate structures, they will
experience repeated reflections alternately on the upper and lower surfaces, and
the resulting wave propagation as a result of their mutual interference is directed
by the surfaces of the plates. A guided wave can be modeled by imposing surface
boundary conditions on the equations of motion.

A significant disadvantage of this approach is the presence of dispersion, that
is, the speed of propagation of a directed wave along the plate is a function of
frequency or wavelength. Dispersion relations for an inelastic isotropic plate with
an infinitely extended plane-strain state were first obtained by Lamb. As a rule,
directed waves propagating along the plane of an elastic plate with boundaries free
from mechanical stress are called Lamb waves.

Wave interactions in multilayer composites depend on the properties of the
composite layers, geometry, direction of propagation, frequency and interfacial
conditions. In the case where the wavelengths significantly exceed the dimensions
of the components of the composites, namely, the diameters of the fibers and the
distance between them, each plate can be considered as an equivalent
homogeneous and isotropic material with an axis of symmetry parallel to the fibers.
A fairly large number of works are devoted to wavelet transforms using the Lamb
wave algorithm [188 — 202]. Damage assessment in composites using Lamb waves
was carried out by Paget, Su and Lemister. The theoretical basis of the interaction
of Lamb waves with deformations in composite structures was discussed in the
work of Alleyne and Cawley.

Symmetric laminar composites are characterized by symmetric and
antisymmetric Lamb wave modes. For symmetric modes, one type is designated
quasi-extended (gS»), where the dominant component of the polarization vector is
along the propagation direction, and the other type is quasi-horizontal shear
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(gSH2n), where the polarization vector is predominantly parallel to the plane of the
plate. It can also be argued that for antisymmetric types of wave modes, quasi-
flexural (gAs) and quasi-horizontal shear (gSH:2s-1) are generated.

In general, in composite materials there are transient waves that propagate in
an arbitrary direction, and which generally cause disturbances involving all three
displacement components, namely, the generalized plane strain due to the
anisotropy of the material.

Consider a Cartesian coordinate system in which the Z-axis is perpendicular to
the midplane of the composite laminate, spanned by the X and Y. The two outer
surfaces of the laminate are at z=t h/2. The propagation of a Lamb wave packet in
the @-direction can be considered as occurring counterclockwise with respect to the
x-axis. Each layer of a composite laminate with an arbitrary orientation in the global
Cartesian coordinate system (x, y, z) is considered as a monoclinic material having
an x-y symmetry plane. Taking this into account, the dependence of stress on strain
can be represented in the following matrix form

- 3 — - 3
Oy Ch C, Cg Cis &y
Oy Cn Cp Cy C €y
o, Cis C, Cg Cai €,
9 ;= * 4 s, (6.1)
Ty Cu Cus Yy
TXZ C45 C55 ?/XZ
(Txy ) _C16 C26 C36 C66_ /v )

When the global coordinate system (x, y, z) does not coincide with the main
material coordinate system (x’, ', z) of each layer, but makes an angle ¢ with the x-
axis, the stiffness matrix Cj (i, j =1, 2, 3,, 6) in the syste (x, y, z) can be obtained
from the plate stiffness matrix C'j in the system (x’, y/, z) using the transformation
matrix method. The composite plate is orthotropic or transversely isotropic with
respect to the principal axes of the material at (x’, y/, z), and its plate stiffness matrix
C'j can be calculated from the elastic properties of the plate material Ex, vis and Gu
(k,1=1, 2, 3).

The relationship between the deformation and displacement coefficients is as
follows

_au
*OX

_ov oW ov

g L E =y Yy =
Yooy v = o oy

, € (6.2)

>
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ou oOw ou ov
— =—+

=— 4+ — =+,
P = Toxt T oy Ox

(6.3)

where
u, vand w are the displacements in the x, y, and z-directions, respectively.

For the case of the absence of mass forces, the equations of motion have the
following form

ot
00y Ty | 0% _ pu (6.4)
OX oy oz
0 0 0
S A pU (6.5)
ox oy 0z
0
Oy, ey 00 _ PW, (6.6)
OX oy 0z

where
p is the mass density of composite.
The boundary conditions on the upper and lower faces have the form

0,=7,=7,=0, at z=xh/2. (6.7)

Wave motion can be expressed as a superposition of plane harmonic waves
due to the fact that Lamb waves propagate along the plane of the plate with
boundaries free from adhesion forces, but are standing waves in the z direction of
the plate. For each plane harmonic wave that propagates in the direction normal to
the wave front, we can write the following relation

u,0,w}={U(2)V(2)W(z2) expiil(k x + k,y)- otll, ©8

where

k = [k, ky]T,

k= k| = (ki + k3 ) =w/cp=2m/ Ais the wave number;
Ais the wavelength;

wis the angular frequency;

cr is the phase velocity.
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Substituting (6.8) into (6.1) and (6.3) allows one to obtain relations for
mechanical stresses in each layer of the composite

o, = [CkU +CLk vV —iC W'+

+Cy (kU +k,V ) iexpli[(k,x+k, y)- ot} (6.9)
o, = [CukU +Cpk,V —iCuW'+

+Coelk,U + kv )| iexplif(kx +k,y)-ot]} (610
o, = [Ciak U +Cpuk V —iCqW ' +

+Cy (kU + kv )| iexplif(k x +k, y)-wt]f (610

7, =[Cu (V' +ikW )} Cs (U +ik W )]x

yz
X exp{i [(kxx + kyy)— a)t]} (6.12)

7, =[Cis(V +ik W) C (U’ +ik W)]x

Xz

X exp{i [(kxx + kyy)— a)t]} (6.13)
7y = [Cisk U + Cogk )V —iCoW' + Cok,U + K,V )] x

xi exp{i [(kxx + kyy)— a)t]} (6.14)

where the prime denotes the derivative with respect to z.

Substitution (6.9) — (6.14) into (6.4) — (6.6) allows us to write the equations of
motion for each layer separately. These equations can be divided into symmetric
and asymmetric, which simplifies the analytical representation

U;=Acoséz, Vg=Bscoséz, Wy =C,coséz  (6.15)
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U,=Acoséz, V,=B,cosé&z, W,=C_coséz, (6.16)

where
& is an unknown variable to be determined later;
subscripts «s» and «a» represent symmetric and anti-symmetric modes,
respectively.

Let us consider the case of symmetric modes. Substituting (6.15) — (6.16) into
the equations of motion for each layer allows us to write the relationships in matrix
form

N, - po’ I, L5 A
I, I, —pow’ I, B.t=0, (6.17)
I P8 Ly — sz_ Cs

where the bar indicates the complex conjugate.
The elements in the above matrix defined by (I - pa?l) are listed as follows

I, =Cyky +2Ck k, + Ceky + Cys&? (6.18)

[, =Cuky +(Cpp + Cgg )Kyk, +Cpoky +Cpe?  (6.19)

[13= _i[(cl3 +Cog Ky +(Cag +Cyg )ky] 5 (6.20)
I, = Ceeky +2Cck,k, + Cpky + Cpyé” (6.21)
[y = _i[(C36 +Cs Ky +(Cys +Cyy )ky] 4 (6.22)

[y = Cgky +2C 5k Kk, + Cpuky +Cyy&? (6.23)

where I'is a 3 x 3 identity matrix.

Relation (6.17) is a standard linear problem on the eigenvalues of the
Hermitian matrix I. If the matrix is positive definite, it can be shown that the
eigenvalues p ®? of the matrix I' are positive and non-zero, moreover, the right
eigenvectors satisfy the orthogonality property.

For non-trivial solutions As, Bs and Cs in equation (6.17), by vanishing the
determinant of the matrix (F — p ®? I) we can obtain the following sixth-order
polynomial in §
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56"'05154"'05252"‘053:0: (6.24)

where
ai (i=1, 2, 3) are real-valued coefficients of Cj; k and p o’.

Analysis of the ratios leads to the fact that only three positive, non-zero and
discrete values of & (i = 1, 2, 3) can be obtained. For each & in symmetric modes,
we can write the formal dependence of Bs and Cs on As in the form

L, —pwl,,—T.[
( 11 P ) 53 1213 AS — RAS (6.25)
rlS(FZZ —pw )_FIZFZS

Bs = fl(AS):

_ I - (Fll _sz)(rzz _Pa)z)
DR (Fzz —pP 0)2)—F12F23

A, =1SA; (6.26)

Relations of a similar type (Ba = RAs; and C, = - iSAq) can also be written for the
antisymmetric case. Now we can write down the general solution for the system
(6.15) —(6.16)

3

Ug Vs We f =3 A {cosgjz, R, cos¢&;z, iS; sin gsz} (6.27)

j=1
3
U,V W, } = JZ_:lAaj fingz, Rsing z,iS cosé 2}, (6.29)

Substitution (6.27) into (6.9) — (6.14) allows us to write the following relation
for the quantities o3, 7, and 7.

3
(O‘Z,TyZ,TXZXZ:h/Z = Z;[Hlj Sin(csz + (0), H,; COS(Z_,‘J-Z + (0),
=

H,; cos(¢&z +¢)|A; =0, (6.29)
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where ¢; = 0 and ¢z = 7/2 can be associated with symmetric and antisymmetric
modes of Lamb waves, in addition

H,; =Cik, + Csk,R; +C55&;S; +Cyslk, +k,R;)  (6:30)

H,; =Cul&R; +Kk,S,y )+ Cilé; +K,S)) (6.31)

2]

HSJ' C45(§jRj T kySJ )+C55(é:j + kxsj) (6.32)

Analysis of the equations allows us to assert that the presence of a nontrivial
solution to equation (6.28) is the cause of dispersion relations in closed form, such
as

&h
H11(H22H33_H23H32)tan( ; +
¢
+ H12(H23H31 - H21H33)tan(%+ @

+ H13(H21H32 - H22H31)tan(%+ ij (6.33)

This solution is expressed in the form of a transcendental equation that
implicitly relates the quantity x to k. For a fixed h a numerical iterative root-finding
method is used to calculate the allowable x for a range of k values. This feature is
the basis for the appearance of dispersion relations for the Lamb wave modes in
the direction of its propagation. Dispersion relations assume that the frequency x
of each mode is a unique function of k.

The appearance of Lamb waves in a laminated composite indicates that the
interfaces between the layers are perfectly connected. The z-axis displacement
components of each layer in equation (6.15) and (6.16) must be modified in
exponential form to account for the heterogeneity of the multilayer laminate

U=Aexp(iéz), V=Bexp(ifz), W =-iCexp(iz). (6.34)

In addition, the coefficients in (6.33) can be written in matrix form
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[F—pa)zl] {A,B,C}=0. (6.35)

Further, the general solution (6.33) for each layer of the laminate can be
represented as

UVv.Ww}= exp{i [ (k,x + kyy)— a)t] } . (6.36)

The interlaminar stress components o;, 7. and 7. in each plate can be
expressed as

{o-z,ryz,rxz}zikexp{i[ (kxx+kyy)—a)t] } X

6

x QA (Hlj’sz ' Hsj)eXp(iij):

j=1
Hl(j+1):H1j' H2(j+1):_H2jr H3(j+1):_H3j, ]=13,5.(6.37)

In conventional laminar layers, symmetric and antisymmetric modes cannot
exist separately. However, when creating composite structures, symmetrical
laminates are practically used. Imposing boundary conditions on both the top and
middle surfaces of the plane can, however, serve as a reliable method for separating
the two types of wave modes. The boundary conditions for the absence of strong
bonding on the top surface of the laminate are determined by the expression

e T 0. (6.38)

{O-z’z-yz’z-xz} .

The presence of symmetrical geometry and isotropic properties of the
laminate material leads to the need to take into account only half of the volume of
the laminate. In this case, it seems convenient to take into account the following
conditions on the stress and displacement components in the midplane for
symmetrical modes

=0. (6.39)

{WT T }Z=O

1 Pyzr P xz
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The presence of an antisymmetric mode is the reason for the existence of
boundary conditions for the average plane of the laminate, which can be written in
the form

u,0,0,} _,=0. (6.40)

The dispersion relation for each Lamb wave mode can be represented as an
explicit function W' (k, @), which can be considered as a conical surface in a three-
dimensional domain. In addition, to describe the dispersion relation between
frequency and wave vector, we will use the function G’ (w, k). In this case, the group
velocity of waves can be represented by the relation

3 _(0G"/ k) 641
9 (6G'Iow) |

For the Cartesian components of the group velocity we will use the following
matrix relation

(aW,\
C oy cosd -—sind
Tl 4 8%’ 9 (6.42)
Cqy sing  cose
koo |

where the subscripts x and y represent the components in x- and y-axes,
respectively.
The moduli of group velocity c; and angle fare equal

Coy

Cox

(A2 2 \0.5 B 1
cg—<CgX+ng) , 6,=tan

. (6.43)

The spatial direction of the group velocity vector for all sets ¢, from the origin
of the coordinate system at a given frequency can be defined as a wave curve. It is
worth noting that the radius vector connecting the origin (or source point) to a point
on the wave curve represents the distance traveled by the elastic disturbance per
unit time. Thus, the wave curve gives the location of the wave front per unit time
from the disturbance emitted by a point source acting through the origin at
time t=0.
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The dispersion relation can be expressed as the relationship between
quantities W/, kand 6

oW’ ok oW’
+ =0

ok 00 00 (6-44)

Taking into account the previous relations, we can also rewrite the formula for
the Cartesian components of the group velocity

[ oW’ )
C cosd —siné AL
= ok
Co| [sin® cosd | oW’ dk [ (6.45)
kok dé |

For practical calculation of the wave curve at a given frequency, a method can
be used that consists of performing a finite difference of the exact solutions of two
slowness curves. These curves represent the locus of points for two fairly close
frequencies @z = @,. Then the partial derivative of the quantity W’ with respect to
the wave vector is equal to

aﬂ’ ~ W, — (6.46)
K lomey  Ko(0)=ki(0) |

where k; and k; are explicit functions of 6.

Spectral dependences of the dimensionless group velocity ¢ = ¢,/cr for fixed
values of the dimensionless frequency f’= @ h/cr along the @direction of laminates
A1 (+456/-456)s and A, (+45/-45/0/90)s are given in Table 17 and Table 18. Data are
given for symmetrical (index “S”) and asymmetrical (index “A”) modes.
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Table 17. Spectral dependence for Lamb waves of laminate A; (symmetrical

modes)
, ¢ , s
f So SHo f Si Sz SH>
0.5 3.325 2.384 | 5.0 0.962 0.001 0.001
1.0 3.218 2.321 53 0.947 0.001 0.002
1.5 3.085 2.305 | 5.6 0.921 0.002 0.003
2.0 2.798 2.208 | 5.9 0.903 0.854 1.099
2.5 2.237 2.126 6.2 0.824 1.512 1.264
3.0 1.749 2.111 6.5 0.805 2.134 1.452
3.5 0.764 1.872 | 6.8 0.841 2.358 1.587
4.0 0.387 1.564 | 7.1 0.893 2.583 1.604
4.5 0.901 0.695 | 7.4 0.935 2.857 1.698
5.0 1.400 0.631 | 7.7 0.964 2.940 1.736
5.5 1.399 0.681 | 8.0 1.045 3.042 1.762
6.0 1.310 0.735 | 8.3 1.028 3.082 1.829
6.5 1.223 0.761 | 8.6 1.018 3.110 1.852
7.0 1.182 0.786 | 8.9 1.066 3.100 1.921
7.5 1.125 0.802 | 9.2 1.089 3.043 1.964
8.0 1.087 0.811 | 9.5 1.088 3.002 1.993
8.5 1.022 0.824 | 9.8 1.081 2.987 2.031
9.0 1.010 0.832 | 10.1 1.070 2.804 2.057
9.5 1.001 0.840 | 10.4 1.020 2.451 2.111
10.0| 1.000 0.846 | 10.8 0.993 2.220 2.125
10.5| 1.000 0.853 | 11.1 0.987 1.963 2.134
11.0| 0.981 0.859 | 11.4 0.968 0.995 2.173
11.5| 0.980 0.871 | 11.7 0.969 0.729 2.180
12.0| 0.974 0.880 | 12.0 0.970 0.484 2.186
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Table 18. Spectral dependence for Lamb waves of laminate A; (asymmetrical

modes)
Ry , s , ¢
f Ao f Az f A; As SH;3
0.5 0.651 2.5 0.882 8.5 0.593 0.003 0.001
1.0 0.847 2.9 2.456 8.6 0.612 0.227 0.001
1.5 0.851 33 2.614 8.7 0.715 0.418 0.002
2.0 0.856 3.7 2.913 8.8 0.783 0.623 0.003
2.5 0.623 4.1 3.111 8.9 0.805 0.701 0.003
3.0 0.678 4.5 3.152 9.0 0.890 0.862 0.004
3.5 0.699 4.9 3.112 9.1 0.904 0.871 0.125
4.0 0.734 5.3 3.087 9.2 0.928 0.885 0.364
4.5 0.790 5.7 2.924 9.3 0.957 0.889 0.541
5.0 0.802 6.1 2.631 9.4 0.981 0.896 0.683
5.5 0.813 6.5 2.185 9.5 1.061 0.900 0.754
6.0 0.845 6.9 1.598 9.6 1.082 0.882 0.974
6.5 0.887 7.3 1.273 9.7 1.106 0.874 1.116
7.0 0.902 7.7 0.832 9.8 1.125 0.856 1.277
7.5 0.883 8.1 0.401 9.9 1.143 0.830 1.452
8.0 0.879 8.5 0.368 10.0 1.162 0.795 1.583
8.5 0.872 8.9 0.420 10.1 1.175 0.791 1.986
9.0 0.870 9.3 0.468 10.2 1.188 0.784 2.178
9.5 0.868 9.7 0.502 10.3 1.205 0.781 2.376
10.0 | 0.867 10.2 0.539 10.7 1.203 0.791 2.715
10.5| 0.865 10.8 0.584 11.1 1.200 0.799 2.854
11.0| 0.864 11.2 0.615 11.4 1.192 0.825 3.185
11.5| 0.861 11.6 0.661 11.7 1.195 0.843 3.239
12.0| 0.859 12.0 0.690 12.0 1.146 0.906 3.378

The dispersion curves of Lamb waves in two types of laminated composites A;:
and A; are presented in Tables 17 — 20. The results are given for five symmetric
(Tables 17 and 19) and five antisymmetric (Tables 18 and 20) wave modes. All Lamb
waves, with the exception of the fundamental modes (Ao, So and SHo), have cutoff
frequencies. Note that the interaction of Lamb waves with delamination has been
most studied in the low-frequency range, where only fundamental modes exist. The
SHo and Sp modes have low dispersion in the low-frequency range, below the
frequency xh/cT = 0.5.
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Table 19. Spectral dependence for Lamb waves of laminate A, (symmetrical

modes)
, ¢ , s
f So SHo f Si Sz SH>
0.5 3.042 1.803 | 5.0 1.527 0.041 0.005
1.0 3.005 1.752 53 1.743 0.097 0.214
1.5 2.910 1.685 | 5.6 1.832 1.184 0.679
2.0 2.805 1.599 | 5.9 1.801 0.811 1.112
2.5 2.609 1.485 6.2 1.709 0.913 1.563
3.0 2.308 1.361 | 6.5 1.687 1.099 1.952
3.5 1.814 1.224 | 6.8 1.564 1.286 2.037
4.0 0.726 1.100 | 7.1 1.500 1.485 2.206
4.5 0.437 0.895 | 7.4 1.301 1.701 2.311
5.0 0.948 0.556 | 7.7 1.238 1.715 2.318
5.5 0.925 0.611 | 8.0 1.105 1.723 2.325
6.0 0.911 0.674 | 8.3 1.098 1.668 2.305
6.5 0.918 0.701 | 8.6 0.984 1.600 2.297
7.0 0.926 0.725 | 8.9 0.851 1.449 2.184
7.5 0.931 0.761 | 9.2 0.826 1.417 2.137
8.0 0.937 0.792 | 9.5 0.794 1.284 2.000
8.5 0.940 0.803 | 9.8 0.762 1.208 1.915
9.0 0.945 0.805 | 10.1 0.731 1.142 1.806
9.5 0.950 0.810 | 10.4 0.702 1.051 1.585
10.0| 0.954 0.815 | 10.8 0.701 0.984 1.658
10.5| 0.955 0.822 | 11.1 0.700 0.972 1.901
11.0| 0.956 0.829 | 11.4 0.702 0.900 1.052
11.5| 0.958 0.830 | 11.7 0.703 0.899 0.935
12.0| 0.960 0.842 | 12.0 0.704 0.898 0.854

It should be noted that the different frequency components within the wave
packet propagate at almost the same speed. This fact is the reason why the wave
packet retains its shape during its movement. In addition to this desirable feature,
lower attenuation compared to waves for the Ap wave mode and high sensitivity to
delamination are two other reasons that have increased interest in the use of
symmetric modes as diagnostic waves.

The symmetric mode S is relatively weak in magnitude compared to the A,
mode if the two modes are excited simultaneously. As a result, the mode of using
the Ao wave mode is preferable when diagnosing damage to the structure of
composites.
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Table 20. Spectral dependence for Lamb waves of laminate A, (asymmetrical

modes)
1 < , c% , c%
f Ao f Az f A A3 SH3
0.5 0.898 2.5 1.218 8.5 0.924 0.003 0.002
1.0 0.898 2.9 1.530 8.6 0.895 0.008 0.164
1.5 0.897 3.3 1.809 8.7 0.861 0.012 0.308
2.0 0.897 3.7 2.184 8.8 0.837 0.016 0.407
2.5 0.897 4.1 2.394 8.9 0.820 0.021 0.593
3.0 0.896 4.5 2.426 9.0 0.815 0.028 0.699
3.5 0.895 4.9 2.385 9.1 0.793 0.089 0.715
4.0 0.894 5.3 2.288 9.2 0.765 0.187 0.805
4.5 0.894 5.7 2.235 9.3 0.737 0.352 0.881
5.0 0.893 6.1 1.980 9.4 0.718 0.605 0.973
5.5 0.893 6.5 1.684 9.5 0.694 0.831 1.113
6.0 0.893 6.9 1.295 9.6 0.711 0.927 1.188
6.5 0.892 7.3 1.064 9.7 0.725 1.164 1.246
7.0 0.892 7.7 0.845 9.8 0.740 1.235 1.358
7.5 0.891 8.1 0.555 9.9 0.756 1.380 1.455
8.0 0.891 8.5 0.485 10.0 0.768 1.486 1.557
8.5 0.891 8.9 0.316 10.1 0.773 1.604 1.618
9.0 0.890 9.3 0.484 10.2 0.791 1.728 1.735
9.5 0.890 9.7 0.587 10.3 0.804 1.872 1.882
10.0| 0.890 10.2 0.615 10.7 0.809 1.914 1.912
10.5| 0.889 10.8 0.684 11.1 0.816 2.055 1.975
11.0| 0.888 11.2 0.700 11.4 0.822 2.083 1.994
11.5| 0.887 11.6 0.752 11.7 0.824 2.099 2.026
12.0| 0.886 12.0 0.801 12.0 0.825 2.001 2.048

The calculation results indicate that the Ao mode provides higher resolution
than the Sp and SHo modes. The reason for this is the fact that the wavelength of
the Ao mode is always shorter than that of the So mode, especially in the low
frequency range. In the higher frequency range, Lamb wave propagation in a
relatively thick symmetrical corner laminate (+45¢/-456)s has a rather complex
behavior.

The group velocity for the SHo and So modes has a fairly high level of dispersion.
In addition, targeted analysis showed that the symmetric mode dispersion in the
quasi-isotropic laminate A, (+45/-45/0/90); is significantly stronger. On the other
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hand, the dispersion of the antisymmetric wave mode Ay in both laminates is
weaker beyond frequency xh/cT = 1.

The results of calculations of group velocity dispersion surfaces for wave
modes in the laminar composites used make it possible to represent the polynomial
dependence ¢y =c% (f’) in matrix form

¢, =d ('), k=01..51ie(S

A So.a,+SHo o+ SHo 4 ) (647)

0,A"
0.076 —-0.631 1467 -1.514 3.798
| —0.009 0.182 -1.09% 1813 2.264 (6.48)
Ik —-0.004 0.092 -0.637 1.231 1.759 | '

-0.002 0.047 -0.307 0.469 1.584
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AFTERWORD

The kinetics of surface and volume localization of deformation of laminar
composite structures can be studied using various wavelet analysis techniques. In
particular, the results of the use of acoustic emission for wavelet analysis of laminar
composites, the use of the zero-order energy moment of a pulse load to identify
damage, Haar wavelet methods, the distribution of potential deformation fields
under continuous wavelet transformations, as well as the kinetics of Lamb wave
propagation in isotropic composite structures.

Analysis of the pulsed effect of acoustic emission on samples of carbon fiber
composites with fiber filling made it possible to determine the spectral distribution
of average energy, average entropy, and energy coefficient. Estimates of both the
critical values of threshold values for choosing the maximum and minimum
parameters “threshold max” and “threshold min” and the distribution density of
wavelets in the min-max band were obtained. It should be noted that a significant
number of wavelets were recorded outside the threshold values, in particular Haar-
and Daubechies- wavelets. Preference analysis indicates different types of wavelets
for distributions according to the specified types of parameters: Haar- and
Daubechies- wavelets for H - distribution, Daubechies- and Dmeyers- wavelets
for E - distribution and only Dmeyers-wavelet for 77— distribution. The result of the
final preferences for the min-max parameter indicates the Daubechies-wavelet.

However, the specified restriction on the choice of wavelet types is not
absolutely strict and final, since, for example, the first element in the chain of
ranking the distribution of wavelets within threshold values is the 7-parameter.
Consequently, decomposition with respect to the 7-parameter can be carried out
using, in particular, the Haar-wavelet. In addition, a separate study on the relative
amount of spectral energy for different types of acoustic signals favors coif5- and
dmey-wavelets.

Difficulties in determining local deformations in two-component laminar
composites by analytical methods indicate the need to study the moduli and
direction of wave propagation in composite samples. The work carried out an
analysis of the first acoustic mode, which includes information on transverse
deflection, phase and group velocities. The critical values of the relative frequencies
at which the phase velocity reaches saturation are obtained.

Features of the spectral distribution of the applied load for plates made of a
two-component composite indicate a decrease in the arrival time with increasing
frequency due to an increase in group velocities. The results obtained can be used
for both isotropic and anisotropic composites.

The work evaluates the influence of noise on the arrival time of signals. The
spread of directions in which group velocities change complicates the numerical
analysis procedure. Therefore, to solve the problem, calculated group velocities
from the dispersion relations of wave propagation are used. It was found that the
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presence of noise up to 2% and 5% does not have a significant effect on either the
spatial distribution of the applied load or the spectral distribution of the arrival time
of noisy signals.

A significant variation in the directions of group velocities causes an increase
in the probability of errors occurring during numerical analysis. One of the options
for overcoming these difficulties may be the use of calculated group velocities
obtained from the dispersion relations of wave propagation.

Numerical evaluations based on the presence of the influence of geometric
parameters of composite samples, the direction of reinforced inclusions on the free
vibration of inversely bonded composite laminated shells, allowed us to identify
trends in the spectral distribution for composite spherical, elliptical and cylindrical
shells. The possibility of imposing generalized boundary conditions on inversely
coupled laminated composites when studying free vibrations inside their volume
has been discovered. In particular, in order to interface with the Haar wavelet
integral constant, a boundary condition was added to the control function of the
main system.

It is shown that the nature of the connections in the composite shell structure,
as well as the type of boundary conditions, significantly affect the frequency within
volumetric vibrations only when a fixed threshold value is exceeded. Characteristic
numerical intervals of relative changes in dimensionless frequencies of three- and
four-layer shells are determined for all types of boundary conditions.

The dependence of the damage index vector of the composite plate on the
relative delamination area is analyzed in detail. Variations in multiple values of the
damage index vector are associated with the presence of a delamination zone in
composite plates. It is shown that the results of wavelet analysis of damaged
composites make it possible to detect delamination areas of less than 1%.

It was found that only the fundamental modes for Lamb waves in laminated
composites do not have cutoff frequencies. On the other hand, only the presence
of fundamental modes in the low-frequency range makes it possible to analyze the
correlation of Lamb waves with the location of delamination volumes. Low
attenuation, as well as high sensitivity to stratification, are the reasons that have
increased interest in the use of the symmetric Ao mode as a diagnostic wave. It
should be noted that the preferred choice of mode types is difficult for the high-
frequency range of thick laminated composites, in which the propagation of Lamb
waves has complex behavior.

The calculation results indicate a high level of group velocity dispersion for the
symmetric modes SHo and So. In addition, a cutoff frequency was discovered, above
which the dispersion of the antisymmetric wave mode AO becomes significantly
weaker. The results of wavelet analysis made it possible to present the dispersion
dependences of the group velocity for symmetric and antisymmetric wave modes
in polynomial form.



117

REFERENCES

1. Grossman A. and Morlet J. (1984) Decomposition of Hardy Functions into
Square Integrable Wavelets of Constant Shape. SIAM Journal on
Mathematical Analysis, 15, 723-736.

2. Meyer Y. “Wavelets and Operators”, Cambridge Studies in Advanced
Mathematics v. 37, Cambridge University Press, Cambridge, England, 1992.

3. Daubechies I. (1990) The Wavelet transform time-frequency localization
and signal analysis. IEEE Transactions on Information Technology, 36(5),
961-1005.

4. Mallat S.G. A theory for multiresolution signal decomposition: The wavelet
representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674-693.

5. Haar A. Zur Theorie der orthogonalen Functionsysteme, Dissertation
(Gottingen, 1909); Mathematische Annalen, 69 (1910), 331—371, 71
(1912), 33-53.

6. Ferreira A.J.M., Castro L.M.S. and Bertoluzza S. A high order collocation
method for the static and vibration analysis of composite plates using a
first-order theory. Composite structures, 89, 424-432.

7. Castro L.M.S., Ferreira A.J.M., Bertoluzza S., Batra R.C. and Reddy J.N. A
wavelet collocation method for the static analysis of sandwich plates using
a layerwise theory. Composite Structures, 92, 1786-1792.

8. Rahimkhani P, Ordokhami Y. and Lima P.M. An improved composite
collocation method for distributed-order fractional differential equations
based on fractional Chelyshkov wavelets. Applied Numerical Mathematics,
145, 1-27.

9. Nastos C.V. and Saravanos D.A. A finite wavelet domain method for wave
propagation analysis in thick laminated composite and sandwich plates.
Wave Motion, 95, 102543.

10.Zuo H., Chen Y. and Jia F. (2020) A new CO layerwise wavelet finite element
formulation for the static and free vibration analysis of composite plates.
Composite Structures, 254, 112852.

11.Khalili A., Jha R. and Samaratunga D. (2017) The Wavelet Spectral Finite
Element-based user-defined element in Abaqus for wave propagation in
one-dimensional composite structures. Simulation: Transactions of the
Society for Modeling and Simulation International, 93(5), 397-408.

12.Zuo H. et al. (2021) Unified wavelet finite element formulation for static
and vibration analysis of laminated composite shells. Composite Structures,
272,114207.

13.Samaratunga D., Jha R. and Gopalakrishnan S. (2014) Wave propagation
analysis in laminated composite plates with transverse cracks using the
wavelet spectral finite element method. Finite Elements in Analysis and
Design, 89, 19-32.



118

14.Mitra M., Gopalakrishnan S. (2006) Wavelet based spectral finite element
for analysis of coupled wave propagation in higher order composite beams.
Composite Structures, 73, 263-277.

15.Mitra M., Gopalakrishnan S. (2006) Wavelet based spectral finite element
modelling and detection of de-lamination in composite beams. Proceedings
of the Royal Society Part A, 462, 1721-1740.

16.Samaratunga D., Jha R. and Gopalakrishnan S. (2016) Wavelet spectral finite
element for modeling guided wave propagation and damage detection in
stiffened composite panels. Structural Health Monitoring, 15(3), 317-334.

17.Samaratunga D., Jha R. and Gopalakrishnan S. (2014) Wavelet spectral finite
element for wave propagation in shear deformable laminated composite
plates. Composite Structures, 108, 341-353.

18.Samaratunga D., Jha R. (2015) Wavelet spectral finite element modeling for
wave propagation in adhesively bonded composite joints. 23 AIAA/AHS
Adaptive Structures Conference, 10.2514/6.2015-1727.

19.Kaminski M.M. (2002) Wavelet-Based Finite Element Elastodynamic
Analysis of Composite Beams. 5" World Congress on Computational
Mechanics. WCCM V-At: Vienna, Austria, July 7-12, 2002, 1-10.

20.MncapeHko A.H., MakcumeHtoKk A.A., 3armHanno WU.B. Matematmyeckoe
MOZENMPOBAHME HECTALMOHAPHOro TemMnepaTypHOro noas C Yy4eTom
B/IaroCOAEpP!KaHMA B CTPOUTENbHbIX MaTepuanax. BicHuk Oo0ecbKoi
OdepxasHoi akademii bydisHuymea ma apximekmypu. - Opgeca: OJABA,
2015. - Bun. 57. C. 347-355.

21.MncapeHko O.M., BiniHcbka J1.M. MogentoBaHHA HecCTalioHapHOro
TemnepaTypHOro noJsAa 3 ypaxyBaHHAM HAsfBHOCTI BOJOrM B OyaiBenbHUX
maTepianax //36ipHuUK HayKosux npaye. Cepis: 2anysese
MawuHobydysaHHs, bydisHuymeo. - NMontasa: MonTHTY, 2016. - Bun. 2 (47).
C. 198-205.

22.Zaginaylo 1.V., Maksimeniuk Ya.A. and Pysarenko A.N. (2017) Two-
Dimensional Numerical Simulation Study of the Effective Thermal
Conductivity Statistics for Binary Composite Materials. International
Journal of Heat and Technology, 35, 2, 364 - 370.

23.Pysarenko A. and Zaginaylo I. (2021) Influence of matrix-filler thermal
conductivity on macro heat transfer in two-component composites.
SSDCMS 2021, IOP Conf. Series: Materials Science and Engineering, 1162,
012013.

24.Pysarenko A. and Zaginaylo I. (2019) Numerical Simulation of the Heat
Conductivity of Randomly Inhomogeneous Two-Dimensional Composite
Material. Hauppage, New York: Nova Science Publisher’s Inc., 176.

25.Pysarenko A. N. Wavelet transform for polymer composites. 36ipHuk mes
MIXCHAPOOHOI HAayKOBO-mMexHIYHOI KoHepeHUii "CmpykmypoymeopeHHs



119

ma  pylUHYy8aHHA Komno3uuyiliHux 6yodisenbHux mamepianie ma
KoHcmpykuyit". Opeca: OOABA, 2023. C. 116-119.

26.Dong H. et al. (2022) A Mixed Wavelet-Learning Method of Predicting
Macroscopic Effective Heat Transfer Conductivities of Braided Composite
Materials. Communication in Computational Physics, 31(2), 593-625.

27.Zauner G, Mayr G. and Hendorfer G. (2006) Application of wavelet analysis
in active thermography for non-destructive testing of CFRP composites.
Proceedings of SPIE. The International Society for Optical Engineering. 6383.

28.Hayashi T., Wakayama S. (2008) Bending fracture behavior of 3D -woven
SiCSiC composites with transpiration cooling structure characterized by ae
wavelet analysis. Journal of Acoustic Emission, 26, 160-171.

29.Rashidi M.M., Erfani E. (2009) New analytical method for solving Burgers’
and nonlinear heat transfer equations and comparison with HAM.
Computer Physics Communications, 180, 1539-1544.

30.Dong H. et al. (2021) A wavelet-based learning approach assisted multiscale
analysis for estimating the effective thermal conductivities of particulate
composites. Computer Methods in Applied Mechanics and Engineering,
374, 113591.

31.Liu W., Yang X. and lJinxing S. (2020) An Integrated Fault Identification
Approach for Rolling Bearings Based on Dual-Tree Complex Wavelet Packet
Transform and Generalized Composite Multiscale Amplitude-Aware. Shock
and Vibration, 8851310.

32.Zheng J. et. al. (2019) An ImprovedEmpirical Wavelet Transform and
Refined Composite Multiscale Dispersion Entropy Based Fault Diagnosis
Method for Rolling Bearing. IEEE Access, 2940627.

33.Cheng Y. et al. (2022) Battery State of Charge Estimation Based on
Composite Multiscale Wavelet Transform. Energies, 15, 2064.

34.Baccar D. and Soffker D. (2017) Identification and classification of failure
modes in laminated composites by using a multivariate statistical analysis
of wavelet coefficients. Mechanical Systems and Signal Processing, 96,
77-87.

35.Denis L. et al. (2010) Scalable Intraband and Composite Wavelet-Based
Coding of Semiregular Meshes. IEEE Transactions on Multimedia, 12 (8),
773-789.

36.Kaminski M. (2003) Wavelet-based homogenization of unidirectional
multiscale composites. Computational Materials Science, 27, 446-460.

37.Sezer S. and Aliev I.A. (2010) A new characterization of the Riesz potential
spaces with the aid of a composite wavelet transform. Journal of
Mathematical Analysis and Applications, 372 (2), 549-558.

38.Chapa J. and Rao R.M. (2000) Algorithms for Designing Wavelets to Match
a Specified Signal. IEEE Transactions on Signal Processing, 48 (12),
3395-3406.



120

39.Jeon J.Y. et Al. (2020) 2D-wavelet wavenumber filtering for structural
damage detection using full steady-state wavefield laser scanning. NDT and
E International, 116, 102343.

40.Kharrat M., Ramasso E., Placet V., Boubakar M.L. (2016) A signal processing
approach for enhanced Acoustic Emission data analysis in high activity
systems: Application to organic matrix composites. Mechanic Systems and
Sygnal Processing, 70-71, 1038-1055.

41.Velayudham A., Krishnamurthy R., Soundarapandian T. (2005) Acoustic
emission based drill condition monitoring during drilling of glassphenolic
polymeric composite using wavelet packet transform. Materials Science
and Engineering A, 412, 141-145.

42.Wang X. et al. (2015) Acoustic emission detection for mass fractions of
materials based on wavelet packet technology. Ultrasonics, 60, 27-32.

43.Heidary et al. Acoustic emission signal analysis by wavelet method to
investigate damage mechanisms during drilling of composite materials.
Proceedings of the ASME 2010 10th Biennial Conference on Engineering
Systems Design and Analysis ESDA2010 July 12-14, 2010, Istanbul, Turkey,
409-416.

44 .Bak M., KalaiChalvan K., Vijayaraghavan and Sridhar BTN. (2013) Acoustic
emission wavelet transform on adhesively bonded single-lap joints of
composite laminate during tensile test. Journal of Reinforced Plastics and
Composites, 32(2), 87-95.

45.Adamczak-Bugno A. (2019) Assessment of Destruction Processes in Fibre
Cement Composites Using the Acoustic Emission Method and Wavelet
Analysis. IOP Conference Series: Materials Science and Engineering, 471,
032042.

46.Meyer E., Tuthill T. (1995) Bayesian classification of ultrasound signals using
wavelet coefficients. IEEE Natl. Aerospace and Electronics Conf. (NAECON),
1, 240-243.

47.Beheshtizadeh N., Mostafapour A. (2016) Characterization of carbon
fiberepoxy composite damage by acoustic emission using FFT and Wavelet
analysis. Advanced Engineering Forum 17:77-88.

48.Qjao S. et al. (2023) Cluster analysis on damage pattern recognition in
carbonepoxy composites using acoustic emission wavelet packet. Journal
of Reinforced Plastics and Composites, 42(19-20), 1006-1021.

49.Mohammadi R. et al. (2017) Correlation of acoustic emission with finite
element predicted damages in open-hole tensile laminated composites.
Composites Part B: Engineering, 108, 427-435.

50.Loutas T.H., Kostopoulos V., Ramirez-Jimenez C. and Pharaon M. (2006)
Damage evolution in center-holed glasspolyester composites under quasi-
static loading using timefrequency analysis of acoustic emission monitored
waveforms. Composites Science and Technology, 66, 1366-1375.



121

51.Qi G., Bathorst A., Hashemi J. and Kamala G. (1977) Discrete wavelet
decomposition of acoustic emission signals from carbon-fiber-reinforced
composites. Composites Science and Technology, 57, 389-403.

52.Kamala G., Hashemi J. and Barhorst A.A. (2001) Discrete-Wavelet Analysis
of Acoustic Emissions During Fatigue Loading of Carbon Fiber Reinforced
Composites. Journal of Reinforced Plastics and Composites, 20(3), 222-238.

53.Dunegan H.L., Harris D.O. and Tatro C.A. (1968) Fracture analysis by use of
acoustic emission. Engineering Fracture Mechanics, 1, 105-122.

54.Ghoshal A. et. al. (2007) Health Monitoring of Composite Plates using
Acoustic Wave Propagation, Continuous Sensors and Wavelet Analysis.
Journal of Reinforced Plastics and Composites, 26, 95-112.

55.Tiwari K.A., Raisutis R. and Samaitis V. (2017) Hybrid Signal Processing
Technique to Improve the Defect Estimation in Ultrasonic Non-Destructive
Testing of Composite Structures. Sensors (Basel), 17(12), 1-21.

56.Stankevych 0., Skalskyi V., Klym B. and Velykyi P. (2022) Identification of
fracture mechanisms in cementitious composites using wavelet transform
of acoustic emission signals. Procedia Structural Integrity, 36, 114-121.

57.Thomas J.-H. (2008) Investigation of damage mechanisms of composite
materials multivariable analysis based on temporal and wsvelet features
extracted from acoustic emission signals. Journal of the Acoustical Society
of America, 123(5): 3082.

58.Barile C. et al. (2022) Acoustic emission waveforms for damage monitoring
in composite materials: Shifting in spectral density, entropy and wavelet
packet transform. Structural Health Monitoring, 21 (4), 1768-1789.

59.Fotouhi M. et al. (2015) Investigation of the damage mechanisms for mode
| delamination growth in foam core sandwich composites using acoustic
emission. Structural Health Monitoring, 14(3), 265-280.

60.Sung D.-U., Kim C.-G. and Hong C.-S. (2002) Monitoring of impact damages
in composite laminates using wavelet transform. Composites Part B, 33,
35-43.

61.Gang Q. (1997) On predicting the fracture behavior of CFR and GFR
composites using wavelet-based AE techniques. Engineering Fracture
Mechanics, 58(4), 363-385.

62.Loutas T.H., Sotiriades G. and Kostopoulos V. (2004) On the application of
wavelet transform of AE signals from composite materials. Conference:
European Working Group on Acoustic Emission, Berlin, Germany, 42,
433-445.

63.Beheshtizaeh N., Mostafapour A. (2017) Processing of acoustic signals via
wavelet & Choi - Williams analysis in three-point bending load of
carbon/epoxy and glass/epoxy composites. Ultrasonics, 79, 1-8.



122

64.Legendre S., Goyette J. and Massicotte D. (2001) Ultrasonic NDE of
composite material structures using wavelet coefficients. NDT&E
International, 34, 31-37.

65.Chenggiang G., Hangong W. and Nenjiun Y. (2010) Ultrasonic Testing
System of Fiber-Reinforced Composites and Wavelet-Based Echo Signal
Processing. Engineering, Materials Science. Third International Conference
on Information and Computing, 4 June 2010, 2, 293-296.

66.0skouei A.R., Ahmadi M. (2008) Using wavelet transform to locate acoustic
emission source in composite plate with one sensor. Journal of the Acoustic
Society of America, 123(5), 2212-2215.

67.Swit G., Adamczak A. and Krampikowska A. (2017) Wavelet Analysis of
Acoustic Emissions during Tensile Test of Carbon Fibre Reinforced Polymer
Composites. IOP Conference Series: Materials Science and Engineering,
245(2), 022031.

68.Ni Q.-Q., Iwamoto M. (2002) Wavelet transform of acoustic emission signals
in failure of model composites. Engineering Fracture Mechanics, 69,
717-728.

69.Munoz C.Q.G., Jiménez A.A. and Marquez F.P.G. (2018) Wavelet transforms
and pattern recognition on ultrasonic guides waves for frozen surface state
diagnosis. Renewable Energy, 116(B), 42-54.

70.0skouei A.R., Ahmadi M. and Hajikhani M. (2009) Wavelet-based acoustic
emission characterization of damage mechanism in composite materials
under mode | delamination at different interfaces. eXPRESS Polymer
Letters, 3(12), 804-813.

71.Heidary H., Ahmadi M., Rahimi A. and Minak G. (2012) Wavelet-based
acoustic emission characterization of residual strength of drilled composite
materials. Journal of Composite Materials, 47(23), 2897-2908.

72.Qi G. (2000) Wavelet-based AE characterization of composite materials.
NDT&E International, 33, 133-144.

73. Su Zh., Ye Land Bu X. (2002) A damage identification technique for CFEP
composite laminates using distributed piezoelectric transducers.
Composite Structures, 57, 465-471.

74.Ghasemi-Ghalebahman A., Ashory M.-R. and Kokabi M.-J. (2018) A proper
lifting scheme wavelet transform for vibration-based damage identification
in composite laminates. Journal of Thermoplastic Composite Materials,
31(5), 668-688.

75.Karimi N.Z., Minak G. and Kianfar P. (2015) Analysis of damage mechanisms
in drilling of composite materials by acoustic emission. Composite
Structures, 131, 107-114.

76.Fotouhi M., Sadeghi S., Jalalvand M. and Ahmadi M. (2017) Analysis of the
damage mechanisms in mixed-mode delamination of Ilaminated



123

composites using acoustic emission data clustering. Journal of
Thermoplastic Composite Materials, 30(3), 318-340.

77 .Wronkowicz-Katunin A., Katunin A., Nagode A. and Klemenc J. Classification
of Cracks in Composite Structures Subjected to Low-Velocity Impact Using
Distribution-Based Segmentation and Wavelet Analysis of X-ray
Tomograms. Sensors, 21(24), 10.3390/s21248342.

78.Liu Y., Li Zh. and Zhang W. (2010) Crack detection of fibre reinforced
composite beams based on continuous wavelet transform. Nondestructive
Testing and Evaluation, 25(1), 25-44.

79.Staszewski W.J., Pierce S.G., Worden K. and Culshaw B. (1999) Cross-
wavelet analysis for lamb wave damage detection in composite materials
using optical fibres. Key Engineering Materials, 167-168, 373-380.

80.Katunin A., Przystatka P. (2014) Damage assessment in composite plates
using fractional wavelet transform of modal shapes with optimized
selection of spatial wavelets. Engineering Applications of Artificial
Intelligence, 30, 73-85.

81.Barile K. et al. (2019) Damage characterization in composite materials using
acoustic emission signal-based and parameter-based data. Composites Part B,
178, 107469.

82.Khamedi R. et al. (2019) Damage characterization of carbon/epoxy
composites using acoustic emission signals wavelet analysis. Composite
Interfeces, 27(1), 1-14.

83.Marec A., Thomas J.-H. and Guerjouma R.El. (2008) Damage
characterization of polymer-based composite materials Multivariable
analysis and wavelet transform for clustering acoustic emission data.
Mechanical Systems and Signal Processing, 22, 1441-1464.

84.Kessler S.S., Spearing S.M. and Soutis C. (2002) Damage detection in
composite materials using Lamb wave methods. Smart Materials and
Structures, 11, 269-278.

85.Sohn H., Park H.W., Law K.H. and Farrar C.R. (2007) Damage Detection in
Composite Plates by Using an Enhanced Time Reversal Method. Journal of
Aerospace Engineering, 20(3), 141-151.

86.Ashory M.-R., Ghasemi-Ghalebahman A. and Kokabi M.-J. (2016) Damage
detection in laminated composite plates via an optimal wavelet selection
criterion. Journal of Reinforced Plastics and Composites, 35(24), 1761-1775.

87.Cao M., Qiao P. (2008) Damage detection of laminated composite beams
with progressive wavelet transforms. Procceeding of SPIE. The International
Society for Optical Engineering 693402.

88.Chrysafi A.P., Athanasopoulos N. and Siakavellas N.J. (2017) Damage
detection on composite materials with active thermography and digital
image processing. Intrnational Journal of Thermal Sciences, 116, 242-253.



124

89. Ashory M.-R., Ghasemi-Ghalebahman A. and Kokabi M.-J. (2018) Damage
identification in composite laminates using a hybrid method with wavelet
transform and finite element model updating. Proceedings of the Institution
of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,
232(5), 815-827.

90.Katunin A. (2011) Damage identification in composite plates using two-
dimensional B-spline wavelets. Mechanical Systems and Signal Processing,
25, 3153-3167.

91.Janeliukstis R. et al. (2016) Damage Identification in Polymer Composite
Beams Based on Spatial Continuous Wavelet Transform. IOP Conference
Series: Material Science and Engineering, 111, 012005.

92.Zhou J,, Li Z. and Chen J. (2018) Damage identification method based on
continuous wavelet transform and mode shapes for composite laminates
with cutouts. Composite Structures, 191, 12-23.

93.Azuara G., Ruiz M. and Barrera E. (2021) Damage Localization in Composite
Plates Using Wavelet Transform and 2-D Convolutional Neural Networks.
Sensors, 21(17), s21175825.

94.Zumpano G., Meo M. (2008) Damage localization using transient non-linear
elastic wave spectroscopy on composite structures. International Journal of
Non-Linear Mechanics, 43, 217-230.

95.Molchanov D., Safin A and Luhyna N. (2016) Damage monitoring of aircraft
structures made of composite materials using wavelet transforms. IOP
Conference Series: Materials Science and Engineering, 153, 012016.

96.Katunin A. (2010) Identification of multiple cracks in composite beams using
discrete wavelet transform. Scientific Problems of Machines Operation and
Maintenance, 2(162), 41-52.

97.Salehian A. Identifying the Location of a Sudden Damage in Composite
Laminates Using Wavelet Approach. Masters Theses Worcester Polytechnic
Institute, 2003.

98.Yu W., Shenfang Y. and Lei Q. (2011) Improved Wavelet-based Spatial Filter
of Damage Imaging Method on Composite Structures. Chinese Journal of
Aeronautics, 24, 665-672.

99.Méndez A. et al. (2015) Micromorphological Characterization of Zinc/Silver
Particle Composite Coatings. Microscopy Research and Technique, 78,
1082-1089.

100. Gallego A., Moreno-Garcia P. and Casanova C.F. (2013) Modal analysis of
delaminated composite plates using the finite element method and
damage detection via combined Ritz/2D-wavelet analysis. Journal of Sound
and Vibration, 332, 2971-2983.

101. Katunin A. (2013) Modal-Based Non-Destructive Damage Assessment in
Composite Structures Using Wavelet Analysis: A Review. International
Journal of Composite Materials, 3(6B), 1-9.



125

102. Sha G. et al. (2020) Multiple damage detection in laminated composite
beams by data fusion of Teager energy operator-wavelet transform mode
shapes. Composite Structures, 235, 111798.

103. Katunin A. (2015) Nondestructive Damage Assessment of Composite
Structures Based on Wavelet Analysis of Modal Curvatures: State-of-the-
Art Review and Description of Wavelet-Based Damage Assessment
Benchmark. Shock and Vibration, (735219):1-19.

104. Spagnoli A., Montanari L., Basu B. and Broderick B. (2014) Nonlinear
damage identification in fiber-reinforced cracked composite beams
through time-space wavelet analysis. Procedia Materials Science, 3,
1579-1584.

105. Yan Y.).,, Yam L.H. (2002) Online detection of crack damage in composite
plates using embedded piezoelectric actuatorssensors and wavelet
analysis. Composite Structures, 58, 29-38.

106. Gerasimov V., Khandetsky V. and Gnoevoy S. (2006) Research of
probability characteristics in defect detection of composite materials using
wavelet transform. International Journal of Materials and Product
Technology, 27(3/4), 210-220.

107. Gomes G.F. et al. (2018) The use of intelligent computational tools for
damage detection and identification with an emphasis on composites -
A Review. Composite Structures, 196, 44-54.

108. Yam L.H., Yan Y.J. and JiangJ.S. (2003) Vibration-based damage detection
for composite structures using wavelet transform and neural network
identification. Composite Structures, 60, 403-412.

109. Katunin A. (2014) Vibration-based spatial damage identification in
honeycomb-core sandwich composite structures using wavelet analysis.
Composite Structures, 118, 385-391.

110. Bayissa W.L., Haritos N. and Thelandersson S. (2008) Vibration-based
structural damage identification using wavelet transform. Mechanical
Systems and Signal Processing, 22, 1194-1215.

111. Yan G., Zhou L.L. and Yuan F.G. (2005) Wavelet-based built-in damage
detection and identification for composites. Conference: Smart structures
and materials 2005: sensors and smart structures technologies for civil,
mechanical, and aerospace systems, SPIE, 5765, 324-334.

112. Katunin A., Kostka P. (2014) Characterisation of impact damage of
composite structures using wavelet-based fusion of ultrasonic and optical
images. Advanced Composites Letters, 23(5), 123-130.

113. Kumar M., Pandit S. (2014) A composite numerical scheme for the
numerical simulation of coupled Burgers’ equation. Computer Physics
Communications, 185, 809-817.



126

114. Kim K. et al. (2021) Application of Haar wavelet discretization method for
free vibration analysis of inversely coupled composite laminated shells.
International Journal of Mechanical Sciences, 204, 106549.

115. Majak J. et al. (2015) Convergence theorem for the Haar wavelet based
discretization method. Composite Structures, 126, 227-232.

116. Xie X. et al. (2014) Free vibration analysis of composite laminated
cylindrical shells using the Haar wavelet method. Composite Structures,
109, 169-177.

117. So S.-R. et al. (2021) Haar wavelet discretization method for free
vibration study of laminated composite beam under generalized boundary
conditions. Journal of Ocean Engineering and Science, 6(1), 1-11.

118. Fan J., Huang J. (2018) Haar Wavelet Method for Nonlinear Vibration of
Functionally Graded CNT-Reinforced Composite Beams Resting on
Nonlinear Elastic Foundations in Thermal Environment. Shock and
Vibration, 9597541.

119. Majak J. et al. (2018) New Higher Order Haar Wavelet Method
Application to FGM Structures. Composite Structures, 201, 72-78.

120. Majak J. et al. (2015) On the Accuracy of the Haar Wavelet Discretization
Method. Composites Part B: Engineering, 80, 321-327.

121. Dai Q., Qin Z. and Chu F. (2021) Parametric study of damping
characteristics of rotating laminated composite cylindrical shells using Haar
wavelets. Thin-Walled Structures, 161, 107500.

122. Chui C.K., Han N. (2021) Wavelet thresholding for recovery of active sub-
signals of a composite signal from its discrete samples. Applied and
Computational Harmonic Analysis, 52, 1-24.

123. Jeong H. (2001) Analysis of plate wave propagation in anisotropic
laminates using a wavelet transform. NDT&E International, 34, 185-190.
124. Yahiaoui A., Med M.S.C. and Laddada S. (2016) Analysis of the composite
materials using the wavelet transforms. Journal of Scientific & Industrial

Research, 75, 344-348.

125. Ulker-Kaustell M., Karoumi R. (2011) Application of the continuous
wavelet transform on the free vibrations of a steel—concrete composite
railway bridge. Engineering Structures, 33, 911-919.

126. Eremenko V., Zaporozhets A. (2019) Application of Wavelet Transform
for Determining Diagnostic Signs. Proceedings of the 15th International
Conference on ICT in Education, Research and Industrial Applications.
Integration, Harmonization and Knowledge Transfer. Volume |: Main
Conference, Kherson, Ukraine, June 12-15, 2019, 20190202.

127. Altabey W.A. (2021) Applying deep learning and wavelet transform for
predicting the vibration behavior in variable thickness skew composite
plates with intermediate elastic support. Journal of Vibroengineering, 23(4),
770-783.



127

128. Nam K.W. (2006) Bending strength of SisNs monolithic and SizNa/SiC
composite ceramics and elastic wave characteristics by wavelet analysis.
International Journal of Modern Physics B, 20(25, 26 & 27), 4279-4284.

129. Fotouhi M. Heidary H., Ahmadi M. and Pashmforoush F. (2012)
Characterization of composite materials damage under quasi-static three-
point bending test using wavelet and fuzzy C-means clustering. Journal of
Composite Materials, 46(15), 1795-1808.

130. Fedi M., Cascone L. (2011) Composite continuous wavelet transform of
potential fields with different choices of analyzing wavelets. Journal of
Geophysical Research: Solid Earth, 116(7), BO7104.

131. Huybrechs D., Vandewalle S. (2005) Composite quadrature formulae for
the approximation of wavelet coefficients of piecewise smooth and singular
functions. Journal of Computational and Applied Mathemanics, 180,
119-135.

132. Dahmen W., Schneider R. (1999) Composite wavelet bases for operator
equations. Mathematics of Computation, 68(228), 1533-1567.

133. Stevenson R. (2007) Composite wavelet bases with extended stability and
cancellation properties. SIAM Journal on Numerical Analysis, 45(1),
133-162.

134. Aliev L.A. et al. (2007) Composite Wavelet Transforms Applications and
Perspectives. eprint arXIV:0711.1424v1.

135. Katunin A., Przystatka P. (2014) Damage assessment in composite plates
using fractional wavelet transform of modal shapes with optimized
selection of spatial wavelets. Engineering Applications of Artificial
Intelligence, 30, 73-85.

136.Su C. et al. (2020) Damage assessments of composite under the
environment with strong noise based on synchrosqueezing wavelet
transform and stack autoencoder algorithm. Measurement, 156, 107587.

137. Bhattacharjee A., Nanda B.K. (2018) Damping study of composites using
wavelet analysis. Journal of Vibration and Control, 24(21), 5141-5151.

138. Yang C., Qyadiji O. (2017) Delamination detection in composite laminate
plates using 2D wavelet analysis of modal frequency surface. Computers
and Structures, 179, 109-126.

139. Gu H., Song G. and Qiao P. (2004) Delamination Detection of Composite
Plates Using Piezoceramic Patches and Wavelet Packet Analysis.
Proceedings of SPIE, 5393, 0277-786X/04, 220-230.

140. Rautela M. et al. (202) Delamination prediction in composite panels using
unsupervised-feature learning methods with wavelet-enhanced guided
wave representations. Composite Structures, 291, 115579.

141. Jiang T. et al. (2017) Detection of Debonding between Fiber Reinforced
Polymer Bar and Concrete Structure Using Piezoceramic Transducers and
Wavelet Packet Analysis. IEEE Sensors Journal, 17, 1992-1998.



128

142. Yan Y.J., Yam L.H. (2004) Detection of delamination damage in composite
plates using energy spectrum of structural dynamic responses decomposed
by wavelet analysis. Computers and Structures, 82, 347-358.

143. Jang B.-W. et al. (2012) Detection of impact damage in composite
structures using high speed FBG interrogator. Advanced Composite
Materials, 21, 29-44.

144. Wei Z., Yam L.H. and Cheng L. (2004) Detection of internal delamination
in multi-layer composites using wavelet packets combined with modal
parameter analysis. Composite Structures, 64, 377-387.

145. Farahani S.D., Sefidgar M. and Kowsary F. (2011) Estimation of kinetic
parameters of composite materials during the cure process by using
wavelet  transform and  mollification = method. International
Communications in Heat and Mass Transfer, 38, 1305-1311.

146. Kim K.-B., Hsu D.K. Barnard D.J. (2013) Estimation of porosity content of
composite materials by applying discrete wavelet transform to ultrasonic
backscattered signal. NDT&E International, 56, 10-16.

147. Velayudham A., Krishnamurthy R. and Soundarapandian T. (2005)
Evaluation of drilling characteristics of high volume fraction fibre glass
reinforced polymeric composite. International Journal of Machine Tools &
Manufacture, 45, 399-406.

148. Janeliukstis R. et al. (2017) Experimental structural damage localization in
beam structure using spatial continuous wavelet transform and mode
shape curvature methods. Measurement, 102, 253-270.

149. Ferreira D.B.B et al. (2004) Failure mechanism characterisation in
composite materials using spectral analysis and the wavelet transform of
acoustic emission signals. Insight, 46(5), 282-289.

150. Saponara V. et al. (2011) Fatigue damage identification in composite
structures through ultrasonics and wavelet transform signal processing.
Review of Progress in Quantitative Nondestructive Evaluation, 30, 927-934.

151. Din¢ E., Baleanu D. (2010) Fractional wavelet transform for the
guantitative spectral resolution of the composite signals of the active
compounds in a two-component mixture. Computers and Mathematics
with Applications, 59, 1701-1708.

152. Wu Y.-J., Shi X.-Z. and Zhuang T.G. (2000) Fusion of Wavelet Packets and
Neural Network in Detection of Composites. AIAA Journal, 38(6),
1063-1069.

153. Zhang Z. et al. (2019) Gearbox Composite Fault Diagnosis Method Based
on Minimum Entropy Deconvolution and Improved Dual-Tree Complex
Wavelet Transform. Entropy, 21(18), e211010018.

154. Scalea F.L. et al. (2007) Health Monitoring of UAV Wing Skin-to-spar Joints
using Guided Waves and Macro Fiber Composite Transducers. Journal of
Intelligent Material Systems and Structures, 18, 373-388.



129

155. Zhou Y. (2018) High-precision terahertz frequency modulated continuous
wave imaging method using continuous wavelet transform. Optical
Engineering, 57(02), 023108.

156. Rajendran P, Srinivasan S.M. (2016) Identification of Added Mass in the
Composite Plate Structure Based on Wavelet Packet Transform. Strain, 52,
14-25.

157. Ayari F., Amar C.B. (2015) Image de-noising of a metal matrix composite
microstructure using sure-let wavelet and weighted bilateral filter. 11th
International Conference on Information Assurance and Security (IAS),
Marrakech, Morocco, 2015, 146-151.

158. Migot A., Guirgiutiu V. (2017) Impact localization on a composite plate
with unknown material properties using pwas transducers and wavelet
transform. Proceedings of the ASME 2017 International Mechanical
Engineering Congress and Exposition IMECE2017, November 3-9, 2017,
Tampa, Florida, USA, 70140.

159. Sung D.-U. et al. (2000) Impact Monitoring of Smart Composite Laminates
Using Neural Network and Wavelet Analysis. Journal of Intelligent Material
Systems and Structures, 11, 180-190.

160. Ciampa F., Meo M. and Barberi E. (2012) Impact-localization-in-
composite-structures-of-arbitrary-cross-section. Structural Health
Monitoring, 11(6), 643-655.

161. Dai B. et al. (2017) Improved terahertz nondestructive detection of
debonds locating in layered structures based on wavelet transform.
Composite Structures, 168, 562-568.

162. Pepelyshev Yu.N., Tsogtsaikhan Ts. (2015) Investigation of the pulse
energy noise dynamics of IBR-2M using cluster analysis. Annals of Nuclear
Energy, 83, 50-56.

163. Zhao G. et al. (2017) Localization of impact on composite plates based on
integrated wavelet transform and hybrid minimization algorithm.
Composite Structures, 176, 234-243.

164. Faria A.W.,, Silva R.A. and Koroishi E.H. (2017) Matrix Damage Detection
in Laminated Composite Structures by Discrete and Continuous Wavelet
Transforms Using Vibration Modes. Journal of Aerospace Technology and
Management, 9(4), 431-441.

165. Kudela P. et al. (2007) Modelling of wave propagation in composite plates
using the time domain spectral element method. Journal of Sound and
Vibration, 302, 728-745.

166. Gonzalez-Carrato R.R.H. (2014) Pattern recognition by wavelet
transforms using macro fibre composites transducers. Mechanical Systems
and Sygnal Processing, 48(1-2), 339-350.

167. Geng J. et al. (2018) Predicting dynamic response of stiffened-plate
composite structures in a wide-frequency domain based on Composite



130

B-spline Wavelet Elements Method (CBWEM). International Journal of
Mechanical Sciences, 144, 708-722.

168. Pahuja R., Mamidala R. (2018) Process monitoring in milling unidirectional
composite laminates through wavelet analysis of force signals. Procedia
Manufacturing, 26, 645-655.

169. LuQ., Zhou W. and Zheng Y. (2022) Regenerative Braking Control Strategy
with Real-Time Wavelet Transform for Composite Energy Buses. Machines,
10(8), 10080673.

170. Kharintsev S.S. et al. (2005) Resolution enhancement of composite
spectra using wavelet-based derivative spectrometry. Spectrochimica Acta
Part A, 61, 149-156.

171. Tsai D.-M, Chiang C.-H. (2002) Rotation-invariant pattern matching using
wavelet decomposition. Pattern Regonition Letters, 23, 191-201.

172. Chen Z. et al. (2023) Stress—strain-based crack damage detection of
composite structures using selective kernel convolutional networks and
continuous wavelet transform. Structural Health Monitoring, 22(4),
2785-2799.

173. Amaravadi V. et al. (2002) Structural integrity monitoring of composite
patch repairs using wavelet analysis and neural networks. Proceedings of
the SPIE, 4701, 156-166.

174. Lyashenko V. et al. (2017) Study of composite materials for the
engineering using wavelet analysis and image processing technology.
International Journal of Mechanical and Production Engineering Research
and Development, 7(6), 445-452.

175. Palmer S., Hall W. (2012) Surface evaluation of carbon fibre composites
using wavelet texture analysis. Composites Part B, 43, 621-626.

176. Kallweit R.S., Wood L.C. (1982) The limits of resolution of zero-phase
wavelets. Geophysics, 47(7), 1035-1046.

177.Sun J.,, Li H. and Xu B. The morphological undecimated wavelet
decomposition — Discrete cosine transform composite spectrum fusion
algorithm and its application on hydraulic pumps. Measurement, 94,
794-805.

178. Samaratunga D., Jha R. and Gopalakrishnan S. (2015) Wave propagation
analysis in adhesively bonded composite joints using the wavelet spectral
finite element method. Composite Structures, 122, 271-283.

179. Mitra M., Gopalakrishnan S. (2006) Wave propagation analysis in carbon
nanotube embedded composite using wavelet based spectral finite
elements. Smart Materials and Structures, 15, 104-122.

180. Jeong H, Jang Y.-S. (2000) Wavelet analysis of plate wave propagation in
composite laminates. Composite Structures, 49, 443-450.

181. Shrestha R., Chung Y. and Kim W. (2019) Wavelet transform applied to
lock-in thermographic data for detection of inclusions in composite



131

structures Simulation and experimental studies. Infrared Physics &
Technology, 96, 98-112.

182. Sohn H. et al. (2004) Wavelet-based active sensing for delamination
detection in composite structures. Smart Materials and Structures, 13,
153-160.

183. Guo K. et al. (2006) Wavelets with composite dilations and their MRA
properties. Applied and Computational Harmonic Analysis, 20, 202-236.
184. Guo K. et al. (2004) Wavelets with composite dilations. Electronic
Research Announcements of the American Mathematical Society, 10,

78-87.

185. Harbrecht H., Stevenson R. (2006) Wavelets with patchwise cancellation
properties. Mathematics of Computation, 75(256), 1871-1889.

186. Zalevsky Z., Ouzieli I. and Mendlovic D. (1996) Wavelet-transform-based
composite filters for invariant pattern recognition. Applied Optics, 35(17),
3141-3147.

187. Guerrier S. et al. (2013) Wavelet-Variance-Based Estimation for
Composite Stochastic Processes. Journal of American Statistical
Association, 108(503), 1021-1030.

188. Barouni A.K., Saravanos A. (2016) A layerwise semi-analytical method for
modeling guided wave propagation in laminated and sandwich composite
strips with induced surface excitation. Aerospace Science and Technology,
51, 118-141.

189. Feng B., Ribeiro A.L. and Ramos G. (2018) A new method to detect
delamination in composites using chirp-excited Lamb wave and wavelet
analysis. NDT&E International, 100, 64-73.

190. Chen X. et al. (2013) Composite Damage Detection Based on Redundant
Second-Generation Wavelet Transform and Fractal Dimension Tomography
Algorithm of Lamb Wave. [EEE Transactions of Instrunentation and
Measurement, 62(5), 1354-1363.

191. Paget C. et al. (2003) Damage assessment in composites by Lamb waves
and wavelet coefficients. Smart Materials and Structures, 12, 393-402.

192. Su C. et al. (2020) Damage assessments of composite under the
environment with strong noise based on synchrosqueezing wavelet
transform and stack autoencoder algorithm. Measurement, 156, 107587.

193. Lemistre M. et al. (1999) Damage localization in composite plates using
wavelet transform processing on Lamb wave signals. 2nd International
Workshop on Structural Health Monitoring, Stanford, 8-10 Sept. 1999.

194. Tan K.S., Guo N. and Wong B.S. (1995) Experimental evaluation of
delaminations in composite plates by the use of Lamb waves. Composites
Science and Technology, 53, 77-84.



132

195. Wu J. et al. (2021) Lamb wave-based damage detection of composite
structures using deep convolutional neural network and continuous
wavelet transform. Composite Structures, 276, 114590.

196. Harb M.S., Yuan F.G. (2016) Non-contact ultrasonic technique for Lamb
wave characterization in composite plates. Ultrasonics, 64, 162-169.

197. Su Z., Ye L. (2004) Selective generation of Lamb wave modes and their
propagation characteristics in defective composite laminates. Proceedings
of the Institution of Mechanical Engineers Part L Journal of Materials Design
and Applications, 218(2), 95-110.

198. Alleyne D.N., Cawley P. (1992) The Interaction of Lamb Waves with
Defects. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency
Control, 39(3), 381-397.

199. Guo N, Cawley P. (1993) The interaction of Lamb waves with
delaminations in composite laminates. Journal of Acoustical Society of
America, 94(4), 2240-2246.

200. Badcock R.A., Birt E.A. (2000) The use of 0-3 piezocomposite embedded
Lamb wave sensors for detection of damage in advanced fibre composites.
Smart Materials and Structures, 9(291), 291-297.

201. Park H.W. et al. (2007) Time reversal active sensing for health monitiring
of a composite plate. Journal of Sound and Vibration, 302, 520-66.

202. Staszewski W.J. et al. (1997) Wavelet signal processing for enchanced
Lamb wave defect detection in composite plates using optical fiber
detection. Optical Engineering, 36(7), 1877-1888.



INDEX

A

acoustic emission, 18

B

biorthogonal wavelet, 7
B-spline wavelet, 35

C

Coiflet wavelet, 29
composite material, 4
convolution, 7

D

damage index vector, 97
Daubechies wavelet, 15
delamination area, 91
diffusion, 4

Dirac function, 14
dispersion relation, 61
displacement vector, 88
Dmeyers wavelet, 28
Dog wavelet, 11

E

elasticity matrix, 85

F

FHAT wavelet, 10
Fourier transform, 7
function space, 8

G

Garbor function, 40
Gaussian function, 10
Gaussian wavelet, 85

H

Haar wavelet, 5
Hamilton's principle, 92
Hartley entropy, 26

Hashin-Shtrikman estimate, 4

Heaviside function, 10
Hermitian matrix, 54
Hilbert space, 36

Hilbert-Huang transform, 17

stiffness matrix, 93
structural diagnostics, 35
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K

k-means algorithm, 22
k-space, 10

L

Lamb wave, 5

linear elasticity, 4

LP wavelet, 10

M

MHAT wavelet, 11
Midlin's theory, 46
Morlet wavelet, 11
mother wavelet, 16
multiscale analysis, 14

(0]

orthonormal basis, 6

P

Parseval’s theorem, 13
pattern recognition, 4
Paul wavelet, 12
permittivity matrix, 88
Poincaré map, 17
Poisson kernel, 81
Poisson semigroup, 81
polynomial term, 12

R

reconstruction formula, 9
Rényi entropy, 26
Reynolds number, 7
Richardson cascade, 8
Riesz basis, 8

r-space, 11

R-wavelet, 9

S

scale factor, 16
Shannon’s entropy, 21
shear correction factor, 49
shear modulus, 91
soliton, 7

U

unsupervised clustering, 21
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T Vv
thermal conductivity, 4 Voigt-Reuss estimate, 4
t-space, 10 w

turbulent field, 7 window function, 14



