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PREFACE 

The choice of the topic of this msonography was determined by the extensive 
use of composite materials in various fields of industry. Research primarily of the 
mechanical strength of structural elements consisting of composite material most 
often comes down to the description of the distribution and dynamics of the 
behavior of micro and macro deformations in the volume and on the surface of 
composites.  

The structure of the monograph includes seven parts. The first, introductory 
part is devoted to general issues of using wavelet transforms for diagnostics of 
inhomogeneities of mechanical and thermal fields in the volume of composite 
material. The second part touches upon issues of using the Lamb transform method 
in describing mechanical damage in composite materials. The third part of the 
monograph is devoted to the issues of propagation of Lamb waves. Quantitative 
characteristics of dispersion, scattering and interaction of Lamb waves are 
considered in the fourth part of this paper. The use of ultrasound techniques, health 
monitoring and analytical procedures for modeling wavelet transforms in the study 
and description of deformations in the volume of reinforced composite structures 
are considered, respectively, in the fifth, sixth and seventh parts of this study.  
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CHAPTER 1 
INTRODUCTION 

The widespread use of composite structures in various industries creates an 
urgent need for testing and evaluation methods. Such methods could monitor and 
characterize these complex materials. In addition, as a related goal, it is possible to 
describe the behavior of such materials during their service life. Numerous 
experiments and theoretical models have resulted in the development of a wide 
range of analysis methods, which have been categorized as destructive and non-
destructive [1–7]. However, non-destructive methods are often the most attractive, 
since they do not cause any damage or irreversible changes to the inspected part. 

Some non-destructive testing methods are based on Lamb waves. Lamb waves 
are resonant acoustic excitations guided by the surfaces of a plate structure and are 
directed along the plate over large distances. These elastic waves are highly 
dependent on the geometric and material properties of the propagating medium, 
and thus, the analysis and characterization of Lamb waves propagating in a medium 
of interest will also help to analyze and understand the medium itself. Non-
destructive testing methods using both Lamb waves and body waves have been 
widely studied in various experimental and theoretical studies for the purpose of 
characterizing and evaluating various materials and inspecting various structures 
for any defects or damage [8–14].  

Improvement and further development of Lamb wave-based methods can be 
based on the results of experiments using ultrasonic waves and piezoelectric 
sensors. In addition, the study of elastic properties, temperature fields and 
moisture distribution in both laminated and reinforced composite samples can also 
be significantly improved by using wavelet pre-transformations, including Lamb 
wave transformations. 

A widely used experimental setup for using ultrasound to investigate 
composite plates is a completely non-contact hybrid system that uses air and laser 
propagation paths. The results of the experiments form the basis for Lamb wave A0 
modes. The method allows the frequency-wavenumber, phase velocity, and group 
velocity curves for the Lamb wave A0 mode to be measured in anisotropic material 
quickly using Snell's law and the time-of-flight concept. 

The Lamb wave modulation is obtained by imposing a thrust-free boundary 
condition on the equations of motion. This approach introduces the phenomenon 
of dispersion, i.e. the wave propagation velocity along the plate is a function of 
frequency. The dispersion relation of Lamb waves for a linear, homogeneous, and 
isotropic elastic plate placed in a vacuum, bounded by surfaces z = ± h/2 and infinite 
in the x and y directions, is given by 
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where  = 0 and /2 represent S and A Lamb wave modes, 
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k is the waqvenumber; 

 is the angular frequency; 
cL and cT are longitudinal and transverse velocities inside the plate, respectively. 
 Equations (1.1) and (1.2) are written for the time-harmonic wave motion 
corresponding to the plane strain in the (x, z) plane of the given plate. In addition, 
the directed wave field is represented by a propagating wave in the x direction and 
a standing wave in the z direction. 
 Wave interactions depend on the properties of the components, geometry, 
direction of propagation, and frequency for waves propagating in multilayer 
composites. The exact dispersion relations of symmetric and antisymmetric wave 
modes in a plate can be formulated from three-dimensional elasticity theory. The 
formulation can then be extended to composite laminates with arbitrary stacking 
sequences. In a single plate, the closed-form dispersion relation relating x and k in 
a fixed propagation direction is 
 
                                   2/tan 13223322211 hHHHHH  

 
                                  2/tan 23321312312 hHHHHH  

 
    02/tan 33222322113   hHHHHH ,                             (1.3) 

 

where  = 0 and /2 represent anti-symmetric and symmetric Lamb wave modes, 
respectively; 
h is the thickness of the single lamina; 

j (j = 1, 2, 3) are the fixed variables; 
Hij are quantities that are given by equations 
 

 jxyjjjyxj RkkCSCRkCkCH  363323131  ,                  (1.4) 

 
   jxjjyjjj SkCSkRCH   45442 ,                                     (1.5) 

 
   jxjjyjjj SkCSkRCH   55453 ,                                   (1.6) 

 
where 
Cij are the elements of the stiffness matrix; 
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kx = kcos (); ky = ksin ();  

 is the direction of wave propagation in the lamina composite; 
Rj, Sj are the real-value coefficient related to the displacement coefficients, 
elements of stiffness matrix, wavenumbers, frequency and material density. 
 The Lamb wave velocity can be used to analyze the properties of composite 
materials. The phase velocity vector using the following formula 
  

2k

k
c p




 ,                                                    (1.7) 

 
in turn, the modulus of the phase velocity of the Lamb wave is equal to 
 

k
cp


 ,                                                    (1.8) 

 

where �⃗�  is the wave vector. 
 The phase velocity depends only on the wave vector, its modulus and, 
consequently, the direction of wave propagation in the medium. In isotropic 

materials, cp depends only on the modulus of the wave vector �⃗� . 
 The group velocity (cg), on the other hand, is defined as  
 

  kgradc kg


 .                                                  (1.9) 

 
This velocity has components in the x and y axes as cgx and cgy, respectively, 

and corresponds to the following matrix 
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 Under these conditions, the amplitude of the group velocity is equal to 
 

22
gygxg ccc  .                                              (1.11) 

 
 For the simplest case of an isotropic composite material, it can be concluded 

that since  is a function of k only and thus / = 0 then the magnitude of the 
group velocity is 
 

k
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
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 In experimental studies, the presence of an air-coupled transducer allows the 
generation of Lamb waves in composite laminates. The system of control equations 
is written under the assumption that the laminated composite sample can be 
considered as an infinite plate immersed in a non-viscous liquid (air). Thus, the plate 
is excited by a volumetric ultrasonic wave propagating in the air and hitting the 

boundary between the air and the plate at a certain fixed angle . 
 Partial reflection followed by escape into the air half-space above the plate 
and partial refraction into the plate is observed when a body wave in air with wave 
number ki collides with the surface of the composite plate. The interference of the 
longitudinal and shear volume Lamb waves generated in the plate, refracted by the 
upper and lower surfaces of the plate, will be observed along the x-direction. 
 The Lamb wave has a wave number k. The horizontal projection of the wave 
number of the incident wave is kx. Since kx = ki sin h, then 
 

sinikk                                                        (1.13) 

 
and 

c
ki


 ,   

pc
k


 ,                                               (1.14) 

 
where c is the speed of sound. 
 In this case 
 

pc

c
sin .                                                    (1.15) 

  
 Since the dispersion pattern in Lamb modes depends on the frequency, 
identifying specific symmetric and antisymmetric modes greatly simplifies the 
analysis. Experimental methods for detecting damage in structures using Lamb 
waves estimate the time of flight of scattering waves for damage. At subsequent 
stages of analysis, the location and size of damage in the volume of the composite 
sample are determined from the numerical values of phase and group velocities. 
 The experimental implementation of the hybrid non-contact system includes 
an air-coupled transducer that generates ultrasonic pressure incident on the 
surface of a composite plate. The incident pressure waves are partially reflected 
and partially refracted in the plate, generating longitudinal and shear waves. The 
out-of-plane velocity measurement of the propagating Lamb wave mode, formed 
at some distance from the excitation region, is carried out using a laser Doppler 
vibrometer. 
 The characteristic dispersion dependencies for the phase cp and group cg 
velocities are given in Figures 1.1 - 1.4. 



9 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.1. Phase velocity dispersion curve cp = cp (f) for A0 mode along 450 

propagation direction. 

 

Figure 1.2. Phase velocity dispersion curve cp = cp (f) for A0 mode along 900 

propagation direction. 
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Figure 1.4. Group velocity dispersion curve cg = cg (f) for A0 mode along 900 

propagation direction. 

Figure 1.3. Group velocity dispersion curve cg = cg (f) for A0 mode along 450 

propagation direction. 

 



11 
 

 

 To obtain the group velocity dispersion curve for a given wave propagation 
direction, the time of flight of wave packets was analyzed. In particular, the Morlet 
wavelet transform was used to automatically process the received Lamb wave 
signals in order to improve the accuracy of the time of flight. The time of reaching 
the maximum is related to the arrival time of the Lamb wave mode A0. The first 
step of the calculation uses the Morlet wavelet as the mother wavelet, and then 
divides the propagation distance by the arrival time, which is the time difference 
between the first and second stored times from the mother wavelet transform. 
Polar group velocity curves (wave curves) were obtained using the mother wavelet 
transform method along different propagation directions inside the composite with 
a step of 150. The characteristic wave curves of the laminate for the Lamb wave 
mode A0 are obtained for different central frequencies. The results clearly indicate 
the angular dependence of the A0 mode in the laminate with its maximum group 
velocity along the 00 and 450 directions. 
 Currently, researchers are paying attention to the creation of new effective 
computational methods for calculating the stress-strain state of structures made of 
composite materials. In addition, for practice, a mandatory addition is the 
development of non-destructive testing methods and methods for monitoring the 
technical condition of structures, which are usually based on the analysis of the 
propagation of elastic waves in layered media. The use of direct numerical methods 
(in particular, the finite difference method) for modeling composite structures is 
the most universal approach [15-22]. This approach is aimed at obtaining an 
approximate solution for objects of any shape. It should be noted that 
computational methods of this type are the most computationally expensive. An 
increase in the number of elements is inevitable in areas of rapid changes in 
solutions or environmental characteristics (corner points, interfaces between 
contrast layers, etc.) and especially in the case of high frequencies. 
 One of the successful methods for describing mechanical stresses is the 
construction of the Fourier transform of the Green’s matrix, the poles of which 
determine the wave numbers of a composite consisting of N anisotropic layers, as 
well as the study of the dispersion characteristics of the layered structure. he 
algorithm for recursively calculating the Fourier transform of the Green’s matrix 
requires only the procedure of inversion of 6 x 6 matrices for any number of layers 
in the composite. This approach allowed us to obtain curves and surfaces describing 
the wave numbers, phase velocities, and group velocities of the wave front of Lamb 
waves. The set of Lamb waves can be considered as a network of wave packets that 
propagate in symmetric and antisymmetric composites with respect to the 
direction of propagation and the oscillation frequency. Wave packets propagate in 
an elastic medium and excite deformations that contain all three components of 
the displacement vector. The basic equations of elasticity theory for each of the 
three-dimensional layers of a non-uniform anisotropic multilayer (packet of N 
layers) elastic medium have the form 
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where j = 1, 2, 3; n = 1, … , N.  

 The composite sample has a volume of   x, y  , zN+1  z  0, where zN+1 is 
the distance from the lower boundary of the N-th layer to the upper surface, z1 = 0, 

(n) is the density of the n-th layer. The layer number will be designated by a 
superscript. The relationship between mechanical stresses and deformation can be 
described by the equations of the linear theory of elasticity 
 

)()()( n
km

n
ijkm

n
ij C   ,                                                         (1.17) 

 

where 𝐶𝑖𝑗𝑘𝑚
(𝑛)

 is a the stiffness tensor of the n-th layer. 

 When the coordinate system changes, the tensor coordinates change 
according to the formula 
 

)()(
'

n
parlmlrkqipi

n
ijkm CaaaaC  ,                                            (1.18) 

 

where 𝐶′𝑝𝑞𝑟𝑙
(𝑛)

 are the coordinates of the stiffness tensor with respect to one 

coordinate system; 
aij is a 3 x 3 rotation matrix. 
 The wave characteristics of the composite according to such a model will be 
determined by the physical characteristics of the layers and the oscillation 
frequency. In addition, the characteristics of the wave packets and the direction of 
their propagation in the composite also depend on the direction of the applied load 
and the local calculated form for the volume of the composite structure. 
 The calculation model uses a two-dimensional Fourier transform of the 
displacement vector of the n-th layer u(n)(x, y, z)  
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 Fourier transforms allow us to write the following matrix relations 
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where U(n) is the Fourier transform of the vector of displacement components and 
their ordinary derivatives with respect to z 
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where  
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where  

A(n,ik) are the matrices with elements С𝑖𝑘
(𝑛)

;  

B(n) are matrices that characterize the interaction of layers. 
 The matrices A(n), B(n) depend only on the material properties of each layer, the 

oscillation frequency  and the Fourier variables 1 and 2. 
 The method presented here is related to a linear problem, therefore it is 
possible to expand the Fourier transform of the displacement component vector 
with respect to the components of the applied load Q = {Q1, Q2, Q3} as follows 
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 For each layer n in the Fourier domain, the solution to this problem can be 
represented in matrix form 
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where K(n) is the Green’s matrix of the problem. 
 The displacement vector u(n) gives the solution to the problem as a result of 
the inverse Fourier transform to the displacements U(n) found in the Fourier 
domain 
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 The phase velocity of the mode k can be found via 
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and the partial derivative is defined as a group velocity for a direction  by 
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The calculation method is based on the consideration of dimensionless 

frequencies h/cT and dimensionless velocities cp/cT, with which symmetric and 
antisymmetric modes propagate. The wave packet velocity vectors were located in 
two directions: in the xy plane at an angle of c = p/6 relative to the x axis, and along 
a straight line at an angle of c = p/4 to the x axis in the xy plane. A significant number 
of studies on the features of Lamb wave propagation in composite structures 
analyzed the phase velocity graphs depending on the propagation directions for 
fixed numerical values of the dimensionless frequency xh/cT (in particular, for the 
dimensionless frequency, the following values can be specified: 4 and 1.78). The 
theoretical analysis of the propagation features of Lamb waves is conveniently 
performed for the following package of dimensionless quantities: dimensionless 

frequency xh/cT, dimensionless wave numbers h, dimensionless phase velocity 
cp/cT and dimensionless group velocity of the wave front cg/cT, where x is the angular 
frequency in rad/s, h is the total thickness of the composite, f are the dimensional 
wave numbers, cp, cg are the phase and group velocities. 

The dispersion curves for the propagation of wave groups are characterized by 
dimensionless propagation velocities cp/cT of symmetric and antisymmetric modes 
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for dimensionless frequency xh/cT. he change in phase velocities depending on the 
direction of propagation was characterized by the values of the dimensionless 
frequency xh/cT equal to 3.4 and 1.72, respectively.  

The numerical method considered is quite universal and allows uniformly 
study not only Lamb waves, but also any oscillations in a package of anisotropic 
layers with arbitrary elastic anisotropy and arbitrary spatial orientation. This 
theoretical analysis for each layer in a large frequency range based on a single 
formalism uses the Fourier transform of the Green’s matrix. The formalism 
considered here, despite its redundancy for the task of studying dispersion curves, 
is quite universal. The numerical method allows one to study in detail practically 
any combination of elastic characteristics of a layer package, their alternation, 
orientation, type of symmetry, etc.  

It should be noted that various combinations of layers consisting of only one 
material can be considered as elastic waveguides with different properties. The 
change in the sequence of mutual orientation of the layers had only a slight effect 
on the nature of the phase velocity surfaces and group wave surfaces. In some 
cases, changing the mutual orientation of the layers and the number of layers led 
to the appearance of a noticeable anisotropy of their characteristics, in other cases 
to almost complete anisotropy. For almost all experiments, the A0 mode had a 
pronounced dispersion of phase velocities and a wave front group in the low-
frequency range. On the other hand, for the S0 and SH0 modes, the group and 
phase velocities were practically independent of frequency, but they exhibited a 
more pronounced anisotropy.  

The occurrence of multivalued group velocities of the wave front in the low-
frequency range was quite typical for non-quasi-isotropic composite stackings. 
Experimenters and analysts expect that such a feature may manifest itself for most 
directions. ncreasing the number of wave packet modes for the high-frequency 
range does not require a change in the calculation methodology, but leads to a 
significant increase in the computational load. 

Structural components made of composite materials are widely used in various 
industries. The reasons for this popularity include the following advantages over 
conventional metallic materials: higher strength-to-weight ratio and higher 
stiffness-to-weight ratio [23-25]. However, normal service conditions of structures 
involve frequent changes in environmental conditions such as temperature. During 
thermal cycling, thermal stresses are generated in composite laminates. Cyclic 
thermal stresses can cause damage. These damages and deformations are similar 
to those observed under mechanical cyclic loading, namely transverse matrix 
cracks, delamination. In addition, the need for long-term service life of composite 
parts and the importance of operational safety should be taken into account. Even 
small damages accumulated due to thermal fatigue often pose a great danger to 
preventing unpredictable catastrophic failures caused by microdamages. The 
combination of these factors is the reason why non-destructive detection of 
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thermal fatigue at an early stage is of great importance in the long-term operation 
of composite parts and structures. 

The most promising tool for non-destructive testing of the quality and integrity 
of structures, especially those made of laminar composites, is the ultrasonic wave 
technique based on the use of Lamb waves. However, most of both experimental 
and theoretical methods were limited to using the linear characteristics of Lamb 
waves only for detecting macrodamages located within local areas in the volume of 
the composite [26-28]. Linear ultrasonic wave methods are less sensitive to 
detecting microdefects. Therefore, special attention has been paid to the 
development of nonlinear ultrasonic techniques as a potential means for detecting 
microdefects. The few studies have focused mainly on the use of nonlinear elastic 
wave spectroscopy to assess impact damage in composite materials. The nonlinear 
elastic wave approach has been shown to be more sensitive to microdamage than 
linear acoustic methods. The high sensitivity of the nonlinear ultrasonic approach 
and the advantages of the nonlinear Lamb wave method have attracted 
considerable attention. In particular, nonlinear ultrasonic Lamb waves have been 
successfully used to assess microdamage in metallic structures. However, the use 
of nonlinear ultrasonic Lamb waves has rarely been applied to detect microdamage 
in composite structures. An obstacle in applying the nonlinear technique to 
composites is that it becomes difficult to control the tiny second harmonic 
amplitudes reliably in highly attenuated composites. Furthermore, the dispersive 
and multimode nature of Lamb modes potentially complicates efficient second 
harmonic generation. 

Consequently, the studies on the application of nonlinear methodology to 
composite structures have focused on the study of the second harmonic generation 
characteristics of Lamb wave propagation in laminar composites. In particular, the 
Lamb mode “phase matching” method was chosen to detect the second harmonic. 
The difficulties arising from the multimode nature of Lamb wave propagation were 
overcome by using the group delay approach. This technique allowed the thermal 
fatigue damage to be assessed in the specimens. Composite specimens were 
subjected to artificial thermal fatigue to simulate the effect of temperature change 
in operational composite structures. A correlation was found between the acoustic 
nonlinear parameter and thermal cycles. In studies using a similar technique, the 
sensitivity thresholds of linear and nonlinear ultrasonic parameters to thermal 
fatigue damage were estimated.  

A nonlinear phenomenon in which the propagation of a monochromatic 
ultrasonic wave over a certain distance in a composite material with nonlinear 
characteristics leads to the generation of an additional two-frequency harmonic 
wave is called second harmonic generation. The dispersive nature of Lamb waves 
results in the second harmonic generation effect being quite weak. An important 
step in the calculation method is to describe the second harmonic generation 
together with the cumulative propagation of Lamb waves. In this case, the 
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cumulative effect of the second harmonic amplitude allows the nonlinear effect to 
be measured with a sufficient signal-to-noise ratio. The second harmonic modes of 
Lamb waves exhibit a cumulative effect under the conditions of "phase matching" 
and non-zero power transfer from the fundamental mode to the second harmonic. 
Except for A0 and S0, the two fundamental Lamb modes in the plate structure, all 
other modes satisfy the non-zero power flow condition.  

The mode with the minimum characteristic frequency is selected for the study 
as the fundamental frequency mode, since this mode satisfies the phase matching 
condition. This condition results in the two-frequency Lamb mode (S2 mode) being 
generated by the cumulative effect. The two-frequency Lamb wave, based on the 
fundamental mode S1, has the same phase velocity and group velocity. This factor 
was the reason for the combined analysis of both the fundamental mode (mode S1) 
and the two-frequency second harmonic Lamb mode (mode S2). 

For the experimental generation of Lamb waves, a laboratory technique of 
combining a piezoelectric transducer and a wedge was used. The angle of incidence 
for the generation of Lamb wave modes was determined by Snell's law 

 

sin

1ccp  ,                                                   (1.33) 

where 
c1 is the longitudinal wave velocity in the wedge material; 
cp is the phase velocity of the Lamb mode; 

 is the incident angle. 
 Experimental studies have shown that the generation of the S1 mode is 
correlated with the generation of the A1 mode. The reason for this correlation is 
their relative proximity to each other in the phase velocity dispersion curve. This, in 
turn, is due to the multimode nature of Lamb wave propagation. However, the 
group velocity of the S1 mode is very different from that of the A1 mode, since it is 
noticeably faster than A1. It is found that after the multimode signal propagates for 
a certain distance, the S1 wave packets containing the dual-frequency content of 
the S2 and A1 modes are eventually separated.  
 If the propagation distance is short, the multimodes will not be separated 
correctly. As the propagation distance increases, the mode separation becomes 
visible, since the time-of-flight gap due to the group velocity difference becomes 
noticeable. As a result, only a portion of the S1 mode can be selectively selected. 
 Therefore, the frequency spectrum analysis for filtering the second harmonics 
is performed within a time gate placed above the S1-S2 wave packet, maintaining a 
propagation distance comparable to the dimensions of the composite sample to 
avoid the influence of A1 and other modes. The measured signal generated by the 
Lamb wave in the time domain is processed by the fast Fourier transform to obtain 
the frequency spectrum. The frequency spectrum allows us to analyze the behavior 
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of the amplitude of the fundamental Lamb mode S1 (A1) and the two-frequency 
second harmonic of the mode S2 (A2). 
 Spectral dependences for the phase and group velocity of Lamb wave modes 
are illustrated in Figures 1.5 - 1.10 (c’p = cp / cch, c’g = cg / cch, f ’ = f / fch, where cch 
and fch are the characteristic speed and frequency, respectively). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.5. Phase velocity dispersion curve c’p = c’p (f’) for S0 and S1 modes of Lamb 

wave. 

 

Figure 1.6. Phase velocity dispersion curve c’p = c’p (f’) for S2 and S3 modes of Lamb 

wave. 
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Figure 1.7. Phase velocity dispersion curve c’p = c’p (f’) for A0 and A1 modes of Lamb 

wave. 

 

Figure 1.8. Phase velocity dispersion curve c’p = c’p (f’) for A2 and A3 modes of Lamb 

wave. 



20 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.9. Group velocity dispersion curve c’g = c’g (f’) for A1 and A2 modes of Lamb 

wave. 

 

Figure 1.10. Group velocity dispersion curve c’g = c’g (f’) for S1 and S2 modes of Lamb 

wave. 
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The A1 mode is an independent incident mode, which is separated from the 
S1 mode packet by the group delay method. It should be noted, however, that the 
two-frequency Lamb mode (S2), which is controlled by the fundamental mode S1, 
depends on the fundamental mode (S1). The group packet of S1 modes, passing 
through the volume of the composite structure, transfers the fundamental and the 
two-frequency second harmonic wave. 

The analysis of the dispersion curves allows us to conclude that the 
fundamental mode (S1) and the second harmonic mode (S2) have the same phase 
velocity and group velocity. The detected tendency is similar to the phase condition 
in resonant vibration, since the generated S2 mode has the same phase and group 
velocity as the fundamental mode S1. Separation of these two modes in the time 
domain spectrum is not an ordinary task. However, the study of the frequency 
spectrum allows us to obtain their amplitudes in the frequency spectrum. The 
spectra of the fundamental mode S1 and the second harmonic mode S2 are clearly 
separated in the frequency domain. 

A large number of experimental and analytical studies on the propagation 
characteristics of Lamb pulses in the volume of composites lead to the conclusion 
that there are two main mechanisms of amplitude attenuation, which are "material 
attenuation or damping" and "wave packet propagation" corresponding to the 
wave dispersion effect. 

Since the guided wave modes in this study are selected in the non-dispersive 
frequency range, it is assumed that the amplitude decay is mainly affected by the 
attenuation. Attenuation is an important characteristic of the propagation of the 
Lamb guided wave. The attenuation effect is equivalent to the decrease in signal 
strength after the wave travels a certain distance. The attenuation of the wave is 
determined by the attenuation coefficient. 

A typical experimental technique using Lamb pulse echo to measure the 
attenuation coefficient is to compare two amplitudes of a particular mode captured 
at two corresponding travel distances. We denote the attenuation value as α. The 
magnitude of the attenuation uniquely determines the decrease in the wave 
amplitude depending on the frequency and mode. Therefore, the following 
relationship is true 

 

 12
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A

x

x   ,                                               (1.34) 

 
where 
Ax1 and Ax2 are the amplitudes of the wave mode signal; 
x1 and x2 are the corresponding signal travel distances at which the specified 
amplitudes are recorded. 
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 In general, an ultrasonic Lamb wave propagates as a wave packet. This wave 
packet contains a number of adjacent frequency components around a central 
frequency. The velocity of the wave packet can be considered as the group velocity. 
The phase velocity is equal to the velocity of a pure single-frequency wave mode. 
The phase velocity also determines the speed of energy carried by the wave packet. 
The relationship between the group velocity and the energy carried by the wave 
packet is observed for inviscoelastic materials when directional propagation is 
considered. 

In the Lamb wave experiments, unidirectional samples of laminar composites 
were analyzed. Lamb waves in these samples propagated along the fiber direction. 
The experimental group velocity of the Lamb wave, measured by a piezoelectric 
transducer operating at a fixed frequency, can be determined quite easily. The most 
effective method for such determination is to compare the time difference between 
two different receiver positions in a given range with a theoretically predicted 
value. The theoretically determined value is calculated by numerical differentiation 
from the phase velocity dispersion curve. The Lamb wave group velocity changes 
significantly with the material properties and depends on the thickness of the 
specimens. When the wave passes through a damaged region with reduced 
stiffness, the group velocity will be affected. 

The nonlinear parameter of the second harmonic of the Lamb wave satisfies 
the following relation 
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 ,                                                   (1.35) 

 
where 
k is the wavenumber of the Lamb wave; 
x is the wave propagation distance; 
A1 and A2 are the amplitude of the second harmonic and fundamental wave, 
respectively; 

fx is the special function of the Lamb wave nonlinear parameter . 
 This special function is described by the following mathematical relationship 
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where 
h is the thickness of the waveguide; 

𝑝 = √𝑘2 − 𝑘𝑙
2; 

𝑞 = √𝑘2 − 𝑘𝑡
2; 
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kl and kt are the wave numbers of longitudinal and transverse waves; 
 The functional dependence for the nonlinear parameter of Lamb waves leads 
to the unambiguous conclusion that this parameter is determined as a function of 
frequency, mode type, material properties and waveguide geometry. The 
characteristic mode of the wave is chosen to detect acoustic nonlinearity in samples 
with constant thickness at a fixed input fundamental frequency. When studying the 
acoustic nonlinearity S1 at fixed frequencies, the influence of the characteristic 
function can be neglected. 
 Theoretical analysis has shown that the normalized amplitude of the second 
harmonic can be represented as the ratio of the amplitude of the second harmonic 
divided by the square of the amplitude of the fundamental wave (𝐴2/𝐴1

2). In terms 
of graphical illustration, such a feature corresponds to the slope of the line relating 
the actual acoustic nonlinear parameter β to the propagation distance x for a fixed 
wave number k and nonlinearity function f. In this case, the normalized amplitude 
of the second harmonic can be written as 
  

x
A

A
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2
1

2 .                                                      (1.37) 

 
 The normalized amplitude of the second harmonic increases with the 
propagation distance due to the presence of a cumulative effect. The increase is 
observed up to a certain point, when the material attenuation becomes dominant. 

Checking for this cumulative effect in measurements is important. Namely, the 
presence of the effect ensures that the measurements from the samples are not 
due to the uncertainty of the measuring system, but to the nonlinearity caused by 
the damage. 

The phase matching of the wave mode pair (S1, S2) to generate the cumulative 
second harmonic wave avoids the dispersive and multimode nature of the Lamb 
ultrasonic wave propagation. The group delay method is used to effectively 
separate a large number of wave packet modes. The basis of this method is the 
difference in group velocities among the different Lamb modes. Experimental work 
has revealed a correlation between the acoustic nonlinearity of the Lamb ultrasonic 
wave and the thermal degradation of composite laminates.  

The nonlinear Lamb wave method is a promising tool for early detection of 
thermal damage in composite materials. 

Hydrothermal aging of composite materials is caused by two main types of 
influences. According to the first mechanism, physical aging occurs below the glass 
transition temperature (Tg) of the composite material, and is partially reversible and 
leads to plasticization. The second aging mechanism is chemical in nature and is 
observed above the glass transition temperature. The second aging mechanism is 
completely irreversible and leads to hydrolysis. Water absorption by composite 
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materials can cause serious degradation, the level of which can vary depending on 
the temperature and exposure time. 

The presence of moisture in most cases leads to swelling of composite 
materials. In this case, microcavities inside the volume of the composite are filled. 
Microcracks filled with moisture create microcracks at the boundaries between the 
fibers and the matrix. Therefore, measuring the mechanical properties of composite 
materials can be a way to assess the moisture content [29-31]. 

The C-scan immersion ultrasound method for measuring the phase and group 
velocities of broadband pulse echo is often used to monitor the moisture content 
of composite materials. The results of this technique allow us to determine the 
elastic modulus in the direction normal to the material plate. Over time, when the 
material plate is subjected to hydrothermal aging, both the phase velocity and the 
attenuation of the bulk waves are studied. Experimental techniques use 
piezoelectric transducers, either implanted in the sample (contact technique) or 
through a water connection (immersion technique). The measured acoustic 
parameters are then related to the viscoelasticity and microstructure of the 
propagation medium, which change with the level of humidity. 

The moisture content of the reinforced composite plates can be controlled 
using Lamb waves. The wave packet modes are generated and detected using air-
coupled ultrasonic transducers. The transducers are located on one side of the 
composite sample. Due to these features, it can be stated that the method is 
contactless and one-sided. This satisfies the limitations of industrial non-destructive 
testing. The methodology is complemented by a quantitative assessment of the 
complex wave numbers of the guided Lamb wave modes.  

The numerical model can also be used to predict the wave number dispersion 
curves for Lamb modes. The experimental technique allows to investigate the 
sensitivity of Lamb waves to changes in viscoelastic moduli. Hydrothermal aging, 
similar to the humid conditions encountered during the operation of structures, is 
applied to the composite plate. 

Subsequent dehydration of the composite sample is used to control the 
reversibility of the absorption phenomenon. During several stages of hydrothermal 
aging and drying, the changes in the plate weight and the complex wave numbers 
of the three Lamb modes A0, S0 and S1 are measured. Analysis of the results of 
ultrasonic measurements with numerical predictions allows us to formulate and 
solve the inverse problem for deriving the material properties, i.e. the complex 
viscoelastic moduli of the plate. 

The changes in these moduli are compared with the weight changes. Such a 
synthesis of experimental and analytical methods allows us to make predictions 
about the potential of non-contact, one-way, ultrasonic technology for monitoring 
the moisture content of composite materials. 

The method of surface impedance matrices is used to construct dispersion 

curves (complex wave numbers K = K + iKdepending on the frequency-thickness). 
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In this case, the wave modes are directed along the x2 of the plate (or x3, since the 
planes P12 and P13 are identical). The method of describing the properties of 

laminated composites is based on the use of complex viscoelastic moduli, Cij = Cij + Cij, 
of the equivalent material, which were measured using the classical immersion 
ultrasound technique. These moduli are defined on the coordinate axes x1 
(perpendicular to the plane of the laminate), x2 and x3 (located in the plane of the 
laminated composite). 

Spectral dependences (argument f/d, where f is the frequency and d is the 
thick of a sample) of viscoelastic moduli for different Lamb wave modes are shown 
in Fig. 1.11 – 1.14. As for the real and imaginary parts of the wave numbers, it should 

be noted that the real part K is associated with the phase velocity of the modes, 

and the imaginary part K is associated with their attenuation. 
The sensitivity of Lamb waves to changes in viscoelastic moduli has also been 

analyzed in detail. The first step in the analysis was to determine the numerical 
values of the viscoelastic moduli carried by the different Lamb modes. Dispersion 
curves have been plotted for the A0, S0, and S1 modes, first using fixed values of 
the complex Cij, and then increasing by a quarter either the real or the imaginary 
part of one of these moduli. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Comparisons between the different plots thus obtained show the individual 

effect of each Cij or Cij on the complex wave numbers. Figures 1.15 – 1.16 show 
the changes in both the real and imaginary parts of the complex wave numbers 
befor and after drying. 

 

Figure 1.11. Effect of ¼ change of C11 on real-part complex number K (index 

“+” for modified part). 
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Figure 1.12. Effect of ¼ change of C11 on imaginary-part complex number K 

(index “+” for modified part). 

 

Figure 1.13. Effect of ¼ change of C22 on real part complex number K (index “+” 

for modified part). 
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Figure 1.14. Effect of ¼ change of C22 on imaginary-part complex number K 

(index “+” for modified part). 

 

Figure 1.15. Measurements real part complex number K before (lines) and after 

(triangles) drying. 
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Experiments indicate a significant sensitivity of Lamb waves to the moisture 

content of laminated composite plates. It can be argued that the A0 mode decay is 
a good indicator of the moisture content of the material, since its changes during 
the aging-drying processes very well follow the changes in the weight of the plate. 
In addition, the A0 mode decay is found to be sensitive to the imaginary part of the 
Coulomb modulus in the plane of propagation. 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.16. Measurements imaginary-part complex number K’ before (lines) and 

after (triangles) drying. 
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CHAPTER 2 
DAMAGE IDENTIFICATION 

The advantage of using Lamb waves in damage detection is that they are highly 
sensitive to disturbances in the propagation path, such as a fault or boundary. In 
addition, Lamb waves can propagate over long distances even in highly attenuating 
materials such as carbon fiber-reinforced composites. As a result, a wide area can 
be quickly investigated in experimental studies of, for example, laminated 
composites. The entire thickness of the laminate can also be related to different 
Lamb modes. This makes it possible to detect both internal and surface damage. 
The range of potential damage types that Lamb wave analysis can detect is quite 
wide. 

In general, the Lamb wave approach to damage detection is characterized by 
(the ability to inspect large structures while preserving coating and insulation. In 
addition, the ability to inspect the entire cross-sectional area of the structure is 
preserved. The Lamb wave packet-based technique has high sensitivity to multiple 
defects with high identification accuracy. The analysis of Lamb wave propagation in 
anisotropic viscoelastic media is quite a challenging task. 

With very high speed, waves reflected from boundaries can easily hide 
components scattered by damage in signals. To ensure accuracy, the structure to 
be tested can be relatively large and with a relatively small detection area. Lamb 
waves are usually characterized by several wave modes. The dispersion properties 
of such wave formations are not identical throughout the thickness of the 
composite, even for the same mode, but in different frequency ranges. Existing 
methods of both experimental and theoretical studies provide the possibility of 
identifying damage using Lamb waves for fiber-reinforced composite structures. 
Lamb waves propagating in composite structures have unique characteristics of 
dispersion processes. The features of Lamb wave propagation in composite 
laminates provide a free choice of their generation mode. 

Lamb waves, consisting of a superposition of longitudinal and shear modes, 
are observed in relatively thin laminated composite plates. Their propagation 
characteristics vary with the angle of entry, excitation, and structural geometry. 
Lamb waves, consisting of a superposition of longitudinal and shear modes, are 
observed in relatively thin laminated composite plates. Their propagation 
characteristics vary with the angle of entry, excitation, and structural geometry. A 
Lamb mode can be either symmetric or antisymmetric and are described, 
respectively, by the following relations: 

symmetric modes 
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anti-symmetric modes 
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where 
h is the plate thickness; 
k is the wavenumber; 
cL is the velocity of longitudinal mode; 
cT is the velocity of transverse mode; 
cp is the velocity of phase mode; 

 is the circular frequency of Lamb wave. 
 The relationship between propagation speed and frequency implies that Lamb 
waves, regardless of mode, are dispersive (speed depends on frequency). The 
presence of Lamb wave modes is accompanied by a transverse (shear) motion 
different from normal shear waves (vertical shear mode) in laminated composites. 
Perpendicular to the plane of the composite cross-section of propagation, such a 
mode has been accordingly called the shear horizontal (SH) mode (Lave wave). 
 The anisotropic properties of composite structures give rise to physical 
processes such as direction-dependent velocity and the difference between phase 
and group velocities. In an N-layer composite laminate, the Lamb wave can 
generally be described using its displacement field, u, satisfying the Navier 
displacement equations in each layer 
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where 

i is the density of the ith layer; 

i is the first Lame’ constan of the ith layer; 

i is the second Lame’ constant of the ith layer. 
 In most cases, when propagating through the volume of a composite, there is 
attenuation in magnitude, a change in the propagation speed, and a change in wave 
number, called dispersion. 
 Analysis of experimental measurements shows that Lamb waves are capable 
of propagating over relatively large distances even in composites. Larger 
propagation distances are typically observed in carbon fiber-based materials than 
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in glass fiber-reinforced materials. Artificial or natural stiffening can slightly increase 
attenuation. The most serious influence on attenuation is exerted by the presence 
of surface coating materials, which can cause very significant attenuation.  
 Accurate consideration of the boundary conditions on each layer of the 
laminar composite leads to a complex dispersion equation 
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where the conditional dependence can be considered:  =  (k, hn, n, n). 
 Lamb wave fault identification essentially depends on the interpretation of the 
captured wave signals. Determining the signatures useful for fault identification 
from the collected Lamb wave signal typically involves a number of interferences. 
Such interferences include: contamination by various noises, interference from 
natural structural vibration, confusion of several modes, and set of the sample data. 
In this regard, various signal processing and identification methods have become 
widespread, in particular, time series analysis, frequency analysis, and integrated 
time-frequency analysis. 
 Time domain signal analysis can detect damage both globally and locally. In 
particular, delamination in a composite beam can be detected by measuring the 
time of flight in the final Lamb signal. Time series analysis can be applied to 
waveforms for damage detection using a two-stage prediction model. As a result of 
applying this technique, it can be found that the difference in time domain signals 
between the defective structure and the reference, defined as the residual error, 
will be greatest for sensors near the damage. 
 A slightly different approach to structural damage detection is based on the 
combination of independent component analysis in the time domain. This 
technique allows the detection of key features from the measured vibration signals. 
However, with the exception of a few successful applications in fault localization, 
direct time series analysis is usually unable to isolate information scattered across 
defects properly from noise in different frequency ranges. In addition, a reference 
signal is needed for comparison. 
 A significant number of works are devoted to the study of a dynamic signal in 
the frequency domain using the Fourier transform. This transform mathematically 
transforms the time-dependent Lamb wave signal, f(t), into frequency space 
according to the equation 
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where  is the angular frequency;  
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j is the unit complex; 

F() is the Fourier counterpart of f(t). 
 The fast Fourier transform and its two-dimensional form, which are derived 
from the Fourier transform but with improved capabilities, are often used to 
analyze Lamb wave signals, and can significantly speed up the calculation process. 
A simplification of the explicit analysis of multimode Lamb waves can be obtained 
by measuring the response of a composite plate at a number of equally spaced 
positions on the surface and then applying a 2D Fourier transform. In subsequent 
steps, different modes at different frequencies in the frequency-wavenumber 
domain can be distinguished. 
 As an example of an experimental setup, a laser ultrasound system for 
generating Lamb waves in the direction perpendicular to the laser beam can be 
mentioned. In this case, the spatial orientation of the laser line source was 
controlled by mirror translation. Subsequently, a two-dimensional Fourier 
transform was applied to the signals collected from different positions using a 
Michelson interferometer along the scanning path. In this way, dispersion curves 
could be obtained. 
 A similar principle was used as the basis for the experimental setup, where a 
pair of transducers was used to measure signals at equally spaced positions. The 
second stage involved analyzing the two-dimensional Fourier transform. This 
analysis ended with the separation of symmetric and antisymmetric Lamb modes. 
The resulting Lamb wave spectrogram in the frequency-wave number region 
contained a region where several modes were already separated, even for those in 
the same frequency band. 
 The deficiencies of dynamic Lamb wave analysis in the time or frequency 
domain can be addressed by introducing a packet that combines time information 
with frequency data. Most time-frequency algorithms can be summarized as 
follows 
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where 

P (t, ) is the energy intensity; 
t - is the current moment in time; 

 is the frequency; 
f – is the Lamb wave signal; 
f* is the complex conjugate of f; 

 (,) is the characteristic function depending on f (t). 
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 In practice, instead of direct time-frequency analysis, some variants of 
equation (2.7) are more popular, such as the short-time Fourier transform, the 
Winger-Ville distribution, and the wavelet transform. 
 In particular, the wavelet transform uses a wavelet with a portion of the 
waveform that is limited in time. The average amplitude of such a portion of the 
wave is zero. The time-dependent signal is mapped into a two-dimensional 
representation with scale and time. The scale of such a representation can be 
related to the frequency by defining the scale value at which the scalogram reaches 
its maximum. 
 With the wavelet transform analysis, the dynamic wave signal can be 
examined using a localized fragment to fully display the hidden characteristics. The 
hidden characteristics include trends such as breakpoints or discontinuities and self-
similarity. Continuous wavelet transform and discrete wavelet transform are two 
typical forms of wavelet transform. For Lamb wave signal, in general, continuous 
wavelet transform is especially effective for analysis and visualization. On the other 
hand, discrete wavelet transform is more useful for signal denoising, filtering, 
compression and feature extraction. 

 The Lamb wave signal f (t) applied with the basic orthogonal function  (t), 
obtained from the sensor can be transformed into a quadratic expression using the 
scale of the dual parameters, a, and time, b  
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where 
W (a, b) is the continuous wavelet-transform coefficient; 

 *(t) is the complex conjugate of  (t). 
 The non-stationary nature of the wave energy in the region is illustrated by the 
relation 
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where 

|(a,b)|2 can be considered as a scalogram. 
 Calculating the wavelet coefficients at each scale point is computationally 
expensive. For simplicity, equation (2.8) can be performed in discrete scale and time 
using binary variables m and n 
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where 
a0 and b0 are constants determining sampling intervals along the time and scale 
axes. 
 The decomposition of the signal into separate bands of relatively higher and 
lower frequencies can be accomplished using equation (2.10). Typically, the signal 
components of different frequencies are separated into a fixed number of levels by 
applying the discrete wavelet transform. 
 The simplest methods for localizing mechanical damage in composites employ 
logical signal analysis. Time-of-flight, defined as the time delay from the moment a 
sensor detects a signal reflected by a damage to the moment the same sensor 
detects an incident signal, can be incorporated into a simple method for damage 
triangulation. As a two-dimensional extension of this concept to composite 
structures, a series of sensors were used to cover the region of interest, and the 
transit times were extracted from the signals obtained from each possible actuator-
sensor path. For example, four piezoelectric sensors, each serving as both an 
actuator and a sensor, were attached to the four corners of a reinforced composite 
plate. The transit times T1i were extracted from the signals obtained from each 
possible actuator-sensor path with noise cancellation 
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where 
VSd and VS0 are the velocities of damage-induced shear mode and incident 
symmetric mode S0, respectively; 
LAD, LDS, LAS are the distances between damage centre (x, y) and the ith sensor; 
Index “1” represents the damage centre.  
 The representation of distances in Cartesian coordinates is 
 

22 yxLAD  ,       22
iiDS yyxxL  ,    22

iiAS yxL  ,      (2.13) 

  
where (xi, yi) represents the coordinates of the i-th transducer in the present 
coordinate system. 
 The hybrid of the analytical model and its hardware implementation included 
a nonlinear system that consisted of four sets of equations, with each piezoelectric 
actuator (Pi, i = 1, …, 4) acting in turn as an actuator based on its own reference 
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frames, the mathematical solution of which led to the location of the damage (see 
Fig. 2.1). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 
 
  

Figure 2.1. Detection of delamination location: blue stars - diagnostic results; gray 

circles - accompanying pseudo-results; left figure - diagnostics by 4 pathways; right 

figure - diagnostics by 8 pathways. 

P4 P3 

P1 P2 

P4 P3 

P1 P2 

 

Figure 2.2. Damage identification using time-reversal approach. NP – correlation 

notched plate; Pp – correlation perfect plate; RNP – ratio notched plate;                           

Dc - correlation. 
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The wave packet transit time technique enables time-reversed imaging for wave-
based fault detection. The Lamb wave governing equations in an ideal (lossless, 
time-independent) structure contain only second-order time derivatives. The set of 
any waves that are generated by the source and subsequently scattered, reflected, 
and refracted by the fault can be mapped to another set of waves. The second wave 
packet can exactly replicate all paths and converge synchronously at the original 
source, as if time were running backwards. 
 Due to the fact that the composite material is generally inhomogeneous, the 
scattered Lamb waves measured by different actuator-sensor paths can be time-
reversed, which is realized by replacing the actuator and sensor and vice versa. In 
this case, the Lamb wave should propagate from the sensor to the actuator. All 
these time-reversed wave signals, each of which exhibits a time delay due to the 
presence of the fault, will converge simultaneously at one point, namely the 
scattering point (of the fault). The results of applying the equivalent time reversal 
technique to localize mechanical damage in a composite plate are illustrated in Fig. 
2.2. 
 The propagation of elastic waves in composite materials depends on the 
particular arrangement and interaction of the constituent microparticles. Lamb 
waves can be recorded in thin plates (with flat dimensions much greater than the 
thickness and with a wavelength of the order of the thickness), which provide upper 
and lower boundaries for the direction of continuous wave propagation. In a thin 
isotropic and homogeneous plate, wave packets, regardless of the mode, can 
generally be described in the form of a Cartesian tensor notation, namely 
 

  iiijij ufuu   ,                                  (2.14) 

 
where 
ui is the displacement in the xi direction; 
fi is the bodyforce in the xi direction; 

 is the density; 

 is the shear modulus of the composite plate; 
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where 

 is the Lame constant; 

 is the Poisson ratio. 
 The displacement potential technique based on the Helmholtz equation is the 
basis of potential analysis and can be used as an effective approach to decompose 
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equation (2.14) into two independent parts under the plane strain condition for 
governing longitudinal and transverse modes, accordingly  
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where 
 

       tkxipxApxA   13231 expcossin ,                   (2.18) 

 
       tkxipxBpxB   13231 expcossin ,                   (2.19) 

 
As, Bs, s = 1, 2, 3, 4 are the constants determined by the boundary conditions; 
k is the wavenumber; 

 is the circular frequency; 
index ”L” stands for the longitudinal modes; 
index ”T” stands for the transverse/shear modes. 
 Velocities of longitudinal and transverse/shear modes are 
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E denotes the Young’s modulus of the medium. 
 The plane deformation of the displacement in the direction of propagation of 
the wave packet index "1" and the normal direction (index "3") is described by the 
equations 
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 In this case, the following system of equations holds for the components of 
mechanical stresses 
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 Three types of boundary conditions can be distinguished for a plate with free 
upper and lower surfaces 
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where 
d is the plate thickness; 
h is the half thickness. 
 For brevity, it is noted that the standard symbols for Lamb wave applications 
are “S” and “A”, which denote symmetric and antisymmetric modes. The subscript 
indicates the mode order of the wave packet. S modes mainly have in-plane radial 
displacement of particles. On the other hand, A modes mainly have out-of-plane 
displacement. Therefore, the symmetric wave mode is often described as 
"compressional", showing bulging and compression of the thickness. Accordingly, 
the antisymmetric mode is known as "bending", showing a bending of constant 
thickness. It should be noted that higher-order antisymmetric modes have 
increasingly complex thickness displacements. Under the same excitation 
conditions, the magnitude of S modes (in-plane motion) is usually smaller than that 
of A modes. 
 The analysis of Lamb wave propagation in a plate with free surfaces can be 
extended to the condition of non-free surfaces, such as a plate immersed in a liquid, 
which creates transverse constraints on the plate. 
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 For example, when a composite plate is immersed in water, the S modes will 
be largely confined in the plate, since it is difficult for in-plane particles to cross the 
plate-liquid interface. The net effect of such physical processes is that there is no 
significant energy leakage from the plate to the surrounding water for the S modes. 
However, some of the energy of the out-of-plane A mode will leak into the water. 
This phenomenon is known as Lamb wave leakage in a plate with a surrounding 
liquid. 
 Multilayer structures made of composite material are characterized by 
anisotropic nature. This feature is the reason for the appearance of many unique 
phenomena. Among such phenomena are: directional dependence of wave 
velocity, differences in phase and group velocities, change in direction, shape and 
deceleration of the wave, as well as many subtler features. 
 The propagation of Lamb waves within a plate composed of macroscopically 
uniform layers involves not only scattering at the top and bottom surfaces, but also 
reflection and refraction between the layers. Extending the governing equation to 
an N-layer laminate, the displacement field u within each layer must satisfy the 
Navier displacement equations for the nth layer, 
 

     ''22
nnnnnnnn uuuu   .                     (2.29) 

 
 Besides the two fundamental Lamb modes, S and A are fundamental, i.e. those 
that dominate the radial in-plane and out-of-plane (vertical) particle motion in the 
plate, respectively. 
 In addition, there is another type of possible particle motion, namely in-plane 
but in the direction perpendicular to the wave propagation direction. In this 
direction, the wave packet propagates along the x1 direction, while the particles 
vibrate only in the x2 direction and are confined to the x1 − x2 plane. This wave is 
called the horizontal (SH) shear wave mode, in contrast to the out-of-plane (vertical) 
antisymmetric motion (i.e., the A mode). The A mode of the Lamb wave is called the 
vertical shear mode. SH waves can occur along free surfaces. Like Lamb waves, the 
wave modes in the SH family are either symmetric or antisymmetric. 
 Three-dimensional finite element modeling as well as experimental studies 
have demonstrated SH modes using models that allow particle motion in all 
directions. From a definitional point of view, SH waves are governed by the 
following coordinate equation 
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 The solution to Equation (2.30) has the form 
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where 
A is the constant; 
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 As a characteristic mode, we can mention the propagation of the Lamb SH 
wave in a medium that is covered with a layer of another material, as in polymer 
composite laminates. A typical example of such propagation is the motion of Lamb 
waves in a layer (ρ1, μ1), which is associated with a half-space (ρ2, μ2) and can be 
described by the equation 
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cT1 is the velocity of transverse mode in the fixed layer; 
cT2 is the velocity of transverse mode in the half-space. 
 The propagation of Lamb waves can be characterised by the phase (cp) and 
group (cg) velocities. 
 The speed at which the general shape of the wave amplitudes (known as the 
modulation or envelope of the wave) propagates through space can be thought of 
as the group velocity. The group velocity (the rate at which the wave energy is 
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transferred) is the speed that is measured in most experiments. The group velocity 
depends on the frequency and the thickness of the plate. 
 A typical technique for determining mechanical damage in laminated 
composites using Lajmba wave packets includes the governing equation 
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where f = (2)-1 is the central frequency of the wave. 
 For the SH mode of a Lamb wave, the phase and group velocities are defined 
as follows 
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where  

n  [0, 2, 4, …] for symmetric SH modes; 

n  [1, 3, 5, …] for antisymmetric SH modes. 
 Lamb waves move with the same speed in all directions when propagating in 
isotropic plates. The Lamb wave front forms a locus of points equivalent to a circle.  
For non-isotropic materials, in particular for fiber-reinforced composites, the wave 
speed depends on the direction of propagation. This fact is the reason why the 
shape of the wave front differs significantly from a circle and is described by the 
equation of a generalized ellipse with a fixed slope to the axes of the reference 
system. 
 The theoretical (phase velocity) and experimental (group velocity) values for 
the S0 and A0 modes in carbon fiber reinforced epoxy composite laminates for the 
case where two Lamb wave modes travel with different velocities in different 
directions (d1) and frequenсies (f1 = 1MHz, f2 = 0.8 MHz) are illustrated in Fig. 2.3 -
2.6. 
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Figure 2.3. Phase velocities of S0 modes in CF/FP composite laminates (for f1):                   

A – [0]8, B – [0/90]2s, C – [45/0/90]s, D – [0/90]4s, E – [45/0/90]2s. 

 

Figure 2.4. Phase velocities of A0 modes in CF/FP composite laminates (for f1):                  

A – [0]8, B – [0/90]2s, C – [45/0/90]s, D – [0/90]4s, E – [45/0/90]2s. 
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Figure 2.5. Group velocities of S0 modes in CF/FP composite laminates (for f2):                       

A – [0]8, B – [0/90]2s, C – [45/0/90]s, D – [0/90]4s, E – [45/0/90]2s. 

 

Figure 2.6. Group velocities of A0 modes in CF/FP composite laminates (for f2):                      

A – [0]8, B – [0/90]2s, C – [45/0/90]s, D – [0/90]4s, E – [45/0/90]2s. 
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The difference in the directions of Lamb wave propagation is described by the 
retardation profile, which is a function of the reciprocal of the direction-dependent 
propagation velocity, 1/cg(θ) (where θ is the direction of wave propagation relative 
to 0°).  

The lowest order modes (S0, A0 and SH0) behave quite differently in different 
directions of propagation relative to the 0° fiber, but they all become almost 
directionally independent in a laminate of quasi-isotropic configuration (e.g., 
[±45/0/90]s). This mechanism is very important for the study of Lamb waves in 
composite structures. 
 Detection of matrix cracking in samples with different crack density, as well as 
evaluation of the elastic modulus decay of cracked samples and comparison with 
those obtained during ultrasonic Lamb wave propagation testing, is usually carried 
out by analyzing composite samples in tension. This variational model based on 
mechanical stress testing is the most developed model for predicting matrix crack 
density. The lower limit of the elastic modulus Ec of a damaged laminate is 
determined in this model as follows: 
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t1 and t2 are the half of the thickness of 0o and 90o layers, respectively; 

2 is stress in 900 layers; 

0 is the total stress in laminate. 
 The numerical values of 𝑘2 (relative stiffness of 900 layers) as well as 𝐸𝑐

0 (initial 
stiffness of the laminate) are determined using the classical lamination analysis of 
an intact composite laminate taking into account the longitudinal and transverse 
elastic moduli of the composite layers. This analysis is carried out on the basis of 
the following system of definitions 
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where 
a is the half of the distance between two adjacent cracks; 
p and q are the factors that depend exclusively on the layup and mechanical 
properties of the composite laminate. 
 A semi-analytical model is often used to obtain the stresses required to induce 
matrix cracking with different crack densities in specimens. Such a model for 
describing progressive matrix cracking in composites typically follows a specific 
scenario for cracking initiation and assumes a regular pattern of cracks created in 
90° layers. According to this method, it is assumed that the initial cracks occur in 
the center of the specimen, then two subsequent cracks occur at both ends of the 
specimen and subsequently any new cracks occur between the two previous cracks 
in the bulk of the composite structure. In the case of controlled crack initiation, the 
crack density is related to the applied stress in the 90° layer based on the following 
equation 
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where 

c is the crack density; 

in is the in-situ strength of 900 layers; 

0 is the stress in 900 layers of the multi-layered composite specimen; 
Cin is the material-independed factor that is evaluated by fitting the theoretical 
master curve to the tensile test data; 
K is the shear lag parameter which is given for the cross-ply composite specimen as 
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where 
b and d are the thickness of 00 and 900 layers of the laminate, respectively; 
Ec is the elastic modulus of composite laminate;  
E1 and E2 are the longitudinal and transverse elastic modulus of each composite ply, 
respectively; 
G12 and G23 are the in-ply and out of plane shear modulus, respectively. 
 The propagation of Lamb waves in composite structures with anisotropic 
properties is accompanied by such nonlinear phenomena as the difference in group 
and phase velocities, as well as the direction-dependent velocity. The wave motion 
in an N-layer laminated composite is governed by the Navier displacement equation 
by applying appropriate boundary conditions in each layer. 
 The sum of the gradient of the scalar potential of the compression wave (φ) 

and the curl of the vector potential of the shear wave (ψ), for example, u = ∇𝜑 + ∇ × , 
can be interpreted as a displacement vector. The problem of wave packet 
propagation can, under certain restrictions, be reduced to a two-dimensional 

version. In this case, the correct set of such ’ = (0, 0, 𝜓) potentials that satisfies the 
boundary conditions of a plate medium and thus governs the propagation of a Lamb 
wave can be expressed as 
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where 
a1, a2 are the compression wave characteristics; 
b1, b2 are the shear wave amplitudes. 

 For constants  and  we get 
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where 
kl is the lamb wavenumber; 
ks is the shear wavenumber; 
kc is the compression wavenumder. 
 The dispersion dependence for k has the form 
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 For the case of linear viscoelastic composites, it is more convenient to use 
complex values of the corresponding characteristics. The propagation of Lamb wave 
packets in viscoelastic materials is described by a complex version of the equation 
for antisymmetric modes 
 

 

   222

2

ˆˆ2

ˆˆˆ4

ˆtanh

ˆtanh

sl

l

kk

k

h

h









.                                             (2.57) 

 
 For shear and compression velocities we get 
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 In turn, the displacement on the plate surface (x2 = h) in a viscoelastic 
composite material is equal to 
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where for the complex Lamb wavenumber we get 
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and 
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 The displacement component u2 at two locations along propagation direction 
x1 with a distance L from each other is 
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where || || denotes the absolute value of a complex number. On the other hand, 
the real part of the Lamb wavenumber, is 
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where the Lamb wave phase velocity (cl) is obtained from the experiments. 
 The complex shear modulus is defined as 
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where 

G() is the storage shear modulus; 

G() is the loss shear modulus. 
 Complex shear modulus satisfies the expression 
 

 
2

2

ˆ
ˆ

sk
G


  .                                                 (2.65) 

 

 Dispersion dependencies for G, G and  have the form 
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 The formation of matrix cracks in polymer matrix composite laminates 
depends on various factors such as layup, cross-sectional strength of composites, 
impact strength and rigidity of the polymer matrix, strength, rigidity of fibers, etc.  
The experimental study of the mechanical damage field in the volume of the 
composite material must necessarily be accompanied by an assessment of the crack 
density in the composite samples. Such an assessment is necessary due to the fact 
that the base of some cracks was not fully opened, and some cracks did not grow in 
a straight line. To avoid any uncertainties, cracks crossing the entire area of 90o 
layers were counted at a fixed distance approximately in the middle of the sample 
volume. 
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 Figure 2.7 illustrates the average induced crack densities с (mm-1) in the test 

set of specimens for different applied stress levels L (MPa), predicted by the elastic 
model and also obtained from tensile tests. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Lamb wave multipath scattering is effectively used for mechanical damage 
monitoring in laminar composites. In Lamb wave-based structural health 
monitoring, it is common to pre-record baseline signals when the structure is free 
of damage. On this basis, the residual field Urs, which subtracts these baseline 
signals from the measured signals, isolates the effects of the unknown damage 
introduced between the two measurements. In the single scattering approximation, 
the residual field only takes into account the direct scattering path of the damage. 
Therefore, the following relation holds 
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Figure 2.7. Dependence of crack density on stress level in 900 layers. 
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where 

F() is the frequency domain excitation; 

 (; 1, 2) is the part of scaterring pattern; 
s = [sx,sy]T is the location of transmitter; 
r = [rx,ry]T is the location of receiver; 
u = [ux,uy]T is the location of damage; 

1 is the incoming angle; 

2 is the outcoming angle; 
d is the actual propagation distance; 
dr is the reference distance; 

k = /cp is the wavenumber; 
cp is the phase velocity. 
 Obstacles that can scatter Lamb waves are associated not only with sources of 
unknown damage, but also with previously known features in the structure, such as 
edges, stiffeners, lap joints, and rivets. The residual signal may also include waves 
that are scattered multiple times between these known scatterers and the target 
(i.e., the damage).  
 The residual signal may also include waves that are scattered multiple times 
between these known scatterers and the target (i.e., the damage). This scattering 
is considered under the assumption that there are no waves that interact with 
obstacles more than once. In particular, if we consider waves doubly scattered from 
both a single scatterer and the damage, the residual field satisfies, 
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where 
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v1, v2 are the coordinates of the scatterers; 

1,  2 are the coefficients of scattering patterns. 
 The residential field may be modified as 
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 In equation (2.74), the theoretical analysis technique used allows us to neglect 
waves interacting with a single scatterer more than once. Statistical analysis has 
shown that multipath scattering produces more types of damage than can be 
obtained with forward scattering. Better resolution imaging can be achieved by 
extending the imaging technique to handle these multipath scattering signals. 
 The entire set of known singularities in composite structures can be classified 
as linear reflectors (e.g. ribs and stiffeners) and point scatterers (e.g. rivets) 
according to their dimensions. An additional improvement of the above technique 
is related to the inclusion of multipath scattering characteristics between linear 
reflectors and damage in the analysis area. 
 Fermat's principle can be applied to the propagation of acoustic rays. This 
principle leads to the presence of six possible propagation paths, since the 
transmitter s = [sx,sy]T and the receiver r = [rx,ry]T are present near two adjacent 
edges of the structure (i.e. the damage is located at u = [ux,uy]T). 
 A large number of experimental studies on Lamb wave propagation in the 
volume of anisotropic laminated composites indicate that each linear reflector can 
be considered as a mirror, creating a virtual transmitter or receiver in a symmetrical 
position. The location of this virtual transmitter or receiver is determined by the 
position of the actual and mirror, and is independent of the location of the damage. 
 The physical effects associated with the presence of multiple scattering paths 
can be described under the simplifying assumption of the shape of their trajectory 
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as direct scattering paths from virtual/actual transmitters to the damage and back 
to actual/virtual receivers. All these factors allow us to conclude that taking into 
account multiple scattering paths is equivalent to increasing the reading paths of 
the sensor network. In this case for the value of Uds we get 
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where 
s1 = [-sx, sy]T; 
s2 = [sx, -sy]T; 
r1 = [-rx, ry]T; 
r2 = [rx, -ry]T are the coordinates of the virtual transmitters and receivers. 
 At the second stage the value Uts can be modified as follows 
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 The presence of multipath scattering associated with one transmitter-receiver 
pair allows to extend the sensor network consisting of real sensor elements with 
virtual ones. It should be noted that in this case with such a matrix of sensors, 
conventional elliptic methods cannot be directly used for damage visualization. 
 A necessary condition for the application of elliptic methods is that the 
probability of damage occurrence at any point (x, y) can be expressed as a linear 
summation of the probability density functions calculated for each possible 
transmitter-receiver pair. 
 In the presence of such effects, the complexity of the application of the 
considered technique arises. Despite the fact that the residual signal consists of 
several wave packets due to multipath scattering, the wave packet associated with 
the virtual pair of sensors cannot be identified, since the location of the damage site 
is actually unknown. Thus, the probability density function associated with the 
virtual pair of sensors cannot be obtained. 
 However, the wave packet for each possible pair of sensors (either real or 
virtual) can be included in the residual signal. As a rule, the residual signal is a 
consequence of the effects of an unknown damage introduced between the two 
measurements. Different wave packets can correspond to the same damage (but 
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with different scattering paths). Taking advantage of this, a modified elliptic method 
is established for damage visualization.  
 Multipath scattering of Lamb waves is characterized by a strong influence of 
the set of scattering patterns μi (ω; θ1, θ2) and μj (ω; θ1, θ2) on the amplitude of the 
wave packet. To suppress their effects, a Gaussian distribution function f(zij) is 
introduced, which is a function of the time of flight of the wave packet, but not of 
the amplitude or envelope 
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where 

 is the standart variance; 
v0 is the group velocity at the central particulary effective to produce a resulting 
image by considering information from al input images; 
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where 
I is the number of wave packets. 
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CHAPTER 3 
LAMB WAVE PROPAGATION 

Non-destructive testing, as well as structural health monitoring, determine the 
integrity and degradation of composite structures to ensure their operability. The 
working object of active diagnostics is the ultrasonic transient wave. In order to 
detect damage, localize and subsequently evaluate damage, understanding the 
wave propagation characteristics of composites is essential for the successful 
application of diagnostic methods. 

 The effects of wave propagation in composites are complex due to the nature 
of the component heterogeneity, inherent material anisotropy and multilayer 
construction. These features are the reason why the wave mode velocity is 
macroscopically dependent on the laminate layup, the direction of wave 
propagation, frequency and interface conditions. 

The propagation of elastic waves in isotropic plate structures is characterized 
by repeated reflections on the upper and lower surfaces alternately. As a result, the 
propagation of waves from their mutual interference is guided by the surfaces of 
the plates. The guided wave can be modeled by imposing surface boundary 
conditions on the equations of motion. 

The effects of wave propagation in composite structures are accompanied by 
the phenomenon of dispersion, i.e. the propagation velocity of a guided wave along 
the plate is a function of frequency or, equivalently, wavelength. In particular, 
guided waves propagating along the plane of an elastic plate with tension-free 
boundaries are called Lamb waves. Since guided waves remain confined within the 
structure, they can propagate over large distances, allowing a large area to be 
surveyed with only a limited number of sensors. 

This property makes them well suited for continuous monitoring techniques 
for ultrasonic testing of entire structures and their elements, which are used in 
various industrial fields. In isotropic plates, guided waves can be classified into three 
types according to their polarization (direction of the displacement vector). 

Lamb waves polarized in the plane perpendicular to the plate, in the x-z plane, 
are called symmetric (or longitudinal, S) waves and antisymmetric (or flexural, A) 
waves, while those polarized in the plane of the plate (along the y-axis) are called 
shear horizontal (SH) waves. SH waves can also be either symmetric or 
antisymmetric about the midplane. 

S and A waves are controlled by plane strain state (displacements u and w); 
while SH waves are controlled by antiplane strain (displacement v only). 
Conventionally, Sn and An with index n = 0, 1, 2, 3... represent symmetric and 
antisymmetric Lamb wave modes, respectively; SHn with even and odd index n 
denote symmetric and antisymmetric SH waves, respectively. 

Wave interactions of waves propagating in multilayer composites depend on 
the properties of the components, geometry, direction of propagation, frequency, 
and conditions at the interface. For the case when the wavelengths are significantly 
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larger than the dimensions of the composite components (fiber diameters and 
spacing), each plate can be considered as a sample made of an equivalent 
homogeneous orthotropic or transversely isotropic material. Such a material is 
characterized by an axis of symmetry parallel to the fibers. 

Scattering of tensile waves was recorded in experimental studies under 
conditions when the wavelength had the same order of magnitude as the fiber 
diameter. It should be noted that for flexural waves, scattering appeared when the 
wavelength was more than an order of magnitude greater than the fiber diameter. 

Composite laminates consist of macroscopically homogeneous layers. In this 
case, wave interactions include not only reflection at the surfaces, but also 
reflection and refraction between the layers, manifested in the form of resultant 
waves. These interfering wave packets propagate along the plane of the plate. 

The process of Lamb wave propagation in the composite is characterized by 
the following features. The velocity of the wave packet depends on the direction of 
its propagation. In addition, a consequence of elastic anisotropy is the loss of pure 
wave modes. The dependence of the wave velocity on the direction of propagation 
implies that the direction of the group velocity in general does not coincide with the 
wave vector (or wave normal). 

The distinction between the wave mode types in composites is rather 
arbitrary. The reason for this is that the three wave mode types are usually related. 
Engineering practice usually uses symmetric laminates when designing composite 
structures. Lamb waves in symmetric laminates can be divided into symmetric and 
antisymmetric modes. For the symmetric modes, one type is designated as quasi-
extended. In this case, the dominant component of this symmetric mode of the 
polarization vector is located along the direction of propagation. The second type 
of symmetric mode is quasi-horizontal shear. For quasi-horizontal shear, the 
polarization vector is mainly parallel to the plane of the plate. 

In exactly the same way, quasi-flexural and quasi-horizontal shears are 
generated for antisymmetric types of wave modes. In theoretical analysis, two 
approaches can be distinguished for the study of Lamb waves in composites. The 
first method is associated with exact solutions according to the three-dimensional 
theory of elasticity. The second method is characterized by the inclusion of 
approximate solutions according to theories of plates. 

The dispersion relations of Lamb waves in a composite plate can be obtained 
by analyzing the mechanical elasticity in three dimensions. Further extension of the 
transfer matrix methodology in different types of composites was used to obtain 
the dispersion curves. 

The exact solutions of Lamb wave dispersion in composite shells are compared 
with the results of the Flugge shell theory. It should be noted that the scope of 
applicability of this methodology is limited only to the case of dispersion relations 
of phase, but not group velocity. 
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Calculation of dispersion characteristics of multilayer composites is quite 
complex due to the presence of transcendental equations. In addition, such 
calculations should take into account the transient wave response of composites. 

Lamb wave packets that propagate in composites along an arbitrary direction 
generally cause a perturbation in the mechanical strain field. Such a change in the 
field characteristics involves three components of displacement, i.e., a generalized 
plane strain arising from the anisotropy of the material. 

The displacement of plane harmonic waves can be described in general using 
3-D elasticity. The initial stage of the analysis investigates the characteristics of 
Lamb waves in a single plate (monoclinic plate). In this case, a compact closed 
dispersion relation can be obtained by separating symmetric and antisymmetric 
modes using trigonometric functions through the plate thickness. 

Special cases are when the waves propagate along the symmetry axis of the 
material in such a way that mutual separation of S- and A waves as well as SH waves 
is considered. The final stage of the analysis generates a modified exponential form 
in the thickness direction to derive the dispersion relation for the composite 
laminate with special emphasis on symmetric laminates. 

The propagation of wave packets is considered in a Cartesian coordinate 
system with the z-axis perpendicular to the midplane of the composite laminate 
spanned by the x- and y-axes. The two outer surfaces of the laminate are defined 
by the coordinates z = ± h/2. 

An arbitrary direction  of the Lamb wave packet is defined counterclockwise 
with respect to the x-axis. In this case, a fixed layer of the composite laminate with 
an arbitrary orientation in the global coordinate system (x, y, z) is considered as a 
monoclinic material having x–y as a plane of symmetry. This fact causes the stress–
strain relationships to take the following matrix form: 
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The case where the global coordinate system (x, y, z) does not coincide with 

the main coordinate system of the material (x’, y’, z) of each layer, but forms an 

angle  with the x-axis is considered separately (Fig. 3.1). For such conditions, the 
stiffness matrix Cij (i, j = 1, 2, 3, 6) in the system (x, y, z) can be obtained from the 
plate stiffness matrix C0ij in the system (x0, y0, z) using the transformation matrix 
method. The composite material specimen is orthotropic or transversely isotropic 
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with respect to the main axes of the material in (x0 , y0, z). The plate stiffness matrix 

C0ij can be calculated from the plate material properties Ek, kl and Gkl (k, l = 1, 2, 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The relationships between deformations and displacements are as follows 
 

xx u ,  yy   ,  zz w ,  yzyz w , 

 

xzxz wu  ,  xyxy u   ,                                 (3.2) 

 
where 
u is the displacement in the x direction; 

 is the displacement in the y direction; 
w is the displacement in the z direction. 

For the case of absence of external forces, the equations of motion can be 
expressed using the following relationships 

 
uzxzyxyxx   ,, ,                                          (3.3) 

 
  zyzyyxxy ,, ,                                          (3.4) 
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Figure 3.1. Lamb waves propagating in a composite laminate. 
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wzzyyzxxz   ,, ,                                         (3.5) 

 
where 

 is the density of fixed lamina. 
The boundary conditions on the upper and lower surfaces can be written using 

the following equations 
 

0 yzxzz  ,   
2

h
z  .                                  (3.6) 

 
 Lamb wave packets propagate along the plane of a plate with boundaries free 
of additional mechanical stresses. On the other hand, Lamb waves are standing 
waves in the z-direction of the plate. Therefore, the wave motion can be expressed 
by a superposition of plane harmonic waves. Each plane harmonic wave 
propagating in the direction of the wave normal k can be described by the relation 
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where k = [kx, ky]T. 
 Magnitude of k is 
 

p
yx

c
kkk


 22 ,                                                 (3.8) 

 



2
k ,                                                             (3.9) 

 
where 

 is the wavelength; 

 is the angular frequency; 
cp is the phase velocity. 
 Mechanical stresses in each layer are 
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   tykxki yx  exp ,                                             (3.11) 
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      WikUCWikVC xyxz 5554  

 

   tykxki yx  exp ,                                             (3.14) 

 

    VkUkCWiCVkCUkC xyyxxy 66636261  

 

   tykxki yx  exp ,                                             (3.15) 

 
 The equations for mechanical displacements for an off-axis composite plate 
allow separation into symmetric (index “s”) and antisymmetric (index “a”) wave 
modes. This separation leads to a particularly simple form of the asymptotic 
representation 
 

zAU ss cos ,   zBV ss cos ,   zCW ss sin ,                (3.16) 

 
zAU aa cos ,   zBV aa cos ,   zCW aa sin ,                (3.17)  

 

where  is the fixed variable. 
 The method of analyzing the resulting system of equations for mechanical 
displacements and stresses can be divided into two successive stages. In the first 
approximation, only symmetrical modes of Lamb waves are subjected to theoretical 
analysis during their group motion along the aisotropic medium, which constitutes 
the volume of the laminated composite. In addition, a set of compact dispersion 
relations is analyzed separately for both symmetric and antisymmetric Lamb wave 
modes. This analysis is performed using metric functions for the corresponding 
wavelet transform for all points in the laminated composite volume. Symmetrical 
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modes are considered first. At the second stage, the entire sequence of solutions of 
this system is transformed into a matrix form 
 

  0
2

333231

23
2

2221

1312
2

11












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

























s

s

s

C

B

A







,                    (3.18) 

 
Matrix elements can be expressed by the following expressions 

 
2

55
2

6661
2

1111 2 CkCkkCkC yyxx  ,                                         (3.19) 

 

  2
45

2
626612

2
6112 CkCkkCCkC yyxx  ,                            (3.20) 

 

    yx kCCkCCi 4563553113  ,                                    (3.21) 

 
2

44
2

2226
2

6622 2 CkCkkCkC yyxx  ,                                    (3.22) 

 

    yx kCCkCCi 4423453623  ,                                   (3.23) 

 
2

33
2

4445
2

5533 2 CkCkkCkC yyxx  ,                                    (3.24) 

 
 A similar technique is consistently applied to the antisymmetric mode. As a 

result, the resulting matrix becomes equal to (Г – 2I), where I is the identity 
matrix. For the case when the Hermitian matrix Г is positive definite, it can be shown 
that the eigenvalues of the symmetric and antisymmetric modes coincide.  
 The non-trivial solutions As, Bs and Cs participate in the zeroing of the 

determinant of the characteristic matrix (Г – 2I), which yields the following sixth-

order polynomial in  
 

03
2

2
4

1
6

  ,                                                (3.25) 

 

where i  are real-valued coefficients of Cij, k, and 2. 
 Analysis of the system of characteristic equations showed that there are three 
solutions. The properties of these solutions include their positivity, nonzero 
difference, and discreteness. As is a rule, such solutions are related to indices nj (j = 
1, 2, 3). For each index nj in the symmetric modes of the wave packets Bs and Cs, 
which are related to the symmetric modes of Lamb waves in composite structures, 
the following relationships can be written in terms of As 
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 
 

sss RAAB 






2312
2

2213

131223
2

11




,                                   (3.26) 

 

  
 

sss iSAAC 






2312
2

2213

2
22

2
11

2
12




.                          (3.27) 

 
 As a result, the modified equations for mechanical shears and stresses will 
have the form 
 

     



 zHzH jj

j

jjhzxzyzz cos,sin[,, 2

3

1

12/
 

 
  0]cos3  jjj AzH  ,                                        (3.28) 

 

where  = 0 and /2 represent anti-symmetric and symmetric Lamb wave modes, 
and 
 

  







 



2
tan 1

3223332211

h
HHHHH  

 

  







 



2
tan 2

3321312312

h
HHHHH  

 

  0
2

tan 3
3122322113 








 

 h
HHHHH .                      (3.29) 

 
 The numerical calculation methodology for Lamb wave propagation in 
composite structures assumes that the interfaces between layers are ideally 
coupled. For each layer, the displacement components in the corresponding z-axis 
equation must be modified into exponential forms to account for the 
inhomogeneity of the multilayer laminate. 
 

 ziAU exp ,       ziBV exp ,      ziiCW exp .       (3.30) 

 
 The general solution in each lamina is 
 

         

j

jjjjyx ziSRAtykxkiWVU  exp,,1exp,, .      (3.31) 
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 Symmetrical and asymmetrical wave modes in conventional laminates cannot 
be separated. It should be noted that symmetrical laminates are used in engineering 
practice when designing composite structures. A reliable method for separating the 
two types of wave modes is to generate boundary conditions on both the upper and 
middle planes of the surface. For the upper boundary of the laminate, the boundary 
conditions can be written as follows 
 

  0,,
2/


hzxzyzz  ,                                            (3.32) 

 
 The symmetry conditions for the entire laminate allow only half of the entire 
sample to be analyzed. In a subsequent step, the following conditions are imposed 
on the stress and displacement components in the midplane for symmetric modes 
 
 

  0,,
0


zzu  ,                                                  (3.33) 

 

 The implicit functional form G (, k) = 0, or G (, k, ) = 0 can be used to 

formulate the dispersion relation between  and k. This dispersion relation can be 

explicitly solved in the form of real roots  = W (k), or  = W (k, ). 
 The number of possible solutions with different functions W tends to infinity. 
Such solutions correspond to different wave modes. The phase velocity vector for 

plane modes is defined as cp = (/k)(k/|k|)=(/k2)k. Therefore, its magnitude is cp 

= /k. The set of all statistical samples k from the origin for cp at a given frequency 
forms the so-called velocity curve. The radius vectors of the velocity curves in the 
direction of a given k represent the admissible dispersion of the phase velocity of 
the different wave modes. 
 A set of points in phase space or a slowness curve can be defined by fixing the 

slowness vector s = k/. The characteristics of the set of phase points can be simply 
formed from the velocity curve by geometric inversion, i.e. by mapping through the 
inverse radius. 
 The directions of the slowness and phase velocity vectors coincide. Thus, the 
inverse phase velocities can be measured from the origin to the slowness curves. 
The distance traveled per unit time is defined as the phase velocity. On the other 
hand, time as slowness is numerically equal to the time required to travel a unit 
distance. For volume (non-dispersive) waves, it is convenient to use the slowness 
curve. The reason for this is the fact that this curve does not depend on x. 
 In isotropic materials, the phase velocity depends only on the magnitude of 
the wave vector k. The phase velocity of anisotropic materials depends on the wave 
vector k, its magnitude, and the direction in which the wave propagates. For 
experimentally measured wave packets, the phase velocities are measured by 
tracking the wave peaks. 
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 The numerical value for the group velocity can be determined by tracking the 

wave packet envelopes, namely cg = gradkW  = W/k. Provided that the closed form 
of the implicit function G has been previously determined, the group velocity can 
also be calculated as 
 

1





























G

k

G
cg .                                         (3.34) 

 
 The gradient W (gradk W) in the polar coordinate system has a radial 

component W/k in the direction k and an angular component W/k, 
perpendicular to k. After the coordinate transformation, the group velocity in the 
Cartesian coordinate system is equal to 
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
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
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
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k

W
k

W

c

c

gy

gx

cossin

sincos
,                                (3.35) 

 
where indexes “x” and “y” represent the components in x- and y-axes, respectively. 
 The magnitude and direction of group velocity represents this system of 
equations 
 

22
gygxg ccc  ,      

gx

gy
g

c

c
1

tan


 .                            (3.36) 

 

 The skew angle  or steering angleis defined as 
 

  g .                                                   (3.37) 

 
 It makes sense to introduce the concept of a wave curve (or wave front curve) 
as the geometric locus of the group (radial) velocity vectors along all choices cg from 
the origin at a given frequency. The radius vector connecting the origin (or source 
point) with a point on the wave curve is numerically equal to the distance traveled 
by the elastic disturbance per unit time. 
 In other words, the geometric concept of a wave curve essentially comes down 
to the concept of a geometric locus of points (or wave front) recorded per unit time 
by a disturbance emitted by a point source acting through the origin at time t = 0. 
Wave curves are of great importance in detecting mechanical damage. 
 The dispersion relation written for each Lamb wave mode can be expressed as 

an explicit function of W(k; ). This function is associated with a conical surface in a 
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three-dimensional domain. In addition, the deceleration curve W (k; ) = 0 is 

geometrically a level surface of W (k; ). Differentiating both sides of the equation 

with respect to , the following relation can be obtained 
 

0











W

d

dk

k

W
,                                         (3.38) 

 
 As an example of the use of numerical and symbolic methods for recording 
mechanical damage in a composite material, we can consider the results of the 
Lamb wave propagation analysis in graphite/epoxy resin AS4/3502. Two laminates 
are used in the tests: L1 ([+456/456]s) and L2 ([+45/45/0/90]s). The numerical results 
consist of dispersion curves (phase and group velocities) and three characteristic 
wave curves in two different types of laminates. The characteristic dispersion curves 

are illustrated in Figs. 3.2 - 3.5. The dimensionless frequency fd = h/cT and the 

dimensionless velocity d1 = cp/cT and d2 = cg/cT are used to normalize the physical 

frequency and velocity, respectively. In addition, cT is defined as (G12/)0.5 is the 
velocity of the transverse (in-plane shear) wave in the plate. 
  
 
 
 
 
  
 
 
 
 

  
 
  
 
 

 
 
 
 

 

 

 

 

 

Figure 3.2. Dispersion curves d1 = d1 (fd) of Lamb waves along  = 450 (symmetric 

modes). 
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Figure 3.3. Dispersion curves d2 = d2 (fd) of Lamb waves along  = 450 (symmetric 

modes). 

 

Figure 3.4. Dispersion curves d1 = d1 (fd) of Lamb waves along  = 450 (anti-

symmetric modes). 
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 The group velocity of the SH0 and S0 modes has pronounced dispersion 
characteristics. However, even greater dispersion is observed for symmetric modes 
in the quasi-isotropic laminate [+45/45/0/90]s . In contrast, the dispersion of the A0 

mode in both laminates is weaker beyond h/cT = 1. This feature is effectively used 
for structural monitoring of laminar composites. 
 Characteristic wave curves, including velocity, as well as slow Lamb wave 
curves, propagate in composites at a given frequency. Most of these curves are 
centrosymmetric about the origin. This feature is a consequence of the fact that the 
fiber orientation of each individual plate is invariant when h is replaced by h + p (p 
= const). Moreover, all characteristic wave curves change with frequency due to the 
dispersion nature. 

 Characteristic wave curves can be constructed at h/cT = 4 with two symmetric 
modes (S0 and SH0) and three antisymmetric modes (A0, SH1 and A1). The 
wavelengths of these modes at a fixed h = 30 are much larger than the fiber 
diameters and the distance between the fibers. The set of characteristic wave 
curves considered can vary significantly for different frequencies due to its 
dispersive nature. 
 Such a phenomenon as energy focusing is observed for volume waves in 
anisotropic solids. It should also be noted that energy focusing is also observed for 
SH wave modes. The deceleration curves have many inflection points. This implies 

 

Figure 3.5. Dispersion curves d2 = d2 (fd) of Lamb waves along  = 450 (anti-

symmetric modes). 
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that the same direction of the group velocity can correspond to several directions 
of wave propagation. The specific directions are determined by the features of the 
wave front of the Lamb wave packet. 
 The characteristic frequency of wave packet propagation in thin quasi-
isotropic laminated composite is lower than the cutoff frequencies of A1 and S1 
modes. Therefore, only fundamental modes (A0, S0 and SH0) exist in thin laminate. 
The angular dependence of Lamb waves in the laminate [+45/45/0/90] becomes 
weaker due to quasi-isotropic stacking. 
 Numerical analysis revealed that the A0 mode has a maximum along 450 
directions, since the bending of the dominant outer plate is oriented in these 
directions. The wave curve for each layer of the composite material has no 
inflection. This fact is a consequence of the quasi-isotropic stacking, not the 
dispersion characteristics. 
 Since the velocity curves are approximately independent of the wave 
propagation direction, the average wavelengths can be estimated using solutions 
of the characteristic equations. These wavelengths are found to be comparable to 
the plate thickness, but much larger than the fiber diameters and the fiber spacing. 
This also shows that the wavelength of A0 is shorter than that of the S0 and SH0 
modes. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.6. Wave curves in the laminate [+456/-456]: 1 – SH1; 2 – A0 (theory);                     

3 – SH1A; 4 – SH1B; 5 – A1. 
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Comparison results between theoretical prediction and experimental 
measurement of Lamb waves in a relatively thick [+456/ 456]s laminate are shown 
in Fig. 3.6. It can be seen from the figure that the exact solutions agree satisfactorily 
with the experimental results for both symmetric and antisymmetric modes. Even 
higher modes such as S1 and A1 can be detected experimentally. 
 The SH0 and S0 modes are difficult to distinguish in the very low frequency 
range (50 – 150 kHz). This feature is explained by the fact that the difference in 
arrival time between the two modes is very small. It can be concluded that the two 
modes have already appeared even before the end of the excitation duration. It 
should be noted, however, that the exact solution for the S2 modes is not consistent 
with the experimental results. This difference is determined by the presence of 
larger scattering signals from inhomogeneities in the high-frequency range for 
lower wave modes than from the S2 mode itself. 
 A comparison of the Lamb wave results in the quasi-isotropic [+45/45/0/90]s 
laminate shows that for excitation frequencies up to 1 MHz, the eight-layer thinner 
composite exhibits only fundamental guided waves (SH0, S0 and A0) that propagate 
in the laminate. It should also be noted that the exact solutions are in good 
agreement with the experimental measurements for both the group velocity 
dispersions and the wave curves. 
 Detection of mechanical damage in composites requires the combined use of 
both the Lamb wave method and the basic concepts of the theory of elasticity and 
elasticity in non-isotropic media, which in general include laminar composite 
structures.  
 The consideration of waves with a fixed wave front shape implies flat 
deformation conditions in the xz plane, i.e. εy = εxy = εyz = 0, and negligible changes 
in non-vanishing strains and stresses in the y direction. The basic relations of 
elasticity theory are the linear stress-strain equations for a rotated composite layer 
and are given by 
 

 ][C ,                                                           (3.39) 

 
where 

 = {x, z, xz}T is the extended stress vector; 

 = {x, z, xz}T  is the extended strain vector. 
 The ply stiffness matrix [C] is 
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 For each point in the volume of a sample made of a composite structure, the 
equilibrium equations for stresses in the x and z directions can be written. The 
equilibrium equations, in turn, are reduced to equations describing the motion of a 
wave with a fixed wave front shape. The derivatives of mechanical stresses with 
respect to y are negligibly small. As a result, the equilibrium equations for 
mechanical stresses take the form 
 

     tzxutzxtzx zxzxx ,,,,,, ,,   ,                         (3.41) 

 
     tzxwtzxtzx zzxxz ,,,,,, ,,   ,                         (3.42) 

 
where 
u is the displacement component along x axis; 
w is the displacement component along z axis; 

 is the average density of the lamina composite. 
 The thickness displacement variations are satisfactorily described by the 
kinematic hypothesis of the layer-by-layer theory. The layer-by-layer theory allows 
for the presence of piecewise (zigzag) fields across the thickness of the composite. 
The calculation method is simplified by assuming that a typical laminate can be 
divided into N discrete layers. Each discrete layer can contain one layer, one 
sublayer, or two sublayers. Consequently, the displacement field in the laminate 
takes the form 
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,,, ,                                  (3.43) 
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,,, ,                                  (3.44) 

 
where 
U n are the in-plane displacement of fixed layer along x axis; 
W n are the in-plane displacement of fixed layer along y axis; 

 n(z) are the linear interpolation functions. 
 The equivalent form of the 2 × N equations of motion across the thickness of 
the laminate for an infinite strip is: 
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 The Fourier transform of the generalized displacement vectors  U (x,t) and 
W (x,t) for a wave propagating along the x-axis of the strip is performed first with 
respect to the time variable t, and then with respect to the spatial variable x, 
following the standard rule 
 

           dttitxWtxUxWxU   
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,                   (3.47) 
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where 

 is the circular frequency; 

 is the axial wavenumber. 
 Performing the fast Fourier transform procedure leads to the following form 
of the main equations 
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where m, n = 1, …, N. 
 The 4N-dimensional first-order problem for a given real value of frequency ω 
and wave number ξ can be formulated as follows 
  

     PVBA ˆˆ   ,                                                (3.50) 
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 Non-trivial solutions of the homogeneous part of equation (3.50) are obtained 
by imposing a boundary condition, the essence of which is that the determinant of 
the coefficient matrix of the vector V must be equal to zero.       
  This is equivalent to the characteristic dispersion relation of the equation. For 
a given frequency ω, the characteristic equation has m = 1, ... , 4N complex 

eigenvalues ξm = ξm
Re + iξm

Im. The complex solutions are the axial wave numbers for 
all modes existing at the excited frequency.                  
 Among all the derived modes, there are propagating, inhomogeneous, and 
decaying modes. Accordingly, these modes are characterized by real, complex, and 
purely imaginary axial wave numbers. 
 The modal decomposition allows us to decompose the eigenvector V in terms 
of the right eigenvector ϕm as follows 
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 The generalized coefficients Vm can be expressed using the following 
relationship 
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where 
 

m
T
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 Accordingly, the resulting Green's function in the domain of frequencies and 
wave numbers has the form 
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 The frequency band fluctuations are superimposed on changes in the vector 
of the external force F, which occurs during mechanical displacement. With such 
superposition, various loading cases can arise. The most common in the 
deformation of laminar composites are two types of surface loads: a concentrated 
force at the point x = x0 and a distributed shear force, which is applied over a finite 
length. The dependence of the force on time can be any. The force vector can be 
expressed using the following relationship 
 

      tfxxFtxf 00,   ,                                    (3.58) 

 
where 
F0 is the amplitude of the force F; 

 (x – x0) is the Dirac delta-function; 
F (t) is the time dependence of external force. 
 The double Fourier transform in both time and space variables yields a 
transformed force vector 
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where F’() is the transformed forcing vector. 
 Applied composite sheat stress is 
 

        tfxHxHtxxy   0, .                    (3.60) 

 
 The shift in the frequency-spatial domain obtained using the inverse Fourier 
transform has the form 
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 The integral in equation (3.61) is evaluated numerically using the Cauchy 
residue theorem. The integrand has singularities only where the denominator is 
zero, i.e., for the poles ξ = ξm. Only those poles that lead to propagating Lamb waves 
are analyzed. Therefore, it is necessary to calculate the residues from these Nd poles 
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 For a given excitation frequency ω, equation (3.62) represents the frequency 
response of the system. To decide which poles produce the correct propagating 
waves, we calculate the group velocity for each eigenvalue from equation 
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 Verification numerical calculations using the features of Lamb wave 
propagation in the composite volume were performed according to the following 
model. A pair of concentrated normal forces of equal magnitude was applied to the 
upper and lower surfaces of the sample in two different configurations. 
 The first configuration corresponded to the unidirectionality of the applied 
forces. In this case, the generation of antisymmetric wave modes was assumed. The 
second configuration included oppositely directed external deformation forces. 
Forces of this direction excited symmetric wave modes. In addition, the calculations 
were performed under the assumption that the time dependence of the applied 
load f (t) was modeled by a Gaussian 3-cycle sinusoidal tone burst. 
 The predicted time response of the fringe at a distance comparable to one 
third of the specimen length, measured from the point of application of the external 
force, was calculated in terms of the u and w displacement components. The 
calculated results showed good agreement with the experimental results for the 
propagation of the A0 and S0 waves. It should be noted that the widely used semi-
analytical finite element method leads to worse predictions for the identification of 
mechanical damage in the bulk of the composite. 
 Transit time of each mode is consistent with the predicted group velocity. The 
S0 mode wave has a high dispersion at the selected excitation frequency. It should 
be noted that the comparison of the predicted wave response will be sensitive to 
small errors in the numerical calculation of the wave characteristics. In addition, a 
small oscillatory component is observed at the beginning of the time response. The 
initial times are compared with the arrival time of the guided wave mode, which is 
introduced by the inverse Fourier transform applied to obtain the results. 
 The use of generalized models of layered laminates allowed us to obtain semi-
analytical solutions for the directed propagation of a direct Lamb wave with a fixed 
profile in laminated composite strips. The model describing the propagation of 
Lamb wave packets in composite inhomogeneous structures is solved analytically 
in axial propagation. Three-dimensional theory of layered laminates was used to 
analyze the variation of displacement with thickness. A double Fourier transform 
transformed the problem into the frequency-wavenumber domain, where the 
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modal properties of the structure were extracted. Finally, two inverse Fourier 
transforms provide a solution to the problem in terms of displacements. 
 High-speed dynamic events in laminar composites with short dynamic 
response times are described quite effectively by explicit dynamic analysis of Lamb 
wave propagation. The explicit central-difference 
time integration rule satisfies the equations of dynamic equilibrium at the beginning 
of each time increment t. The instantaneous accelerations calculated at time t are 

used to further determine the velocity at time t + t/2. On the other hand, the 

displacement solution is related to time t + t. The equations of motion for the body 
are integrated as 
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where u is the displacement vector. 
 For this model, the source of deformation regions in a laminar composite is a 
piezoelectric sensor, the coordinates of which are fixed on the side surface of the 
composite sample are assumed to be known. 
 An additional limitation of the calculation model is that the mechanical 
property of the piezoelectric sensor is transversely isotropic. The direction of 
placement of the sensor is coaxial with the polarization direction, which is specified 
by the Z axis (perpendicular to the disk plane, as shown in Fig. 3.7). In this case, the 
associated linear electromechanical constitutive relations can be expressed as 
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where 
qi is the electric displacements; 
Ei is the electric field; 
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ij are the mechanical strains; 

ij are the mechanical stresses; 
dij are the piezoelectric strain constants; 
sij are the compliance constants. 
 Simplification of material equations in a plane-stressed state is possible under 
the assumption that for a piezoelectric sensor there is no electric field in the plane 
E1 = E2 = 0. In this case, the following representation is valid for the material 
equations 
 

 221131333   dEDq ,                                     (3.67) 

 

    3312211211 1
1

Ed
E




 


 ,                         (3.68) 

 

    3311122222 1
1

Ed
E




 


 ,                       (3.69) 

 
where 
E is the Young’s module; 

 is the Poisson’s ratio in the plane of piezoelectric sensor. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The resulting values of the forces and moments of forces acting in the volume 
of a mechanically stressed laminar composite satisfy the following relationships 
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Figure 3.7. Variations in deformation and mechanical stress in composite laminate. 
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 The most common two configurations correspond to the arrangement of disk 
sensors with a symmetric composite plate. The first configuration includes a single-
disk sensor. In this case, both symmetric (S0) and asymmetric (A0) Lamb wave 
modes can be excited simultaneously. The reason for this effect is that the 
composite plate is activated by shear and bending. 
 In the case of a double-disk sensor, the corresponding sensors produce either 
pure shear or pure bending. Therefore, symmetric and asymmetric Lamb wave 
modes can be generated separately. 
 The resulting displacement, shear force and bending moment generated by 
the circular disk of the piezoelectric sensor on symmetric quasi-isotropic composite 
plates are uniform along the edges of the sample. 
 In this case, elastic waves are excited in the main plates and propagate in the 
direction perpendicular to the edge of the sensors. In the relatively "low frequency" 
region, a single piezoelectric sensor simultaneously excites the S0 and A0 modes of 
the Lamb wave. On the other hand, double disks can generate S0 or A0 modes 
separately. The relationship between mechanical stresses and strains in the x- and 
y- directions is described by the following equations 
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where  is the piezoelectric strain. 
 In the neutral plane region of the integrated configuration of the piezoelectric 
sensors and the base plate (see Fig. 3.8), for the case of one sensor, the bending 
moment per unit length can be given as 
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and for assymmetric mode 
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 The proposed finite difference stress excitation models work effectively and 
provide very good excitation of Lamb waves at fixed frequencies for both isotropic 
plates and quasi-isotropic composite laminates. The calculation results are 
illustrated in Fig. 3.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 A single piezoelectric sensor can excite both S0 and A0 modes simultaneously. 

Alternatively, with multiple sensors evenly spaced over the side surface of a 

laminated composite sample, either S0 or A0 can be excited separately. Numerical 

calculations with the finite difference model, which uses the 3-D method with 

displacement and shear force excitation, indicate that the group velocities of the A0 

mode corresponding to one and several sensors are significantly different. 

However, there is no such difference for the S0 mode. 

 

Figure 3.8. Finite element model’s results for 3-D shell elements x-displacement 

mode. 
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CHAPTER 4 
DELAMINATION DETECTION IN COMPOSITES 

Lamb waves are elastic disturbances resulting from the superposition of 
longitudinal waves (P-waves) and shear waves (S-waves). Shear displacements 
occur both in the direction of wave propagation and perpendicular to it. Compared 
to body waves, which propagate in solids far from the boundaries of the free 
surface, Lamb waves can propagate over large distances. With this type of 
propagation, energy losses are minimal, as is the attenuation of the amplitude. 

 This feature allows Lamb waves with different signal-to-noise ratios to be 
detected. Detailed detection is possible even in highly dispersed/fading materials, 
such as polymer matrix composites. The slight attenuation of wave packets is 
caused by the presence of two closely spaced parallel free boundaries of the surface 
compared to the wavelength. This condition is most often satisfied for plate or shell 
structural elements. The propagation of Lamb waves inside a composite material is 
determined by the presence of defects and damages, like any other boundary 
condition. This phenomenon is the basis for the use of Lamb waves in detecting 
mechanical damage in non-destructive testing methods. 

Two-mode Lamb waves can exist simultaneously in symmetric (Sn) and 
antisymmetric (An) states. These modes can propagate independently of each 
other. The subscript (n) is an integer indicating the mode order or the number of 
inflection points found in the wave deformation field across the thickness. 

When a wave packet propagates in a composite sample of finite thickness, 
there is an infinite number of multimode symmetric and antisymmetric Lamb 
waves. The shear components of horizontal (SHn) waves differ from each other in 
their phase and group velocities, as well as in the distribution of displacements and 
stresses across the thickness of the plate. 

Most of the experimental studies use only input signals that excite uniquely 
fundamental (without inflection points) antisymmetric (A0) and symmetric (S0) 
Lamb waves. Such a technique helps to avoid the increased complexity in 
interpreting the collected wave signals, which contain interference of multiple 
modes. 

In addition to the existence of several wave modes, Lamb waves are dispersive, 
i.e. the propagation velocity of each wave mode and their order/excitation depend 
on the excitation frequency. This behavior is predicted by the corresponding 
characteristic equations of Lamb waves and is represented by dispersion curves, i.e. 
curves of the dependence of the propagation velocity on the frequency and 
thickness. 

The use of composite allows for the application of individual designs, applying 
appropriate strength/stiffness in the required directions, while minimizing the 
weight of the structure. It should be noted that the response to damage of 
composite structures on the one hand and metallic (isotropic) systems on the other 
is fundamentally different. 
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The use of Lamb waves has shown significant promise for damage detection in 
composite structures. However, most of the theoretical developments in the 
analysis that allow accurate application of Lamb waves have been performed mainly 
for isotropic materials or for anisotropic materials with orthotropic and higher 
symmetry. 

Lamb wave propagation in composites is quite difficult to predict. The reason 
for the poor predictability is the significant anisotropy of the material, as well as the 
strong attenuation/dispersion behavior of the wave. Composite material 
parameters such as fiber volume fractions, stacking sequence, and types of 
matrices/reinforcements used greatly affect wave propagation characteristics.  

The direction of propagation of wave packets in composite plates is directly 
related to the wavefront velocity, which varies with frequency. Composite 
laminates in simplified analysis models are assumed to have orthotropic or higher 
symmetry to generate dispersion curves. 

One of the simplest methods for generating Lamb wave dispersion curves is to 
use the effective stiffness approach. In this methodology, a geometrically weighted 
average of the component property values is used as the average material constants 
for the entire laminate. 

An additional methodology is based on the classical laminated plate theory. It 
should be noted that the classical laminated plate theory cannot accurately predict 
the dispersion behavior of Lamb waves at sufficiently high frequencies.  

Both analytical techniques have high computational efficiency. However, the 
classical laminated plate theory and higher order theories are only approximations 
and cannot accurately predict the higher modes of Lamb waves at higher 
frequencies. 

The solution to this problem, at least partially, is the approximation method 
for a multilayer transversely isotropic material. The approximation method is based 
on the analysis of a set of stiffness characteristics. Such an analysis assumes the 
possibility of approximation by polynomial interpolation functions for the thickness 
displacement distribution. 

An additional hybrid method involves the use of a semi-analytical finite 
element, which uses the finite element method to discretize the cross-section and 
describes the displacement along the wave propagation using analytical simple 
harmonic functions. The most accurate method for calculating the propagation 
characteristics of Lamb waves in composites is the linear 3D elastic properties 
method. 

Analytical equations can describe the propagation of Lamb waves in the 
principal plane (with simultaneous shear-horizontal mode separation) in a single-
layer monoclinic composite plate. A generalization of these analytical equations 
includes a solution for an n-layer plate based on the transfer matrix approach. 

The state of a general monoclinic laminate composite under stress-free 
conditions can only be described by a discrete set of analytical dispersion equations. 
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The propagation of the fundamental mode Lamb wave in an arbitrary orthotropic 
laminate can be analyzed in detail based on three-dimensional linear elasticity 
theory and the transfer matrix. Numerical calculation of the energy distribution 
through the thickness is performed as a result of the analysis of the real part of 
stress and mechanical strain. 

For a periodically layered composite with orthotropic symmetry, a closed-loop 
algebraic solution for elastic wave propagation is an effective technique. The 
corresponding numerical calculations are reduced to the use of a sixth-order matrix 
equation and a transfer matrix analysis. A composite material with monoclinic 
symmetry provides the Lamb wave packet propagation dynamics based on the 
slowness vector and the transfer matrix approach for propagation along the 
symmetry axis. 

The existence of a coupling between longitudinal and shear waves is the 
reason for the plate wave for the n-layer orthotropic laminate. The analysis of the 
plate wave dynamics is based on both the transfer matrix and global matrix 
approaches. 

The propagation and dispersion characteristics of Lamb waves can be derived 
and analyzed on the basis of orthotropic and higher symmetry for n-layer composite 
laminates, including several simplifications and approximations (characterizing 
wave propagation only in certain directions). The adoption of the orthotropic 
hypothesis may be invalid if the actuators and sensors in an orthotropic or 
transversely isotropic laminate are mounted in a non-principal direction or if the 
layup is symmetric but not balanced. 

This leads to a lower monoclinic symmetry, for which the solution is provided 
for only one layer. Therefore, to significantly improve this analysis technique, a 
complete derivation of the Lamb wave equations for n-layer monoclinic composite 
laminates based on 3D linear elasticity is needed. The existence of an effective 
coupling between Lamb waves and horizontal shear waves is in turn related to the 
existence of displacement fields in all three directions. 

The computational method uses the partial wave method in combination with 
the global matrix approach to numerically solve the Lamb wave equations. A robust 
step-by-step solution for generating Lamb wave dispersion curves is the main 
objective for this part of the Lamb wave packet propagation analysis. 

First of all, it is necessary to consider the shear-stress relationship. The tensor 
form of the stress-strain relationship in a Cartesian coordinate system for an 
anisotropic solid medium assuming linear elastic behavior is as follows 

 

klijklj c   ,                                                     (4.1) 

 

klijklij s   ,                                                     (4.2) 
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where 
cijkl is the stiffness tensor; 
sijkl is the compliance tensor. 

The dependence of the linear elastic deformation on the mechanical 
displacement can be determined by the following relationship 
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 In turn, the generalized equation of motion is determined by the components 
of the displacement 
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 Each layer in the laminar composite according to the calculation model is 
described by a local {x1*, x2*, x3*} and global {x1, x2, x3} coordinate system. 
 The mechanical stress in the global system is equal to 

 
   *][  T ,                                                    (4.5) 

 

where [T] is the stress transformation matrix. 
 The local coordinate x3* coincides with the global coordinate (x3), thereby 

defining  as the rotation angle around the x3 axis. In this case, the stress 
transformation matrix [Tr] is defined by the matrix form 
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where 

c = cos ; 

s = sin . 
 The transformation of the stiffness matrix from the local to the global 
coordinate system can be performed using the following algorithm 
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 The propagation of Lamb wave packets is described by the governing 
equations for the case of composite materials that exhibit orthotropic and higher 
degrees of symmetry. 
 It should be noted, however, that it is necessary to consider lower monoclinic 
symmetry for the excitation and propagation mode of wave packets in an 
orthotropic or transversely isotropic laminate along a non-principal direction, or if 
the stacking is symmetric but not balanced. For example, this will be observed as a 
result of the installation of wave signal generators that can be fixed in a non-
principal direction of the commonly used orthotropic or lower symmetry of the 
plate. 
 These factors lead to the fact that the Lamb wave equations will be derived for 
monoclinic symmetry, which can be used for any material symmetry that is higher 
than monoclinic. 
 The stress-strain relationship for monoclinic composite material can be 
expressed as 
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 Let us consider in more detail the model of Lamb wave propagation in a 
monoclinic material in order to derive representative equations. At the first stage, 
we will analyze the displacement field in all three directions in comparison with the 
consideration of only the propagation of wave packets along the principal 
directions. 
 The consideration of Lamb waves can be non-isotropic for all directions in a 
laminar composite sample. Substituting the displacement fields ui with The general 
equilibrium equations for the displacement field ui have the form 
 

  03 jij UkK ,                                                         (4.9) 

 
where the matrix elements have the form 
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 The condition for the presence of a set of non-trivial solutions to a system of 
equations can be reduced to the form 
 

  0det ijK                                                 (4.16) 

 
or  
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31  DkDkDkD .                             (4.17) 

 
 The three roots of 𝑘3

2 correspond to one pair of quasi-longitudinal and two 
pairs of quasi-shear modes. The six roots of k3 can be divided into three pairs, with 
the constituent elements of each pair being negative with respect to each other. 
Each pair represents an ascending and descending traveling wave making the same 
angle with the x1 axis. 
 The relationship between mechanical stresses and stiffening elements for the 
case of boundary conditions without tension takes the form 
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 Free boundary conditions at the top and bottom surfaces of lamina composites 
are 
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 The displacements (u1, u2, u3) can be represented as functions of unit 
amplitude (U1q), by defining the ratios of the displacement components as Vq = 
U2q/U1q and Wq = U3q/U1q, namely 
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 The total displacement interms of Vq and Wq are 
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 And the total stress can be simplified as 
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where 
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    qqqqq WcVcckVссkD 3323362361311  ,                 (4.30) 

 
 qqqqq VcckWckWcD 45552451552   ,                           (4.31) 

 
 qqqqq VcckWckWcD 44452441453   .                           (4.32) 

 
 The layers of composite structures consist of a linear elastic material with 
perfectly bonded interfaces with a continuous strain distribution and that the 
stresses at each interface are equal. The composite fiber aggregate is sufficiently 
rigidly bonded to the matrix. There is stress/strain compatibility at the fiber-matrix 
interface. 
 The most commonly used methods for generating Lamb wave dispersion 
curves of layered anisotropic media are based on three-dimensional linear elasticity 
in combination with global matrix and transfer matrix approaches. This technique 
uses only the global matrix approach, since the transfer matrix is considered stable 
only for the low-frequency thickness product. 
 The global matrix concept analysis methodology is based on examining all the 
equations from each layer to form a single global matrix (Fig. 4.1). This matrix 
describes the displacement and stress fields associated with wave propagation. The 
global matrix method consists of X (n - 1) equations for n layers, where X represents 
the number of expected partial waves. This method is robust and remains stable for 
any frequency-thickness product, since it does not rely on wave coupling from one 
interface to another. 
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Figure 4.1. N-layered composite laminate. 
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 For the k-th layer of a monoclinic plate with thickness dk, the displacement ui 
and stress rij can be written as follows 
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where  

 is the incident angle relative to the x-axis. 
 By linking together, the matrix elements for mechanical stress, shear, and the 
energy component of a wave packet as it moves in a fixed direction within a 
laminated composite, the following matrix equation can be written  
 
 






























































kk
iDiDiDiDiDiD

iDiDiDiDiDiD

iDiDiDiDiDiD

WWWWWW

VVVVVV

u

u

u

353533333131

252523232121

151513131111

553311

553311

23

13

33

3

2

1 111111






 

 

  
  
  
  
  
  











































txxkxkiU

txxkxkiU

txxkxkiU

txxkxkiU

txxkxkiU

txxkxkiU













31221116

31221115

31221114

31221113

31221112

31221111

sinexp

sinexp

sinexp

sinexp

sinexp

sinexp

.                         (4.35) 

 
 The part of the matrix equation (4.35) that contains the displacement and 
stress vectors is denoted as Pk. Accordingly, the right-hand side is denoted as Xk, the 
displacement amplitude is Uk, and the wave equation is denoted as Dk. In this case, 
the short form of the matrix equation is 
 

       kkkk UDXP  .                                         (4.36) 
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 Each layer of the monoclinic plate of the laminar composite has six partial 
waves, denoted as (L+/ ), (SV+/ ) and (SH+/ ). These Lamb waves can be interpreted 
as quasi-longitudinal, quasi-shear vertical and quasi-shear horizontal waves, 
respectively. Positive and negative signs represent downward and upward traveling 
waves. The characteristic equations of Lamb waves can be written as a result of the 
analysis of displacements and shears in the second interface (i2), which consists of 
the lower surface of layer 2 (l2) and the upper surface of layer 3 (l3). 
 Mechanical displacements and shifts in a fixed layer are subject to a system of 
equations 
 

      blblblbl UDXP ,2,2,22 ,  ,                                    (4.37) 
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 The condition of continuity of displacement within one layer has the form 
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where indexes “b” and “t” are the nearest surfaces of fixed layer. 
 The global matrix combines the conditions for all layers and the five partial 
Lamb waves that propagate in the monoclinic laminate 
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 The boundary conditions for Lamb waves specify that the mechanical stresses 
on the top and bottom surfaces are zero. The solution to this boundary condition 
can be obtained by splitting the submatrix of the top and bottom layers in the 
equation into their associated mechanical stresses and displacements. This split 
allows a new matrix to be formed in the next step. 
 In the next step after the separation, only the components of mechanical stress 
are analyzed to obtain the dispersion curves of Lamb waves. Assuming that the 
displacement components from the upper and lower layers of the equation are 
negligible, the newly obtained matrix can be separated. 
 The solution for Lamb wave propagation (Fig. 4.2) and hence the dispersion 
curves are obtained by finding a non-trivial solution to the previously written 
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characteristic equation [Z] {U} = 0 where [Z] is the global matrix and {U} is the 
amplitude vector. Numerical determination of equation |Z| = 0 leads to the 
construction of the Lamb wave dispersion curve. 
  
 
  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 Comparison of the calculated and experimental data indicates numerical 
values of 2.4, 5.6 % for antisymmetric and symmetric Lamb waves, respectively. The 
modulus of the theory-experiment difference increases slightly for high Lamb wave 
frequencies and in the direction coaxial with the symmetry axis of the laminate 
specimen can be explained by the difference in the stiffness of the composite 
material between its rolling direction and transverse direction. 
 To confirm the efficiency of describing the field of mechanical stresses and 
shears in the bulk of the laminar composite, a broadband Lamb wave was 
investigated. The Lamb wave packet was propagated in a quasi-isotropic laminate 
of 3.4 mm thickness ([45/0/−45/0]3s). The frequency generator and receiver were 
separated by a distance of 100 mm and were fixed on the surface of the laminate. 
The input signal was a single-cycle sine wave at a frequency of 400 kHz with a 
Hamming window. The input waveform had a characteristic region with a single-
peak profile. This input wave is broadband up to a value of 1 MHz. The full width at 
half maximum of the Fourier spectrum is about 600 kHz. 
 The Lamb wave sets were averaged during processing to reduce noise. The 
resulting waveform was analyzed using the Fast Fourier Transform. The continuous 
wavelet transform was implemented using the complex Morlet wavelet. The 
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Figure 4.2. Partial waves in monoclinic composite plate. 
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Fourier spectrum was characterized by a large number of peaks due to the 
frequency dispersion of the Lamb waves in the laminate. 
 To identify the Lamb wave modes, theoretical dispersion curves of Lamb wave 
packets were calculated. The group velocities of all modes propagating in a quasi-
isotropic laminate of fixed thickness were calculated for each frequency. The time 
for symmetric and antisymmetric modes was determined from the phase and group 
velocities. The corresponding dispersion curves are shown in Fig. 4.3. 
 
 
 
 
 
 
 
 
 
 
 

 
 

  
  
 
 
 
 
 
 
 
 Most often, Lamb wave packets transform their modes at fixed points. For 
these regions of the composite volume, the plate thickness changes and some 
modes are reflected back. To explain this effect, it should be taken into account that 
the mode dispersion curves strongly depend on the plate thickness. 
 The results of the analysis of the dispersion curves for a quasi-isotropic 
laminate with an insignificant thickness indicate that the frequency on the 
horizontal axis doubled. This frequency doubling was observed under the condition 
that the thickness was halved. Comparison of the mode composition of Lamb wave 
packets for different thicknesses of composite plates leads to the following results. 
Three modes A0, S0 and A1 are present at a fixed frequency in a thick laminate. On 
the other hand, the A1 mode cannot propagate in a thin laminate. Therefore, in 
regions of space where the laminate thickness experiences a significant (multiple) 
decrease, the A1 mode will be transformed into S0 and A0. On the contrary, with 

 

Figure 4.3. Dispersion curves for all modes of Lamb waves. 
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increasing thickness, part of the energy of the S0 and A0 modes will be transformed 
into A1. 
 For the case where there is a delamination in the middle of the laminate 
thickness, the frequency dispersion curves of the Lamb wave packets that pass 
through the delamination region will change. The reasons for this change can be 
attributed to the mode transformations at both ends of the delamination. This 
phenomenon can be used to quantitatively detect delamination damage in the 
laminate. 
 The intact region before delamination is characterized by the presence of 
antisymmetric modes A0 and A1, which are generated by the antisymmetric 
excitation. In addition, the analysis results indicate the existence of small S modes. 
These modes were reflected from both ends of the delamination after mode 
conversion. 
 It was found that the A1 mode propagated weakly in the frequency range 
above the cutoff frequency in the stratified region. Most of the wave energy of the 
A1 mode was converted into S0. The amplitude of the A1 mode increased 
significantly after passing through the stratification. The reason for this increase in 
amplitude is the mode transformation from S0 to A1 at the end point of the 
stratification. 
 In symmetric modes, the weak modes S1 and S2 appeared twice with different 
arrival times. The dispersion curve analysis showed that the faster modes S1 and S2 
were transformed from S0 and A1, and the slower ones were transformed from A0. 
The results of the analysis of the characteristics of the transformed modes in the 
delamination region are consistent with the available experimental results. 
 The combined analysis of both the calculated dependences and the 
experimental results indicates the following features of the behavior of the Lamb 
wave packet modes. The A1 mode in the undamaged region is transformed into the 
S0 mode at the initial point of delamination, which is present in the middle of the 
thickness of the quasi-isotropic laminate. On the other hand, the S0 mode is 
transformed into the A1 mode at the final point of delamination. 
 The observed features of the mode conversion can be used as a basis for a 
method for detecting delamination in quasi-isotropic laminates. In particular, the 
key effect whose characteristics should be used in the method is the excitation of 
antisymmetric modes. 
 The antisymmetric mode A1 is converted to the mode S0 in the delamination 
region. In this case, the group velocity dispersion differs between the mode A1 in 
the intact region of the thick laminated composite sample and the mode S0 in the 
delamination region of the thin sample. Since the mode S0 is faster than the mode 
A1, the arrival time of the mode A1 at the detection sensors decreases with 
increasing delamination length. 
 This difference in velocity increases with decreasing frequency. Therefore, it 
can be concluded that the frequency dispersion of the mode A1 will change 
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depending on the delamination length. These expected phenomena were 
investigated in numerical simulations. 
 The trend of the dispersion changes for the peaks of the maximum of the A1 
mode depending on the delamination length is illustrated in Fig. 4.4. With an 
increase in the delamination length, the amplitude of the A1 mode decreased. The 
slope of the dispersion curve also changed. Comparison of the calculation results 
with the available experimental measurements indicates that the considered 
method of using Lamb wave dispersion is effective for detecting delamination 
damage. 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

 The interaction of waves with laminar composite bulk delamination and lateral 
surface effects is fairly easy to detect in the time-space wave field. However, the 
implicit characteristics of wave packet propagation, such as the content of the wave 
mode and how the modes change along the wave path, are not easily visible. 
 Wave data analysis, representing the characteristics of a wave number set by 
the locus of wave front points, has abundant information regarding the existence 
of different wave modes and wave propagation characteristics. 

 

Figure 4.4. Maximum points of A1 mode: L1 – 0.5 mm; L2 – 20 mm; L3 – 40 mm;          

L4 – 60 mm. 



92 
 

 

 Localization of a two-dimensional Fourier transform, where the wave number 
is a function of distance, can be realized by methods of transforming the wave field 
into a time-space representation of the wave number. 
 Spectral analysis of Lamb waves in time and space using a two-dimensional 
Fourier transform allows one to write the frequency-wave number representation 
(f - k) as 
 

       
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

 dxdtkxtfixtkfV  2exp,, ,                     (4.41) 

 
where 
V (f, k) is the resulting frequency-wavenumber representation; 
f is the frequency variable; 
k is the wavenumber variable. 
 For spatial information in the resulting f - k representation V (f, k), the spatial 
component is lost during the transformation. However, it is often desirable to know 
how the wave number varies along the propagation distance of the wave. In order 
to preserve and subsequently transform spatial information, a new short spatial 
two-dimensional Fourier transform was developed to obtain the space-frequency-
wave number representation. 
 This technique can be viewed as a straightforward extension of the short-time 
Fourier transform to two-dimensional problems, i.e., breaking up the time-space 
wave field into small segments along the spatial dimension before applying the 
Fourier transform. 
 The first step in the numerical implementation of such a technique is that the 
wavefield data are multiplied by a window function of fixed size. This function is not 
zero only for a short period in space, but is constant over the entire time dimension. 
 In a subsequent step, a two-dimensional Fourier transform is applied to the 
resulting wavefield segments. As the window slides along the spatial dimension, a 
set of windowed wavefield segments is generated. A two-dimensional Fourier 
transform is again applied to these segments, resulting in a set of frequency and 
wavenumber spectra, which are indexed by the window location. 
 Spatial information can only be preserved by this method. The window space 
is realized using the two-dimensional Fourier transform technique and has the form 
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where 

�̅� is the retained spatial argument; 
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W (t, x) is the window function. 

 For the case of laminar composites, it is advisable to choose the Hanning 

function for constructing the window W (t, x) in the form 
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where Dx is the window length in specific space dimension. 

 The nature of the change in the frequency component, as well as the resulting 

spectrum of the space-frequency-wave number in space, can be determined by 

shifting the window along the spatial dimension. This procedure is usually carried 

out using a two-dimensional Fourier transform. 

 In the spectrum of the delaminated plate, new f - k components appear 

between the original A0 and S0 modes, including both positive (forward 

propagating) and negative (backward propagating) analogues. The set of emerging 

f - k components correlates with the wave propagation in the delamination region. 

This correlation can be explained by assuming that the delamination is the only 

difference from the original plate. 

 The reconstructed wave field represents the back and forth propagation of 

waves between the delamination boundaries. The combination of analytical 

predictions and experimental data indicate that the new f - k components are 

created by waves trapped in the delamination region when the waves pass above 

and below the delamination. In this case, the trapped waves are above the 

delamination, since the wave field characteristics correspond to the upper surface 

of the laminated composite in the form of a thin plate. 

 The processing of the numerical characteristics of the wave fields using the 

two-dimensional Fourier transform at short distances indicates that the wave 

number changes along the propagation path of the wave packet in the local volume 

of the laminar composite. 

 It should be noted that the space-wave number of both A0 and S0 modes 

remains constant in wave number and continuous in space along the propagation 

path. Naturally, the absence of changes corresponds only to the ideal case. The 

presence of delaminations in the bulk of the composite leads to a significant change 

in the spectrum of space-wave numbers. 

 The region of significant concentration of delaminations in the volume of the 

laminated composite corresponds to the discontinuity of wave numbers along the 
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spatial dimension. The size of the gap is directly related to the length of the 

delamination. The analysis of the delamination spectrum indicated that new wave 

numbers representing forward and backward propagation can be identified and are 

present only in the delamination region.  

 The final conclusion can be formulated as follows. New wave numbers are 

present in the delamination region and are related to the propagation of Lamb wave 

packets in this region. The considered methods of wave number analysis can be 

used in engineering practice to detect delamination and estimate its length in 

space. 

 It is of interest to improve the method for determining the depth of the layer 

under which delamination occurs. The problem of determining the depth of 

delamination is reduced to determining the number of layers above the 

delamination. Obviously, the number of layers below the delamination can then be 

found by subtracting this result from the total number of layers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Analysis of the material properties at the layer level of the composites under 

study allows one to construct a set of theoretical dispersion curves with a 

Figure 4.5. Frequency (f)-wavenumber (k) dispersion curves for fixed plies (p). 
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corresponding set of wave numbers. The dispersion curves for laminates of 1–8 

layers are shown in Fig. 4.5. For example, a five-layer laminate will consist of five 

upper layers, [0/0/90/90/0].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 shows the wave numbers at 300 kHz for laminates of 1 – 8 layers. 

The detection of the delamination depth is carried out when new wave numbers 

are present in the wave number spectrum. The new wave numbers will correspond 

to the theoretical dispersion curves (for the frequency-wave number spectrum) 

and/or the theoretical wave numbers (for the space-wave number spectrum). 

Numerical calculations have confirmed that wave packets propagate through 

the delamination region and can be reflected back and forth between the 

delamination entrance and exit. In such reflection, the propagation of wave packets 

is characterized by the appearance of new in-plane and out-of-plane wave 

numbers. 

A mechanical deformation such as a simple delamination that separates an 

initially composite specimen into two parts will result in the propagation of Lamb 

waves above and below the delamination. The composite material above and below 

the damage will have different layers and thicknesses compared to the original 

intact plate. Lamb waves propagating on the outer surface of the plate above (or 

 

Figure 4.6. Wavenumbers (k) at 300 kHz versus of plies (p). 
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below) the damage will have modified propagation characteristics and wave 

numbers (which will depend on the number of layers in the separated parts). To 

determine the depth of delamination, it is necessary to determine the number of 

layers above the delamination. 

The appearance of a set of new wavenumbers allows the depth of the 

delamination layer to be determined. The new wavenumbers will correspond to the 

theoretical dispersion curves (for the frequency-wavenumber spectrum) and/or the 

theoretical wavenumbers (for the space-wavenumber spectrum). The spectrum of 

the in-plane f - k component from the simulation data is verified by comparing it 

with the dispersion curves of plates with different numbers of layers. 

The analysis of numerical experiments showed that the dispersion curves for 

the case of a two-layer thick laminate best fit these new frequency-wavenumber 

components. In particular, the new f - k components fit well the theoretical curves 

of the S0 mode in a two-layer [0/0] laminate. Summarizing these results, it can be 

stated that the position of the delamination in terms of the number of layers can 

be determined using frequency and wavenumber analysis. 

The dispersion curves show new frequency-wavenumber components that 

correspond to the A0 mode in the two upper [0/0] layers. These components can 

be identified using the same comparison technique (although in this case the waves 

are much weaker compared to the waves outside the delamination region). 

It should be noted that the delamination in this case is detected below the 

second layer. In the space-wavenumber spectrum at 300 kHz, the new 

wavenumbers are present in the delamination region and coincide well with the A0 

mode at 300 kHz in the two-layer [0/0] laminate. 

The good agreement between the experimental results and numerical 

simulation data confirms the possibility of using layer depth detection through 

wavenumber fitting to quantify delamination. 
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CHAPTER 5 
LAMB MODES DISPERSION AND SCATTERING 

The main advantages of Lamb waves as a tool for identifying a wide variety of 
damage types in the volume of composite samples are their propagation over long 
distances with high sensitivity to small changes, as well as their ability to scan a large 
area of the objects or structures being examined. Lamb wave packets with a fixed 
propagation direction not only cover large objects, but are also quite sensitive to 
local mechanical damage. However, the nonlinear characteristics of directed wave 
packets complicate the task of extracting information about the features of a 
defect. In this regard, the method of processing signals recorded by wave receivers 
is also complicated. 

Both phase and group velocities of guided waves are among the main 
parameters for assessing the deviation or change in material properties. Waves of 
a fixed direction have an infinite number of dispersion modes. and each of them is 
described by two frequency-dependent velocities: phase and group. Dispersion 
curves are used to show the changes in velocities c depending on the frequency f. 
Changes in the velocity of a guided wave can indicate the location and size of a 
defect. 

Taking these features into account, it can be argued that a signal processing 
method that allows reconstructing the dispersion curves of guided waves 
propagating in a given structure is very relevant. However, most of the algorithms 
for reconstructing group and phase curves of the dispersion of the velocity of guided 
waves encounter difficulties in estimating time-dependent changes in the 
frequency spectrum of the signal. In this regard, these methods should contain an 
improved frequency-time analysis of guided wave signals. 

One of the types of guided waves propagating in thin plates with parallel free 
boundaries are ultrasonic Lamb waves. Information about the dependence of the 
phase velocity cp on the product of the frequency f and the plate thickness d can be 
obtained by analyzing the phase velocity dispersion curves of Lamb waves. In 
general, the dispersion curves are different for different wave modes. 

All modes, namely the asymmetric An mode and the symmetric Sn mode 
(except for the horizontal shear SH) are strongly dependent on frequency. Since the 
phase velocity is defined for any particular frequency, the wavelength λ of the mode 
can also be estimated. The wavelength λ of the Lamb wave is a critical parameter 
because it determines the sensitivity to the size and geometry of the detector. The 
phase velocity dispersion curve is an important parameter for detecting 
inhomogeneities in elastic properties and/or localizing defects in unknown material 
objects under test. 

The hybrid signal processing methodology is generally free of the above-
mentioned shortcomings. This method uses spectral decomposition and zero-
crossing methods to analyze non-stationary signals. The first stage of the improved 
method requires analyzing broadband signals, characterizing the dispersion, and 



98 
 

 

reconstructing segments of the phase velocity dispersion curve of both lower 
fundamental Lamb wave modes. The main objective of this technique is to study 
the suitability of the proposed algorithm for signal processing in a dispersive 
medium for estimating the dispersive phase velocity and for reconstructing 
segments of this velocity dispersion curve in the widest possible frequency ranges. 

A promising method for measuring the phase velocity of the Lamb wave is the 
zero crossing method. The peculiarity of this technique is that the parameters in 
both the time and frequency domains are calculated and related to each other as a 
segment of the phase velocity dispersion curve. The zero crossing method provides 
several advantages, such as identifying the fundamental A0 and S0 modes operating 
in low or high dispersion zones. In addition, this technique allows reconstructing 
segments of the phase velocity dispersion curves of the A0 and S0 modes in the case 
of Lamb wave packets. 

According to the zero-crossing technique, at least two signals are required, 
recorded by two receivers located at two different and relatively close positions xi 

and xi+1. The Lamb wave source is characterized by constant coordinates and is 
excited by a broadband packet s(t). In general, these signals contain information 
about the phase velocity cp(f), which must be extracted by signal processing. 

The velocity of the wave packet on the surface of the plate affects the Lamb 
wave signal ui(t) at a distance xi 

 

      fHfSFTtui 
1 .                                         (5.1) 

 
where 
FT-1 is the inverse Fourier transform; 
S(f) is the Fourier transform of the incident pulse s(t). 
 The transfer function for Lamb waves propagation has the form 
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 The zero crossing method is based on the delay times tim and t(i+1)m of the 
propagating waves. The delay times are calculated from the characteristics of the 
signals recorded at different positions xi and xi+1. These signals are analyzed 
according to the zero crossing algorithm for relative amplitude A’ (see Fig. 5.1). The 
number of measured zero crossing moments is m = 1, 2, …, M, where M is the total 
number of analyzed zero crossing moments. In the second stage of the zero crossing 
technique, the phase velocity cpm of the propagating wave at a given distance can 
be estimated using the following formula 
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where 

xi is the distance between two neighboring positions; 

tim is the signals delay time difference. 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The time delay ∆tim can be calculated based on the data on the delay times of 

the zero-crossing tim and t(i+1)m. The frequencies fm, to which the calculated phase 
velocities cpm correspond, are calculated for the duration of half the period between 
two adjacent zero-crossing points m and m + 1 
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 Each segment of the dispersion curve is uniquely defined by a set of phase 
velocity and frequency pairs D (fm, cpm). Analysis of the calculated propagation 
characteristics of Lamb wave packets showed that the proposed measurement 
method has one main limitation. The phase velocity dispersion curves are 
reconstructed only in a relatively limited bandwidth around the central frequency 

 

Figure 5.1. Wave form of received signals: 1 – ui(t), 2 – ui+1(t). 
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of the signal. Consequently, information on a part of the frequency spectra of the 
signal was lost. To solve this limitation and reconstruct the phase velocity dispersion 
curves of guided waves in the widest possible frequency ranges, it was proposed to 
use the spectral decomposition method. 
 According to Fourier theory, any signal s (t) can be expanded into 
trigonometric functions as follows 
 

           jSdttjtsjS  




expexp .                   (5.5) 

 
where 

 is the angular frequency; 

𝑗 = √−1 ; 

S() is the amplitude frequency response; 

 () is the phase frequency response. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.2. Frequency spectrum of Lamb wave signal: 1 – signal; 2 - filter B. 
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It can be stated that the frequency response of the signal corresponding to the 

Lamb wave packets is the result of such a decomposition. The modulus of the 
complex spectrum represents the amplitudes of the various frequency 
components. The signal spectrum corresponds to the interval in which the 
dominant frequency components are concentrated in the frequency band around 
the maximum of the spectrum. These features are the reason that without filtering 
the phase velocity dispersion curve will be reconstructed in a narrow frequency 
band around the central frequency. Therefore, a necessary condition for increasing 
the sensitivity of the signal processing method to frequency components with small 
amplitudes is the procedure of filtering the frequency components that correspond 
to higher amplitudes (see Fig. 5.2). 

The zero-crossing algorithm assumes the possibility of decomposing the 
measured signals ui(t) at different distances into a set of signals with a limited 
bandwidth uik(t). Such a procedure becomes possible provided that the signals ui(t) 
are filtered using bandpass filters with a narrower bandwidth than the bandwidth 
of the incident spectrum. 

At the next step for each filtered signal uik(t) the delay times timk and t(i+1)mk are 
estimated. In this way, the phase velocities cpmk and frequencies fmk are calculated. 
Then, the obtained sets (fmk. cpmk) can be represented as segments of the phase 
velocity dispersion curve. 

Each section of the dispersion curve obtained using one of the filters can be 
reconstructed in a relatively narrow passband. In addition, scanning the filter's 
central frequency in wide frequency ranges will allow covering a large part of the 
falling spectrum. 

The frequency spectrum of two adjacent signals can be represented as 
 

    tuFTfU ii  .                                                            (5.6) 

 
    tuFTfU ii 11   .                                                    (5.7) 

 
where 
ui(t) is the signal measured at distance xi(t); 
ui+1(t) is the signal measured at distance xi+1(t); 
FT is the Fourier transform. 
 Adjacent bands of the frequency spectra are filtered by k Gaussian bandpass 
filters with predetermined parameters 
 

     fBfUfU kiik  .                                                (5.8) 

 
     fBfUfU kiki   1)1|( .                                                (5.9) 
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where the frequency response of k-th bandpass filter is 
 

       22 15.0ln4exp dfkffBfB Lk   .    Kk ,...,2,1 .          (5.10) 

 
where 
fL is the left frequency filter edge; 
fH is the central part of frequency filter edge; 

B is the filter bandwidth; 
the frequency domain df is 
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df LH .                                                (5.11) 

 
 The signal reconstruction using the Fourier transform has the following form 
 

     fUFTtu ikik
1

 .                                         (5.12) 
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 At the next stage of the numerical method. the phase velocity can be 
estimated according to the following relation 
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 Using the data on the duration of the half-periods of the first signal, it is 
possible to estimate the equivalent frequencies to which the calculated values of 
the phase velocity should be assigned 
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 Comparison of the results obtained using the proposed hybrid method and the 
previous version of the reference zero-crossing method showed that the zero-
crossing method recovers the phase velocity dispersion curve in the frequency 
range of 286–319 kHz. This bandwidth is only 8% of the original signal bandwidth. 
 Meanwhile, the proposed spectrum decomposition approach allows us to 
recover the phase velocity dispersion curve in a significantly wider frequency range. 
This range covers almost the entire bandwidth of the incident Lamb wavelet signal. 
t should be noted that the frequency ranges in which the dispersion curve is 
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reconstructed depend significantly on the bandwidth of the filters used in the 
spectrum decomposition approach. 
 For example, for the 120 kHz filter, 70% coverage of the incident signal 
bandwidth was achieved. Finally, the best results were achieved with the narrowest 
filter (40 kHz bandwidth). For this narrowed filter, the reconstructed dispersion 
curve covers 90% of the original bandwidth. 
 In summary, it can be argued that narrow filters are more efficient, but this 
leads to a large number of filters, which generates more computational resources 
and longer processing times. 
 Typical B-scan results for the propagation of the A0 Lamb wave mode in a 
2 mm thick laminated composite sample are presented in Table 5.1. The dispersion 
curve data for the relative amplitude are divided into three ranges: A-band (0 - 150 
kHz). B-band (150-300 kHz) and C-band (300-500 kHz). 
 

Table 5.1. Dispersion dependences for A0 mode of the Lamb wave. 
 

A-band B-band C-band 

f, kHz A F, kHz A F, kHz A 
15.9304 0.0152 157.2193 0.5169 304.7936 0.5203 

25.3012 0.0338 158.1551 0.4882 311.3182 0.5458 

34.6720 0.1083 162.8342 0.5017 318.7750 0.5085 
41.2316 0.2183 170.3209 0.4595 322.5033 0.5864 

47.7912 0.2470 176.8717 0.5456 328.0959 0.6661 
58.0991 0.2369 185.2941 0.5253 327.1638 0.7322 

62.7845 0.3063 187.1658 0.6284 333.6884 0.6898 
61.8474 0.4856 195.5882 0.7128 341.1451 0.7254 

69.3440 0.6125 199.3316 0.7010 343.9414 0.6644 

74.0295 0.4399 199.3316 0.7517 347.6698 0.5458 
78.7149 0.3012 203.0749 0.7973 356.9907 0.5746 

85.2744 0.4467 209.6257 0.7720 361.6511 0.6085 
87.1486 0.5330 213.3690 0.7483 364.4474 0.5339 

89.9598 0.6261 213.3690 0.8142 363.5153 0.4864 

96.5194 0.5753 217.1123 0.8953 362.5832 0.3814 
104.0161 0.7547 218.9840 0.9865 366.3116 0.2712 

111.5127 0.5381 233.0214 0.8666 377.4967 0.1780 
113.3869 0.6819 237.7005 0.6791 387.7497 0.1051 

115.2610 0.7902 246.1230 0.7500 399.8668 0.1322 
122.7577 0.9306 248.9305 0.8497 411.9840 0.1797 

126.5060 0.8190 254.5455 0.9662 424.1012 0.1102 

136.8139 0.7580 263.9037 0.9578 430.6258 0.0678 
143.3735 0.7733 266.7112 0.8868 441.8109 0.1186 
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 The measurement results using different sets of the filters (where P is the 
number of filters) are obtained and compared with the dispersion curve  of zero-

crossing method (ZCM) for A0 mode of the Lamb wave (f  0  500 kHz).  The results 
for phase velocity cp (measured in m/s) are presented in Table 5.2. 
 

Table 5.2. Dispersion curves for different methods. 
 

P = 4 P = 12 ZCM 

f, kHz cp, m/s f, kHz cp, m/s f, kHz cp, m/s 

76.923 1207.41 59.64 1047.13 65.22 1047.20 
88.942 1304.38 78.31 1183.57 76.09 1114.29 

102.163 1393.27 104.22 1332.40 88.77 1186.34 

123.798 1522.56 123.49 1429.15 99.03 1258.39 

142.428 1608.75 135.54 1483.72 109.90 1340.37 

156.851 1654.55 149.40 1548.22 122.58 1370.19 
164.063 1724.58 175.30 1652.40 140.10 1459.63 

177.885 1746.13 204.82 1759.07 152.78 1504.35 
183.894 1805.39 224.10 1791.32 174.52 1603.73 

197.716 1837.71 246.39 1890.54 191.43 1638.51 
212.740 1905.05 268.67 1930.23 210.14 1740.37 

228.966 1937.37 295.18 1997.21 230.68 1780.12 

234.375 1983.16 310.84 2017.05 254.23 1852.17 
253.005 2020.88 322.89 2051.78 269.93 1899.38 

265.625 2090.91 339.76 2074.11 289.25 1926.71 
284.856 2115.15 355.42 2126.20 300.12 1968.94 

302.885 2150.17 384.94 2163.41 322.46 1996.27 

316.707 2198.65 396.39 2190.70 346.01 2055.90 
332.933 2195.96 413.25 2203.10 375.00 2088.20 

345.553 2263.30 419.28 2230.39 402.17 2147.83 
362.380 2268.69 431.33 2230.39 423.31 2165.22 

385.216 2325.25 439.76 2250.23 434.18 2190.06 
405.649 2338.72 450.60 2255.19 445.05 2197.52 

426.082 2389.90 463.25 2292.40 469.20 2222.36 

449.519 2419.53 481.33 2299.84 486.11 1249.69 
 
 
 A comparison of the results presented in Table 5.2 shows that the 
experimental method using only four filters gives overestimated values of phase 
velocity and, therefore, does not have sufficient accuracy for the engineering 
practice of monitoring the propagation of Lamb wave packets in the volume of 
laminar composites. 
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 The finite element method is also a promising tool for describing shear strain 
kinetics and detecting mechanical damage. In particular, a dynamic finite element 
code is used to calculate acoustic emission waveforms in isotropic and anisotropic 
laminar composites. However, when using the finite element method, 
computational problems often arise related to the interpretation of the obtained 
results. 
 As an alternative, various semi-analytical methods have been recently 
developed. The waveguide finite element method and the spectral finite element 
method are two alternative modeling methods. Due to their numerical efficiency, 
these methods have been successfully applied to composites of various structures. 
 The theoretical problem for a laminar composite plate is a homogeneous plate 
consisting of a transversely isotropic material with an axis of symmetry 
perpendicular to its surface. Representing the laminar composite as a honeycomb 
sandwich panel allows us to reduce the problem to considering a three-layer 
transversely isotropic plate consisting of a honeycomb core attached to composite 
shells. 
 In this model, a single layer of a homogeneous isotropic elastic composite plate 
is described by dispersion relations of the following type symmetric and 
antisymmetric modes of Lamb waves 
 

          0coshsinh4sinhcosh2 2121
2
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 Accordingly, for antisymmetric modes of Lamb waves, the equation can be 
modified as follows 
 

          0sinhcosh4coshsinh2 2121
2

21

22
2

2
 HHkHHkk  ,   (5.17) 

 
where 

22
jj kk  ,   

j
j

c
k


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k = /c is the angular wavenumber; 
H is half the thickness of the composite sample; 
c1 is the P-wave velocity for lamina composite material; 
c2 is the S-wave velocity for lamina composite material. 
 The working fluid for the model calculation experiment was a laminar 
composite consisting of 8 layers with the stacking sequence [00/450/00/450]s. The 
composite plate is modeled as a homogeneous transversely isotropic material with 
the x3-axis as the axis of symmetry. 
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 Young's modulus E22 can be determined from the results of a standard uniaxial 
tensile test in the x2 direction. In addition, a stress-strain curve is plotted from the 

tensile test results. Poisson's ratio 12 in the 1-2 plane is determined from the same 
test by measuring the strains in both the x1 and x2 directions. The shear modulus 
G23 and the elastic constant E33 for the composite face sheet are determined from 
the equations 
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where 

11 is the longitudinal wave velocity; 

23 is the shear wave velocity; 
 An analytical plane strain model can be considered without loss of generality 
and this will be sufficient to determine the propagation characteristics of directed 
waves. For the case of a transversely isotropic composite material, the model 
problem can be divided into the motions of symmetric and antisymmetric modes of 
Lamb wave packets. The propagation of symmetric modes is described by the 
dispersion relation determined by the quantity H 
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and for the case of antisymmetric modes 
 

   
   


HkAHkA

HkAHkA

12

21

sinhcosh

sinhcosh
 

 



107 
 

 









































































































































111

111

2
1

2

44

112
2

44

13

33

13

2
1

2

13

112
12

2
1

2

44

112
1

44

13

33

13

2
1

2

13

112
21

LL

LL

c

c

c

c
A

c

c

c

c

c

c

c

c
AA

c

c

c

c
A

c

c

c

c

c

c

c

c
AA

,        (5.22) 

 
where 
c11, c13, c33 and c44 are the stiffness constants; 
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 The relationships for the compression constants are determined by Young's 
moduli 
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3144 Gс  .                                                                                    (5.32) 

 
 At the next stage, it makes sense to apply an alternative approach to the 
numerical Fourier transform. The motion of Lamb waves in a rectangular laminated 
composite sample can be modeled by the propagation of Lamb wave packets along 
waveguides whose geometric dimensions are related to the dimensions of the 
laminar composite sample. 
 In particular, the finite element method of a waveguide helps to determine the 
phase and group velocities of propagating waves in arbitrary waveguides. 
For this method, only one segment s of a waveguide with thickness Dx1 needs to be 
meshed in the finite element modeling process. The dynamics of this waveguide 
segment are described by the equations of motion 
 

fuKuCuM   ,                                                     (5.33) 

 
where 
M is the mass of composite sample; 
C is the damping coefficient; 
K is the stiffness matrix; 
u is the displacement;  
f is the external force. 
 The Lamb wave mode dynamic behavior can be expressed as 
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where the stiffness matrix has the form 
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where  is the angular frequency. 
  A set of experiments on compression and shear of volume elements of laminar 
composites showed that for such experiments it is possible to use the conditions of 
equilibrium and continuity. In this case, equation (5.34) can be rewritten in the form 
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Table 5.3. Phase velocity dispersion in reinforced composite. 
 

f, 103 kHz 
p, 103 m/s 

S1 A1 S0 A0 A1e 
613.833 9.791 9.665 4.538 2.431 9.895 

618.156 9.623 9.497 4.496 2.431 9.519 

623.919 9.393 9.245 4.475 2.431 9.351 
635.447 8.975 9.099 4.433 2.452 9.079 

646.974 8.703 8.826 4.370 2.452 8.870 
652.738 8.473 8.512 4.307 2.473 8.515 

659.942 8.285 8.281 4.244 2.473 8.347 
667.147 8.180 8.260 4.118 2.473 8.075 

675.793 8.013 8.008 4.013 2.516 8.075 

687.320 7.824 7.841 3.929 2.452 7.866 
694.524 7.657 7.736 3.782 2.452 7.782 

704.611 7.594 7.568 3.676 2.495 7.552 
713.256 7.448 7.484 3.592 2.516 7.510 

717.579 7.322 7.233 3.571 2.516 7.280 

724.784 7.280 7.128 3.508 2.516 7.259 
736.311 7.176 6.960 3.508 2.473 7.008 

744.957 7.071 6.834 3.466 2.452 7.008 
753.602 6.946 6.646 3.403 2.473 6.820 

763.689 6.841 6.478 3.403 2.495 6.862 
768.012 6.778 6.331 3.277 2.516 6.548 

785.303 6.653 6.122 3.214 2.537 6.402 

806.916 6.485 5.996 3.214 2.537 6.130 
829.971 6.318 5.912 3.151 2.516 6.172 

854.467 6.130 5.870 3.130 2.516 5.941 
870.317 5.983 5.828 3.088 2.559 6.025 

880.403 5.921 5.681 3.025 2.580 5.607 

894.813 5.879 5.639 3.004 2.580 5.795 
912.104 5.816 5.577 3.004 2.537 5.397 

929.395 5.669 5.514 2.983 2.537 5.586 
963.977 5.586 5.346 2.962 2.559 5.230 
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Table 5.4. Group velocity dispersion in reinforced composite. 
 

f, 103 kHz 
g, 103 m/s 

S1 A1 S0 A0 A1e 

612.466 0.341 0.382 5.344 1.452 0.500 
613.821 0.434 0.526 5.344 1.690 0.714 

619.241 0.517 0.729 5.330 1.893 0.976 
621.951 0.646 0.932 5.344 2.179 1.119 

624.661 0.787 1.100 5.317 2.429 1.500 
628.726 0.869 1.303 5.304 2.619 1.655 

631.436 0.975 1.422 5.278 2.774 1.905 

635.501 1.068 1.590 5.212 2.869 2.107 
639.566 1.186 1.757 5.160 2.976 2.369 

643.631 1.292 1.900 5.028 3.048 2.393 
647.696 1.386 2.044 4.976 3.083 2.524 

653.117 1.503 2.211 4.884 3.131 2.810 

663.957 1.644 2.319 4.805 3.143 3.071 
672.087 1.761 2.594 4.700 3.119 3.250 

680.217 1.996 2.892 4.582 3.143 3.429 
692.412 2.219 3.060 4.477 3.167 3.298 

701.897 2.360 3.191 4.372 3.131 3.595 
718.157 2.571 3.323 4.083 3.119 3.488 

733.062 2.748 3.466 3.584 3.107 3.702 

752.033 2.924 3.562 3.098 3.107 3.619 
776.423 3.088 3.633 2.652 3.107 3.714 

796.748 3.194 3.705 2.376 3.083 3.655 
807.588 3.229 3.705 1.877 3.095 3.750 

830.623 3.311 3.717 1.641 3.060 3.655 

857.724 3.382 3.717 1.352 3.048 3.714 
878.049 3.393 3.717 1.352 3.048 3.619 

902.439 3.393 3.717 1.457 3.048 3.738 
918.699 3.429 3.693 1.615 3.048 3.560 

944.444 3.440 3.681 1.759 3.060 3.655 

966.125 3.440 3.645 1.864 3.048 3.536 
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Table 5.5. Phase velocity dispersion in laminated composite. 
 

f, 103 kHz 
p, 103 m/s 

S1 A1 S0 A0 A1e 

762.829 9.920 9.361 5.360 0.656 9.800 
761.442 9.760 9.162 5.380 0.775 9.479 

766.990 9.521 9.042 5.400 0.994 9.158 
766.990 9.341 8.962 5.320 1.034 9.018 

765.603 9.182 8.723 5.320 1.093 8.477 
769.764 9.042 8.543 5.340 1.133 8.056 

769.764 8.882 8.423 5.300 1.173 7.856 

773.925 8.463 8.283 5.160 1.272 7.575 
773.925 8.244 8.104 5.120 1.252 7.695 

773.925 8.104 7.904 4.960 1.233 7.475 
775.312 8.024 7.705 4.840 1.272 7.375 

778.086 7.844 7.525 4.780 1.332 6.914 

782.247 7.645 7.365 4.660 1.372 6.774 
789.182 7.465 7.265 4.440 1.352 6.573 

800.277 7.086 7.066 4.220 1.332 6.754 
800.277 6.946 6.966 4.020 1.372 6.633 

807.212 6.826 6.826 3.780 1.392 6.573 
815.534 6.587 6.647 3.620 1.412 6.212 

829.404 6.367 6.527 3.320 1.392 6.112 

840.499 6.168 6.467 3.100 1.412 6.032 
851.595 6.028 6.387 2.940 1.471 6.032 

864.078 5.968 6.287 2.700 1.491 6.012 
883.495 5.888 6.188 2.520 1.491 6.172 

901.526 5.828 6.068 2.380 1.511 6.152 

914.008 5.788 6.068 2.240 1.491 5.932 
925.104 5.729 5.988 2.160 1.471 6.092 

936.200 5.729 5.968 2.060 1.491 5.892 
950.069 5.709 5.868 2.040 1.531 5.952 

962.552 5.709 5.868 2.000 1.511 6.072 

975.035 5.709 5.868 1.980 1.511 6.032 
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Table 5.6. Group velocity dispersion in laminated composite. 
 

f, 103 kHz 
g, 103 m/s 

S1 A1 S0 A0 A1e 

798.540 0.377 0.696 5.774 1.040 0.532 
802.920 0.616 0.987 5.774 1.190 0.709 

805.839 0.780 1.190 5.774 1.290 0.899 
810.219 1.057 1.506 5.774 1.466 1.253 

811.679 1.208 1.709 5.736 1.503 1.430 
818.978 1.497 1.924 5.762 1.553 1.709 

823.358 1.723 2.101 5.749 1.578 1.937 

826.277 1.887 2.278 5.762 1.603 2.127 
832.117 2.101 2.430 5.762 1.528 2.506 

839.416 2.340 2.595 5.736 1.566 2.734 
843.796 2.541 2.696 5.661 1.578 2.975 

843.796 2.704 2.949 5.686 1.541 3.025 

851.095 2.881 3.127 5.649 1.516 3.228 
854.015 3.107 3.544 5.573 1.516 3.367 

862.774 3.245 3.646 5.485 1.541 3.671 
870.073 3.509 3.848 5.297 1.441 4.038 

872.993 3.673 4.089 5.146 1.466 4.038 
880.292 3.849 4.253 4.858 1.466 4.127 

886.131 3.962 4.380 4.506 1.453 4.418 

889.051 4.075 4.456 4.079 1.466 4.354 
897.810 4.151 4.582 3.715 1.466 4.582 

903.650 4.289 4.620 3.402 1.466 4.759 
909.489 4.390 4.684 2.862 1.466 4.899 

913.869 4.478 4.759 2.209 1.478 4.987 

925.547 4.642 4.772 1.757 1.453 4.823 
928.467 4.730 4.797 1.067 1.415 4.797 

941.606 4.818 4.835 0.590 1.441 5.051 
950.365 4.918 4.861 0.577 1.403 4.899 

960.584 5.006 4.911 0.715 1.415 5.076 

981.022 5.157 4.911 0.879 1.390 4.962 

 
 

The wavenumber can be determined from the equation 
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where the waveguide segment is 
 

 1exp xik ,                                               (5.38) 

 

Ln() is the natural complex logarithm. 
 The results of calculations (and experiment – index “e”) of phase and group 
velocities for reinforced and laminated composites are presented in Tables 5.3 - 5.6. 
 Analytical models for the finite element study of the scattering characteristics 
of the fundamental antisymmetric (A0) Lamb wave on delaminations in a quasi-
isotropic composite laminate are implemented using the Mindlin plate theory and 
the Born approximation. The methodology is used to predict the scattering of the 
A0 Lamb wave on a delamination, which is modeled as an inhomogeneity, in an 
equivalent isotropic model of the composite laminate. 
 The literature presents the results of studies on the scattering characteristics 
of Lamb A0 waves on circular through-holes in composite laminates with different 
stacking sequences. It should be noted that the scattering patterns were found to 
be quite different for composite laminates that have the same number of lamellas 
but different stacking sequences. 
 However, the experimental verification has focused only on a limited number 
of ratios of defect diameter to incident wavelength (denoted by R). Therefore, it is 
of interest to conduct a comprehensive verification of the finite element model for 
a wide range of R values. In addition, the experimental results showed that the 
Lamb A0 wave has an increased sensitivity to small defects compared to the Lamb 
S0 and SH0 waves at the same excitation frequency. 
 The standard laminar composite flaw detection technique includes a model 
delamination object in the form of a discontinuity with reduced bending stiffness in 
the delamination region. The reduction in bending stiffness in the delamination 
region can be explained by the separation of the laminate in this region into upper 
and lower sublayers, in which the waveguide is divided into two separate 
subwaveguides. The presence of a discontinuity can cause both reflected and 
transmitted waves from the delamination. However, in composite laminates, the 
scattering of Lamb waves at delaminations is a rather complex phenomenon. In this 
regard, it is necessary to evaluate the accuracy of the equivalent isotropic model in 
predicting the scattering characteristics of the Lamb A0 wave at delaminations in 
composite laminates. 
 The method involves the analysis of the characteristics of scattered Lamb 
waves A0, which were obtained from a limited number of monitoring points by 
calculating the difference between the signal from the undamaged panel and the 
signal from the damaged panel. 
 At the next stage, the difference in the maximum absolute amplitude of the 
scattered Lamb waves A0 is estimated. Then, the procedure of normalization of all 
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scattered Lamb waves A0 by the maximum absolute amplitude of the incident wave 
in the center of the defect zone for a given laminate layer is performed. The 
wavelength in the numerical integration method accounted for at least 20 - 30 
nodes of the computational grid, which is sufficient for accurate prediction of the 
propagation and scattering of the Lamb wave A0 on defects in composite laminates. 
 The Born approximation is also applicable to defects with complex shapes. In 
addition, the Born approximation was used to approximate the scattered Lamb 
wave amplitude A0 and compared with analytical and experimentally verified 
predictions of numerical integration using the finite element method. The plate 
properties of the inhomogeneity region can be expressed in terms of the properties 
corresponding to the region outside the inhomogeneity 
 

 11*  DD ,                                               (5.39) 
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where 

D = f (E, I, ); 
E is the Young’s modulus; 
I is the moment of inertia; 

 is the Poisson’s ratio; 

 = (12)-0.5 is the shear correction factor; 
G is the shear modulus;  

 is the density; 
h is the sample thickness; 

1 - 4 are the defect factors. 

 For a fixed signal frequency , the scattered Lamb wave A0, according to the 
Born approximation, can be expressed using the following relation 
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where 

,  = 1, 2; 

,  represents point coordinates within fixed region; 
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Г is the plate strain; 
g i,k are the Green’s functions: 
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where H0 is the Huncel function;  
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 The scattered Lamb wave can be represented by 
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 An analytical model of Lamb A0 wave scattering by through-hole defects is 
used to verify the numerical accuracy of the finite element modeling performed in 
this study. The verification was performed for a limited number of R values. 
 The calculation model analyzes the range of R values and compares them with 
the analytical results. The normalization procedure is performed using the 
maximum absolute amplitude of the incident wave in the center of the defect zone 
in the intact laminated composite sample. The forward and backward scattered 
Lamb waves A0 have similar amplitudes. However, the forward scattered waves 
tend to have a larger amplitude with increasing R. 
 In addition, the dynamics of the normalized amplitudes of the forward and 
backscattered Lamb waves A0 for a range of R values is analyzed. The forward and 
backscattered amplitudes increase with a similar slope and magnitude for R less 
than 0.45, after which the backscattered amplitudes increase at a lower rate and 
with small variations. 
 The entire set of obtained analytical, approximate results for finite elements 
for scattering of Lamb waves A0 on delaminations was compared with the results 
predicted by the equivalent isotropic model, which is an approximation to the 
composite laminate [45/45/0/90]S. The purpose of such a comparison is to analyze 
the suitability of the representation of delamination by inhomogeneity in the 
analytical model and the Born approximation. 
 It was shown that the A0 phase and group velocity are not sensitive to the fiber 
orientation in the composite laminate. Very good agreement was obtained in all 
three sets of results at different wave numbers for Lamb waves, thus confirming the 
approximation of the phase and group velocity in the composite laminate at low 
frequencies by an equivalent isotropic model. Analysis of the calculated results 
indicates that the Born approximation underestimates the forward scattering 
amplitudes of the Lamb wave, but it predicts the forward scattering amplitude 
trend well. 
 It is found that the backscatter amplitudes oscillate faster with R than the 
forward scatter amplitudes. The analytical, approximated backscatter amplitude 
results and the results of numerical integration using the finite element method 
have different oscillation patterns. The analytical results have the form of a 
sinusoidal function increasing with the incident wave amplitude. The approximated 
results oscillate between zero and maximum values and have an increasing 
behavior of a sinusoidal function. 
 It should be pointed out that the general trends of all three sets of results 
increase with the numerical value of R. Comparing the predictions of the forward 
and backscattering amplitudes, it can be stated that the inhomogeneity model 
represents the delamination in the forward scattering amplitudes well. However, 
for the backscattering amplitudes, there is a significant discrepancy in the 
amplitudes. A similar phenomenon has also been shown in the defect localization 
experiments in laminar composites for delaminations in composite beams. 
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 A possible reason for the discrepancy between the analytical results and the 
results of numerical integration using the finite difference method is that the 
analytical model does not take into account multiple internal reflections in the 
delamination region. The discrepancy between the analytical results and the results 
of integration using the finite element method increases for R greater than 0.3. The 
reason for such an increase in discrepancies is that the effect of multiple reflections 
in the delamination region becomes sharper. 
 The functional dependences of the normalized amplitude An on the value of R 
for different scattering angles of the Lamb wave are shown in Figs. 5.3 - 5.8. The 
curves of the graphs correspond to different models: AM (analytical model), AP 
(approximation model), FE (equivalent model calculated using the finite element 
method), QI (quasi-isotropic laminate model). 
  
 
 
 
 
 
 
 
 
  
 
 
  
 
  
 
 
 
 

 
 
 
 
 
 
In the quasi-isotropic laminated composite model, the deformation object is 

more conveniently represented as an elongated fiber located at a fixed angle to the 
surface of an individual layer. The orientation of each fiber affects the low-
frequency Lamb wave. Analytical modeling and the Born approximation are used to 
calculate the scattered wave amplitudes in the equivalent isotropic model. 

 

Figure 5.3. Dependence An = An (R) for scattering angle  = 00. 
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Figure 5.4. Dependence An = An (R) for scattering angle  = 200. 

 

Figure 5.5. Dependence An = An (R) for scattering angle  = 400. 
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Figure 5.6. Dependence An = An (R) for scattering angle  = 1800. 

 

Figure 5.7. Dependence An = An (R) for scattering angle  = 2000. 
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Finite element modeling, in which each layer of the laminated composite is 

represented as a layer of solid elements with orientation in accordance with the 
fiber direction, is considered as the reference basic procedure. The agreement 
between analytical, approximate and finite element results is not very good. 
Satisfactory results in these models are observed for the case of a quasi-isotropic 
composite. 

 
  
 

 

Figure 5.8. Dependence An = An (R) for scattering angle  = 2200. 
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CHAPTER 6 
STRUCTURAL HEALTH MONITORING TECHNIQUES 
Non-destructive and continuous monitoring of structures can be defined as 

structural health monitoring. Such structures can be structures containing or 
entirely composed of composite material elements. Structural health monitoring 
can detect and control developing defects within their volume. A set of 
experimental studies conducted in recent years has shown that guided wave 
technology is an effective method for structural health monitoring. This is due to 
the high sensitivity of this technique and its versatility. 

A guided wave can be generated by piezoelectric transducers on the composite 
structure under investigation. Such guided waves are sensitive to small-scale 
damage and can propagate over long distances. One such type of guided wave is 
the Lamb wave. The Lamb wave propagates due to the motion of particles between 
two surfaces in a thin plate-like medium of a laminar composite. 

Using Lamb wave-based structure monitoring systems, there is no need to scan 
the entire object under investigation, and all data can be obtained from a single 
probe position. While defect detection and localization in simple thin-walled 
composite laminates has been widely studied, studies on the inspection of complex 
composite assemblies using Lamb wave-based systems lack sensitivity to defect 
localization in the composite volume. 

The results of the composite structure monitoring experiments indicate that 
the structural integrity of composite joints is significantly dependent on the 
conditions and service life of the system as a whole. The connections of different 
elements in the structure can lead to abrupt failure with little advance warning. 
Therefore, it is necessary to develop structure monitoring methods that focus on 
continuous monitoring of composite joints. Recently, guided wave technology has 
been successfully applied to detect damage not only in mechanically fastened 
joints, but also in adhesive joints. 

The numerical analysis of scattered Lamb waves can be used to evaluate the 
integrity of the composite joint. Ultrasonic guided waves are a good experimental 
tool for investigating the adhesive bonds between composite laminates. The study 
of the transient dynamics and wave propagation characteristics of adhesive 
composite joints is most effective using the wavelet spectral finite element model. 
Defect detection in composite joint types such as T-joint and L-joint can also be 
effectively performed using guided Lamb waves.  

However, Lamb wave-based structure monitoring technologies for damage 
monitoring in composite local mechanical joints are not well developed. It is of 
interest to investigate composite local joints based on the Lamb wave propagation 
phenomenon. In particular, it is reasonable to consider two different types of local 
joints in a composite structure, differing in the length-to-width ratio of the joint.  
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Figure 6.1. Stress-strain curves: ts/1 – 00 tensile; ts/2 – 900 tensile. 

 

Figure 6.2. Stress-strain curves: ts/3 – |+450 tensile; ts/4 – |–450 tensile. 
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Figure 6.3. Stress-strain curves: ts/5 – 00 compression; ts/6 – 900 compression. 

 

Figure 6.4. Stress-strain curves: ts/7 – |+450 compression; ts/8 – |-450 compression. 
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Figure 6.5. Stress-strain curve, three-point bending test. 

 

Figure 6.6. Fixed mode A fracture toughness test. 
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Figure 6.7. Fixed mode B fracture toughness test. 

 

Figure 6.8. Fixed mode C fracture toughness test. 
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Mechanical effects on the surface of the composite sample naturally lead to a 
change in the deformation field and, accordingly, to a change in the characteristics 
of the Lamb waves scattered by defects. The propagation behavior of Lamb waves 
in joints, especially in the region of high mechanical local joint concentrations, was 
analyzed using three-dimensional finite element modeling. The numerical values of 
the parameters in the modeling were specified using the available results of the 
baseline experiments. 

The results of numerical calculations were accumulated in the average stress-
strain and load-displacement curves of the composite laminates for different types 

of mechanical loading. The stress-strain and compression curves (n - n)  along 900, 
00 and ±450 fibers of the laminar composites are presented in Figs. 6.1 - 6.4. Figure 
6.5 is the curve of the three-point bending test, and Figs. 6.5 - 6.8 are the normalized 

(index “n” in curves) load-displacement curves (Pn - n) obtained in multimode tests. 
Modes A, B and C in Fig. 6.6 - 6.8 are characterized by the following regimes: 

the origin of localized deformations in the form of cracks (mode A); the 
development of multiple cracks to their maximum geometric dimensions (mode B); 
the initial stage of the composite sample delamination caused by a set of developed 
cracks (mode C). 

One of the quite effective methods for numerical modeling of the propagation 
of guided Lamb waves in composite laminates of arbitrary layup and cross-sectional 
geometry is the semi-analytical finite element method. It should be noted that the 
traditional finite element method in application to laminated composites is 
computationally expensive and may lead to numerical failure, especially in the case 
of short wavelengths. 

The semi-analytical finite element method uses a finite element two-
dimensional discretization of the cross-sectional area. The basic assumption in this 
model is that the displacements along the direction of propagation of the wave 
packet are assumed to have the form of a harmonic wave and are plane-polarized. 
Moreover, the typical planar geometry of laminates allows for further simplification 
in terms of one-dimensional modeling. 

The calculation procedure considers the cross-sectional domain Ω of the 
laminated composite specimen, which is represented by a finite element system 
with domain Ωe.  

 

 

 

 

 

 

 

 

  txi

zyu

zyu

zyu

tzyxu

tzyxu

tzyxu

tzyxu

z

y

x

z

y

x

 



































 exp

,

,

,

,,,

,,,

,,,

,,, ,             (6.1) 

 

where  is the angular temporal frequency. 
The field of local displacements anisotropically located along the volume of the 

laminated composite is assumed to be harmonic along the x-propagation direction. 
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The characteristics of the displacement locations are described by spatial functions 
that are used to describe its amplitude in the y-z cross-sectional plane (6.1). 

When using one-dimensional elements, a separate procedure was adopted for 
discretizing Ω. The discretized version of the displacement expressions over the 
element domain can be written in terms of shape functions, Nk (y, z), and unknown 
nodal displacements, (Uxk, Uyk, Uzk ) in the x, y, and z directions: 
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n is the number of nodes per element. 
 Nodal displacements can be considered as arguments of some 

deformation vector 
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 At the next stage, the technique requires writing down the discrete form of 
the formulation of Hamilton's equation (denoting by the symbol nel the total 
number of elements of the cross section) 
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where 
Ce is the complex stiffness matrix; 

e is the density. 
 Algebraic transformations of equations (6.5) and (6.8) lead to the following 
relations 
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where iT = –i. 
 
 This numerical methodology assumes that the element stiffness matrix can be 
calculated by integrating only over the cross-sectional area Ωe, since integration 
over x reduces to a unit factor due to the complex conjugate terms exp [± i (kx – ωt)]. 
For viscoelastic materials, the strain energy consists of a real and an imaginary 
component. The real component of the strain energy describes the time-averaged 
elastic energy in the cross-section. The imaginary component of the strain energy is 
related to the time-averaged power dissipated by the cross-section. 
 The contribution of kinetic energy of mechanical displacement can be 
expressed by the ratio 
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 In this case, equation (6.8) takes the form 
 

  
















2

1

0

1

2
3

2
21

t

t

e
n

e

eeeeeT dtqmkkikkkq
el

  ,                     (6.11) 

 
where 
 






e

ee
Te dBCBk 111 ,                                                 (6.12) 

 

 




e

ee
T

e
Te dBCBBCBk 12212 ,                                     (6.13) 

 






e

ee
Te dBCBk 223 ,                                                 (6.14) 

 






e

ee
Te NdNm  .                                                 (6.15) 

 
 Applying the standard finite element procedure to equation (6.11), we get 
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where U is the global vector of nodal displacement and   
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 The homogeneous general wave equation has the form 
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where M is the number of total degrees of freedom of the system. 
 The stiffness matrices K1 and K3 in the equation are symmetric. The matrix K2 
is skew-symmetric and is related to the case where undamped motion is 
considered. For damped motion, all matrices Ki are usually complex. The matrix M 
is real symmetric and positive definite regardless of the type of motion (damped or 
undamped). 
 The matrix K1 is related to the strain transformation matrix B1, which is related 
to generalized plane strains. It should be noted that the matrix B1 describes the 
generalized plane strain behavior or transverse buckling. The matrix K3 describes 
the out-of-plane strain behavior since it depends on the matrix B2. The matrix K2 
contains the matrices B1 and B2 and thus relates transverse buckling to out-of-
plane strains. 
 The diagonal matrix T of the M × M transformation is introduced to eliminate 
the imaginary unit in the corresponding equations. The elements of T corresponding 
to the displacement components uy and uz are equal to 1, while the corresponding 
elements ux are equal to the imaginary unit: 
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 This matrix has the properties TT = T* and T*T = TT* = I, where I is the identity 
matrix. In this case, the following relations are valid 
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 The property of the matrix K2 is that it mixes the components ux with uy and 
uz, but does not mix the components uy and uz with each other 
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where K2 is the symmetric matrix of undamped motion. 
 The final form of the special finite element eigenvalue method is 
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Results in terms of multiple modes and dispersion properties can be obtained 

in a numerically stable manner using the eigenvalue and eigenvector problem. Two 
quadratic finite elements were used on a model example of a laminar composite 
containing 18 plates. Each element has three degrees of freedom per node, 
associated with mechanical displacements Ux, Uy, Uz. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 6.9 - 6.12 show the dispersion curves for the phase velocities 𝐶𝑝 = 𝐶𝑝 (f). 

Considering the quasi-isotropic stacking and to quantify its anisotropy level, four 
different Lamb wave propagation directions (0°, 30°, 60°, and 90° relative to the x-
coordinate of the laminate) were simulated. The basic assumption for the structure 
monitoring model is quasi-isotropy throughout the volume of the laminated 
composite. 

The dispersion curve calculations revealed the presence of the so-called cutoff 
frequency fс, which outlines the extension of the non-dispersive region where only 
three fundamental Lamb wave modes (S0, A0, and SH0) can exist. The velocity of 
the Lamb wave packets is almost constant in this range, except for the A0 wave 

 

Figure 6.9. Dispesion curve cp = cp (f) for  = 00 direction. 
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close to the origin). It should be noted that the anisotropy level of the laminate is 
determined by the quasi-isotropic stacking sequence. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.10. Dispesion curve cp = cp (f) for  = 300 

direction. 

 

Figure 6.11. Dispesion curve cp = cp (f) for  = 600 

direction. 
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The characteristic value of the group velocity A0 is superimposed on the 

fluctuations. The amplitude values of the Lamb wave packets corresponding to the 
coordinate located at the midpoint of the laminate volume were processed through 
the Hilbert transform to extract the values of the group velocity 𝐶𝑔 according to the 
formula 
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where x is the wave propagation path. 
 The calculated values of the wave number based on the reference value of the 
circular frequency are the basis for determining the group velocity according to the 
formula 
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Figure 6.12. Dispesion curve cp = cp (f) for  = 900 

direction. 
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CHAPTER 7 
COMPARISON OF SCHEMES FOR LAMB WAVE MODELLING  
Active diagnostics of composite materials often involves the use of transient 

Lamb waves for damage detection. This methodology involves preliminary analysis 
of the complex Lamb wave characteristics of composite laminates. Numerical 
studies of laminate damage characteristics such as delamination, matrix cracking, 
etc. always require the use of ply-by-ply theories or finite element models. These 
models have sufficient resolution in predicting local effects. However, they are 
computationally expensive, especially for modeling the entire laminated structure.  

Among the large number of analytical studies, two key approaches to the study 
of global characteristics of Lamb wave propagation in composite laminates can be 
distinguished. The first approach is associated with the 3D elasticity theory, which 
is able to calculate exact solutions. The second technique is equivalent to the single-
layer theory. The theory of one fixed layer can provide only approximate solutions. 

Exact solutions can be obtained by analyzing the dispersion characteristics of 
Lamb waves in laminates. The dispersion results can be verified by the finite 
element method followed by analyzing the directional characteristics of Lamb 
waves in laminates. The complexity and computational cost of the 3D elasticity 
theory strongly depends on the stacking sequence of layers (along the plane of 
symmetry or not) and the number of layers of the laminated composite. 

Approximate plate theory applied to laminated composite provides greater 
efficiency than 3D elasticity theory, especially for laminates with complex stacking 
sequences and a large number of layers. It should be noted that techniques of this 
type are effective for solving large-scale problems, such as reconstructing unknown 
stiffness coefficients in composites based on Lamb wave phase velocities. 

A drawback of the first-order shear deformation theory, as well as of some 
higher-order shear deformation theories, is the absence of stress-free boundary 
conditions on the top and bottom surfaces of the panel. To overcome this 
drawback, a complex scheme was developed for calculating shear correction 
factors. The correction factors change their numerical values when the laminate 
properties (ply stacking sequence, number of plies and ply properties, etc.) are 
changed. 

The standard method for determining the correction factors is to compare the 
fixed cutoff frequencies from the approximate theories with those obtained from 
the exact theory. The computational time required to implement this method for 
the conventional single plate equivalent theories should include the time required 
to calculate the exact solutions. 

To avoid calculating complex shear correction factors, a correction is usually 
made to the displacement field. This takes into account the disappearance of 
transverse shear stresses at the top and bottom of a conventional laminate. 
However, for the case where Lamb wave packets propagate in composite panels, 
the stress-free state on the panel surfaces refers not only to the disappearance of 
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transverse shear stresses, but also to the disappearance of normal stresses. 
Therefore, modified third-order plate theories should consider transverse shear 
strain and stress-free boundary conditions to effectively model Lamb waves in 
composite laminates. Lamb wave packets can be roughly divided into two groups of 
modes, which are generally represented by symmetric and antisymmetric modes in 
accordance with the symmetric characteristics of the displacement distribution. 

Introducing a rectangular Cartesian coordinate system, it can be stated that u, 
v and w are the components of displacement in the x, y and z directions. In this case, 
the u and v displacement components of the antisymmetric modes have the 
property of being antisymmetric with respect to the z-axis. Due to this, the odd-
order terms with respect to z in u and v describe antisymmetric modes. The even-
order terms with respect to z in w also correspond to antisymmetric modes, 
because w is symmetric with respect to the z-axis for the antisymmetric modes. The 
even-order terms with respect to z in u and v together with the odd-order terms 
with respect to z in w describe symmetric modes. 

Taking into account the effects of rotational inertia and shear deformation, it 
can be concluded that the displacement field defined in the base coordinate system 
taking into account the effects has the following components 
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 tyxz y ,,  ,                                                      (7.2) 
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 It should be noted that the bias field generates three antisymmetric modes 
and cannot be used to calculate any symmetric mode. A model example of a 
pseudospectral element of a plate with 5 degrees of freedom for a modified 
displacement field is described by the following relations 
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where u0 and 0 are the displacement components of the mid-plane. 
 The analysis shows that there are three antisymmetric modes and two 
symmetric modes in the displacement field of the laminated composite sample. 
 Splitting the characteristic matrix into two submatrices to solve the 
antisymmetric modes and symmetric modes separately can be done for laminar 
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composites. Meanwhile, there is no term describing the symmetric modes in the w 
component, which means that the calculated two symmetric modes share a zero 
displacement component w. Therefore, the displacement field may not be suitable 
for predicting the symmetric modes. 
 The study of the motion of Lamb wave packets under tension of laminate 
composites can be effectively performed using a quadratic displacement field 
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 For this case, the Lamb wave propagation can be attributed to three 
antisymmetric modes and five symmetric modes. The third-order displacement 
field allows one to describe up to six antisymmetric Lamb wave modes and five 
symmetric Lamb wave modes 
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 The procedure of equating the transverse components of the shear stress on 
the upper and lower surfaces to zero allowed us to modify the third-order theory 
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where 
index “t1” corresponds the top surface of the layer; 
index “t2” corresponds the bottom surface of the layer. 
 As a result, the displacement field gets the form 
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where 
C1 = 4/(3h2); 
h is the laminate thickness. 
 The model example will consist of a laminar composite with a constant 
thickness h. The composite contains anisotropic plates that are ideally bonded 
together. The origin of the global Cartesian coordinate system is located in the mid-
plane x-y, and the z-axis is perpendicular to the mid-plane. The two outer surfaces 
of the laminate are at z = ± h/2. A packet of transient Lamb waves propagates in the 
composite laminate in an arbitrary direction θ, which is defined relative to the  
x-axis. 
 The fixed layer can be considered as a monoclinic material, having x-y as a 
plane of symmetry. In this case, the stress-strain relationships of an individual plate 
can be expressed in the following matrix form:  
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where 
subscript “1” denotes x; 
subscript “2” denotes y; 
subscript “3” denotes z; 
subscript “4” denotes yz; 
subscript “5” denotes xz; 
subscript “6” denotes xy. 
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 The basic model assumes that the variables φx, χx , φy , χy , ψz and φz will be 
defined with the boundary condition that the mechanical stresses σzz = σ3, σyz = σ4 
and σx z = σ5 vanish at the top and bottom surfaces of the laminate panels. 
 In addition, the ratios σ4 = 0 and σ5 = 0 are equivalent to the corresponding 
strains (ε4 and ε5) being zero at the surfaces. However, for the condition σ3 = 0 at 
the surfaces, the strain components (ε1, ε2, ε3 and ε6) are related to the stiffness 
coefficients (C13, C23, C33 and C36) for the two plates at the top and bottom surfaces 
according to the characteristic equation. For parallel layers of laminar composite, 
the boundary condition can be expressed in the form of displacement parameters 
as 
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where 
Q13 is the modified stiffness coefficient C13 of the two laminas on the top and the 
bottom surfaces; 
Q23 is the modified stiffness coefficient C23 of the two laminas on the top and the 
bottom surfaces; 
Q33 is the modified stiffness coefficient C33 of the two laminas on the top and the 
bottom surfaces; 
Q36 is the modified stiffness coefficient C36 of the two laminas on the top and the 
bottom surfaces. 
 The generalized form of Lamb wave packets in the model example is described 
as follows 
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where 

 is the angular frequency; 
k = [kx, ky]T corresponds the direction of wave propagation in the x-y plane. 
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 A set of quantities of six variables φx, χx, φy, χy, ψz and φz are functions of five 
arguments. In this case, the displacement field is then described by a system of 
equations 
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where 
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 The system of equations (7.22-7.27) defines the displacement field, which is 
associated with the stiffness coefficients of the two plates on the upper and lower 
surfaces and with the wave vector. 
 Hamilton's principle for virtual displacement can be used to derive the 
equation of motion of a higher order theory, provided that there are linear relations 
between deformation and displacement 
 

  

T

dtWTU

0

0 ,                                          (7.28) 

 
where 
U is the virtual strain energy; 
T is the virtual kinetic energy; 
W is the virtual work. 
 The Lamb wave packet modeling is performed under the condition that the 
mechanical stresses are free on the surfaces of the composite sample. In this case, 
the virtual work W is zero. Then the integral equation for the elasticity of the plate 
is given by 
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 The characteristic equation for the inertia of the plate and the resulting stress 
per unit length is as follows: 
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where index “k” corresponds to the layer number in a composite laminate. 
 The matrix form of the equation of state of a laminate with arbitrary laying is 
as follows: 
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 The stress and moment resultant vectors are defined as 
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 The elements of the stiffness matrix and the moment of inertia are included in 
the following relationship 
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 The components of the mechanical deformation vector are determined using 
deformation coefficients 
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where 
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 Transformation of the equation of motion helps to solve the generalized 
eigenvalue problem. The characteristic matrix of order 5 × 5 defines five real 
positive eigenvalues associated with three antisymmetric and two symmetric 
modes of Lamb wave packets. 
 The set of functions of phase velocity (cp), frequency (f) and direction of 
propagation (θ) are the components of the determinant of the matrix. 
 In turn, the determinant of the matrix allows one to write the characteristic 
equation, the solution of which gives the cp – f curves (dispersion curves) in the 
rectangular coordinate system for a given angle θ or the cp – θ curves in the polar 
coordinate system for a given frequency f. 
 The results obtained from direct calculations using the finite element method 
and from the analysis of characteristic equations including the components of the 
stiffness matrix and mesic displacements were compared with the experimental 
data on a composite consisting of epoxy resin (35%) and graphite (65%) with a 
density of 1760 kg m−3. The composite was a laminated structure of [+456/ − 456]S. 
The thickness of each plate was 0.125 mm. 
 Based on the calculations, the phase velocity dispersion curves were 
constructed in rectangular coordinate systems. In the laminated composite, a fixed 
direction (300) of the phase velocity was considered. The results of the modified 
higher-order shear deformation theory were compared with the results obtained 
by several existing equivalent theories of a single plate of the laminated composite 
and exact solutions based on the three-dimensional theory of elasticity. 
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Figure 7.1. Dispersion curves for anti-symmetric curves, idexes: 1 – single plate 

equivalent theory; b – shear deformation theory of higher order; c – first order 

shear deformation theory. 

 
Figure 7.2. Dispersion curves for symmetric curves SH0, S0, idexes: 1 – single 

plate equivalent theory; b – shear deformation theory of higher order; c – first 

order shear deformation theory. 
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Figure 7.3. Dispersion curves for symmetric curves S1, S2, SH2, idexes: 1 – single 

plate equivalent theory; b – shear deformation theory of higher order; c – first 

order shear deformation theory. 

 
Figure 7.4. Difference  between the effective and fixed A0 modes, idexes:             

1 – single plate equivalent theory; b – shear deformation theory of higher order;               

c – first order shear deformation theory. 



145 
 

 

The dispersion results were classified by the number of Lamb modes. In 
addition, the dispersion results for the three antisymmetric Lamb modes of the 
different theories were analyzed. Dispersion curves for symmetric and 
antisymmetric Lamb waves are shown in Figs. 7.1 - 7.4. 

The analysis showed that the higher-order shear deformation theory has 
advantages over the single-plate equivalent theory of laminar composites. The 
shear theory predicts accurate solutions because there are no assumptions during 
the modeling process. In addition, this theory can predict an infinite number of 
Lamb modes as the frequency increases. For the single-plate equivalent theory, the 
number of Lamb modes is equivalent to the number of independent variables in the 
displacement fields. However, the higher-order shear deformation theory is quite 
time-consuming to calculate, especially for laminates with complex stacking 
sequences or a large number of layers. 

In summary, it can be stated that the application of elastic wave propagation 
for damage detection in composite materials is most effective in the study of the 
interaction of Lamb modes with delaminations. The analysis of shear variable 
models revealed the presence of delamination effects on the fundamental 
symmetric Lamb mode in cross-laminated laminates.  

It should be noted that the presence of strong dispersion of Lamb waves makes 
the damage localization process difficult. A way out of this situation may be the use 
of time-frequency analysis to facilitate damage localization. Such analysis allows to 
isolate individual frequency components of Lamb waves and, thus, allows to localize 
damage more effectively.  

Time-frequency analysis based on short-time Fourier transform has also been 
found to be effective in obtaining the time of flight of diffracted waves. However, a 
large number of both theoretical and experimental studies still favor the wavelet 
transform, which is particularly suitable for localizing high-frequency components 
of mechanical stress waves. Unlike the Fourier transform, which uses sinusoidal 
functions as a basis, the wavelet transform uses more general basis functions. The 
location, size and orientation of damage can be determined using the delamination 
identification procedure. The methodology involves using the basic antisymmetric 
Lamb wave mode to detect delaminations in laminated composites. In the final 
stages of the analysis, a continuous wavelet transform was used to decompose the 
obtained results. Mechanical delaminations for each layer were localized based on 
the flight times of the damage-induced Lamb wave groups and their propagation 
velocities. 
 



146 
 

 

 
REFERENCES 
 
1. Harb, M. S., & Yuan, F. G. (2016). Non-contact ultrasonic technique for 

Lamb wave characterization in composite plates. Ultrasonics, 64, 162-169. 
2. Birchmeier, M., Gsell, D., Juon, M., Brunner, A. J., Paradies, R., & Dual, J. 

(2009). Active fiber composites for the generation of Lamb waves. 
Ultrasonics, 49(1), 73-82. 

3. Pierce, S. G., Culshaw, B., Manson, G., Worden, K., & Staszewski, W. J. 
(2000). Application of ultrasonic Lamb wave techniques to the evaluation 
of advanced composite structures. In Smart Structures and Materials 2000: 
Sensory Phenomena and Measurement Instrumentation for Smart 
Structures and Materials (Vol. 3986, pp. 93-103). SPIE. 

4. Sikdar, S., & Ostachowicz, W. (2019). Ultrasonic Lamb wave‐based 
debonding monitoring of advanced honeycomb sandwich composite 
structures. Strain, 55(1), e12302. 

5. Leonard, K. R., Malyarenko, E. V., & Hinders, M. K. (2002). Ultrasonic Lamb 
wave tomography. Inverse problems, 18(6), 1795. 

6. Liu, T., Veidt, M., & Kitipornchai, S. (2002). Single mode Lamb waves in 
composite laminated plates generated by piezoelectric transducers. 
Composite Structures, 58(3), 381-396. 

7. Luo, K., Chen, L., Chen, Y., Ye, L., & Yu, S. (2025). An ultrasonic Lamb wave-
based non-linear exponential RAPID method for delamination detection in 
composites. Composite Structures, 352, 118701. 

8. Ben, B. S., Yang, S. H., Ratnam, C., & Ben, B. A. (2013). Ultrasonic based 
structural damage detection using combined finite element and model 
Lamb wave propagation parameters in composite materials. The 
International Journal of Advanced Manufacturing Technology, 67, 1847-
1856. 

9. Giurgiutiu, V. (2005). Tuned Lamb wave excitation and detection with 
piezoelectric wafer active sensors for structural health monitoring. Journal 
of intelligent material systems and structures, 16(4), 291-305. 

10. Wang, B., Shi, W., Zhao, B., & Tan, J. (2022). A modal decomposition imaging 
algorithm for ultrasonic detection of delamination defects in carbon fiber 
composite plates using air-coupled Lamb waves. Measurement, 195, 
111165. 

11. Ochôa, P., Villegas, I. F., Groves, R. M., & Benedictus, R. (2018). 
Experimental assessment of the influence of welding process parameters 
on Lamb wave transmission across ultrasonically welded thermoplastic 
composite joints. Mechanical Systems and Signal Processing, 99, 197-218. 

12. Zou, X. Y., Liang, B., Chen, Q., & Cheng, J. C. (2009). Band gaps of lamb waves 
in one-dimensional piezoelectric composite plates: effect of substrate and 



147 
 

 

boundary conditions. IEEE transactions on ultrasonics, ferroelectrics, and 
frequency control, 56(2), 361-367. 

13. Toyama, N., Ye, J., Kokuyama, W., & Yashiro, S. (2018). Non-contact 
ultrasonic inspection of impact damage in composite laminates by 
visualization of Lamb wave propagation. Applied Sciences, 9(1), 46. 

14. Bellan, F. et al. (2005). A new design and manufacturing process for 
embedded Lamb waves interdigital transducers based on piezopolymer 
film. Sensors and Actuators A: Physical, 123, 379-387. 

15. Schubert, K. J., & Herrmann, A. S. (2011). On attenuation and measurement 
of Lamb waves in viscoelastic composites. Composite Structures, 94(1), 
177-185. 

16. Wu, T. T., & Liu, Y. H. (1999). On the measurement of anisotropic elastic 
constants of fiber-reinforced composite plate using ultrasonic bulk wave 
and laser generated Lamb wave. Ultrasonics, 37(6), 405-412. 

17. Dahmen, S., Amor, M. B., & Ghozlen, M. H. B. (2016). Investigation of the 
coupled Lamb waves propagation in viscoelastic and anisotropic multilayer 
composites by Legendre polynomial method. Composite Structures, 153, 
557-568. 

18. Ong, W. H., Rajic, N., Chiu, W. K., & Rosalie, C. (2016). Determination of the 
elastic properties of woven composite panels for Lamb wave studies. 
Composite Structures, 141, 24-31. 

19. Lin, J., Gao, F., Luo, Z., & Zeng, L. (2016). High-resolution Lamb wave 
inspection in viscoelastic composite laminates. IEEE Transactions on 
Industrial Electronics, 63(11), 6989-6998. 

20. Orta, A. H., Vandendriessche, J., Kersemans, M., Van Paepegem, W., 
Roozen, N. B., & Van Den Abeele, K. (2021). Modeling lamb wave 
propagation in visco-elastic composite plates using a fifth-order plate 
theory. Ultrasonics, 116, 106482. 

21. Karmazin, A., Kirillova, E., Seemann, W., & Syromyatnikov, P. (2011). 
Investigation of Lamb elastic waves in anisotropic multilayered composites 
applying the Green’s matrix. Ultrasonics, 51(1), 17-28. 

22. Basri, R., & Chiu, W. K. (2004). Numerical analysis on the interaction of 
guided Lamb waves with a local elastic stiffness reduction in quasi-isotropic 
composite plate structures. Composite structures, 66(1-4), 87-99. 

23. Seale, M. D., Smith, B. T., & Prosser, W. H. (1998). Lamb wave assessment 
of fatigue and thermal damage in composites. The Journal of the Acoustical 
Society of America, 103(5), 2416-2424. 

24. Li, W., Cho, Y., & Achenbach, J. D. (2012). Detection of thermal fatigue in 
composites by second harmonic Lamb waves. Smart Materials and 
Structures, 21(8), 085019. 



148 
 

 

25. Ducousso, M., Dalodière, A., & Baillard, A. (2019). Evaluation of the thermal 
aging of aeronautical composite materials using Lamb waves. Ultrasonics, 
94, 174-182. 

26. Li, W., Xu, C., & Cho, Y. (2016). Characterization of degradation progressive 
in composite laminates subjected to thermal fatigue and moisture diffusion 
by lamb waves. Sensors, 16(2), 260. 

27. Seale, M. D., & Madaras, E. I. (2000). Lamb wave evaluation of the effects 
of thermal-mechanical aging on composite stiffness. Journal of composite 
materials, 34(1), 27-38. 

28. Seale, M. D., & Madaras, E. I. (1999). Lamb wave characterization of the 
effects of long-term thermal-mechanical aging on composite stiffness. The 
Journal of the Acoustical Society of America, 106(3), 1346-1352. 

29. Cinquin, M., Castaings, M., Hosten, B., Brassier, P., & Pérès, P. (2005). 
Monitoring of the moisture content in carbon-epoxy plates using Lamb 
waves. NDT & E International, 38(1), 37-44. 

30. Zimmermann, E., Eremin, A., & Lammering, R. (2018). Analysis of the 
continuous mode conversion of Lamb waves in fiber composites by a 
stochastic material model and laser vibrometer experiments. GAMM‐
Mitteilungen, 41(1), e201800001. 

31. Lee, J., & Cho, Y. (2016). Using Lamb waves to monitor moisture absorption 
in thermally fatigued composite laminates. Journal of the Korean Society 
for Nondestructive Testing, 36(3), 175-180. 

32. Su, Z., Ye, L., & Lu, Y. (2006). Guided Lamb waves for identification of 
damage in composite structures: A review. Journal of sound and vibration, 
295(3-5), 753-780. 

33. Chen, X., Li, X., Wang, S., Yang, Z., Chen, B., & He, Z. (2012). Composite 
damage detection based on redundant second-generation wavelet 
transform and fractal dimension tomography algorithm of lamb wave. IEEE 
transactions on instrumentation and measurement, 62(5), 1354-1363. 

34. Paget, C. A., Grondel, S., Levin, K., & Delebarre, C. (2003). Damage 
assessment in composites by Lamb waves and wavelet coefficients. Smart 
materials and Structures, 12(3), 393. 

35. Su, C., Jiang, M., Liang, J., Tian, A., Sun, L., Zhang, L., ... & Sui, Q. (2020). 
Damage assessments of composite under the environment with strong 
noise based on synchrosqueezing wavelet transform and stack 
autoencoder algorithm. Measurement, 156, 107587. 

36. Lemistre, M., Gouyon, R., Kaczmarek, H., & Balageas, D. (1999). Damage 
localization in composite plates using wavelet transform processing on 
Lamb wave signals. Office National D Etudes Et De Recherches 
Aerospatiales Onera-Publications-TP. 



149 
 

 

37. Wu, J., Xu, X., Liu, C., Deng, C., & Shao, X. (2021). Lamb wave-based damage 
detection of composite structures using deep convolutional neural network 
and continuous wavelet transform. Composite Structures, 276, 114590. 

38. Badcock, R. A., & Birt, E. A. (2000). The use of 0-3 piezocomposite 
embedded Lamb wave sensors for detection of damage in advanced fibre 
composites. Smart Materials and Structures, 9(3), 291. 

39. Staszewski, W. J., Pierce, S. G., Worden, K., Philp, W. R., Tomlinson, G. R., & 
Culshaw, B. (1997). Wavelet signal processing for enhanced Lamb-wave 
defect detection in composite plates using optical fiber detection. Optical 
Engineering, 36(7), 1877-1888. 

40. Kessler, S. S., Spearing, S. M., & Soutis, C. (2002). Damage detection in 
composite materials using Lamb wave methods. Smart materials and 
structures, 11(2), 269. 

41. Ng, C. T., & Veidt, M. (2009). A Lamb-wave-based technique for damage 
detection in composite laminates. Smart materials and structures, 18(7), 
074006. 

42. Ben, B. S., Ben, B. A., Vikram, K. A., & Yang, S. H. (2013). Damage 
identification in composite materials using ultrasonic based Lamb wave 
method. Measurement, 46(2), 904-912. 

43. Zheng, K., Li, Z., Ma, Z., Chen, J., Zhou, J., & Su, X. (2019). Damage detection 
method based on Lamb waves for stiffened composite panels. Composite 
Structures, 225, 111137. 

44. Yang, B., Xuan, F. Z., Chen, S., Zhou, S., Gao, Y., & Xiao, B. (2017). Damage 
localization and identification in WGF/epoxy composite laminates by using 
Lamb waves: Experiment and simulation. Composite Structures, 165, 138-
147. 

45. Su, Z., Ye, L., Su, Z., & Ye, L. (2009). Fundamentals and analysis of lamb 
waves. Identification of Damage Using Lamb Waves: From Fundamentals to 
Applications, 15-58. 

46. Mardanshahi, A., Shokrieh, M. M., & Kazemirad, S. (2020). Identification of 
matrix cracking in cross-ply laminated composites using Lamb wave 
propagation. Composite Structures, 235, 111790. 

47. Mustapha, S., Ye, L., Wang, D., & Lu, Y. (2011). Assessment of debonding in 
sandwich CF/EP composite beams using A0 Lamb wave at low frequency. 
Composite structures, 93(2), 483-491. 

48. Pieczonka, Ł., Ambroziński, Ł., Staszewski, W. J., Barnoncel, D., & Pérès, P. 
(2017). Damage detection in composite panels based on mode-converted 
Lamb waves sensed using 3D laser scanning vibrometer. Optics and lasers 
in engineering, 99, 80-87. 

49. Gao, F., Zeng, L., Lin, J., & Shao, Y. (2018). Damage assessment in composite 
laminates via broadband Lamb wave. Ultrasonics, 86, 49-58. 



150 
 

 

50. Leleux, A., Micheau, P., & Castaings, M. (2013). Long range detection of 
defects in composite plates using Lamb waves generated and detected by 
ultrasonic phased array probes. Journal of Nondestructive Evaluation, 32, 
200-214. 

51. Kessler, S. S., Spearing, S. M., & Soutis, C. (2001, September). Optimization 
of Lamb wave methods for damage detection in composite materials. In 
Proceedings of the 3rd International Workshop on Structural Health 
Monitoring (pp. 870-879). 

52. Zeng, L., Huang, L., & Lin, J. (2019). Damage imaging of composite structures 
using multipath scattering Lamb waves. Composite Structures, 216, 331-
339. 

53. Philibert, M., Soutis, C., Gresil, M., & Yao, K. (2018). Damage detection in a 
composite T-joint using guided Lamb waves. Aerospace, 5(2), 40. 

54. Rauter, N., & Lammering, R. (2015). Impact damage detection in composite 
structures considering nonlinear lamb wave propagation. Mechanics of 
Advanced Materials and Structures, 22(1-2), 44-51. 

55. Huang, L., Zeng, L., Lin, J., & Zhang, N. (2020). Baseline-free damage 
detection in composite plates using edge-reflected Lamb waves. Composite 
Structures, 247, 112423. 

56. Lee, H., Lim, H. J., Skinner, T., Chattopadhyay, A., & Hall, A. (2022). 
Automated fatigue damage detection and classification technique for 
composite structures using Lamb waves and deep autoencoder. 
Mechanical Systems and Signal Processing, 163, 108148. 

57. Diamanti, K., Hodgkinson, J. M., & Soutis, C. (2004). Detection of low-
velocity impact damage in composite plates using Lamb waves. Structural 
Health Monitoring, 3(1), 33-41. 

58. Kessler, S. S., Spearing, S. M., & Atalla, M. J. (2002, July). In-situ damage 
detection of composites structures using Lamb wave methods. In 
Proceedings of the first European workshop on structural health 
monitoring (pp. 10-12). 

59. Toyama, N., Noda, J., & Okabe, T. (2003). Quantitative damage detection in 
cross-ply laminates using Lamb wave method. Composites science and 
technology, 63(10), 1473-1479. 

60. Monnier, T. (2006). Lamb waves-based impact damage monitoring of a 
stiffened aircraft panel using piezoelectric transducers. Journal of 
Intelligent Material Systems and Structures, 17(5), 411-421. 

61. Zhang, H., Wang, F., Lin, J., & Hua, J. (2024). Lamb wave-based damage 
assessment for composite laminates using a deep learning approach. 
Ultrasonics, 141, 107333. 

62. Zhang, N., Zhai, M., Zeng, L., Huang, L., & Lin, J. (2023). Damage assessment 
in composite laminates with the Lamb wave factorization method. 
Composite Structures, 307, 116642. 



151 
 

 

63. Zeng, X., Liu, X., Yan, J., Yu, Y., Zhao, B., & Qing, X. (2022). Lamb wave-based 
damage localization and quantification algorithms for CFRP composite 
structures. Composite Structures, 295, 115849. 

64. Amza, G., Moraru, A., Marinescu, M., Amza, C., & Melnic, L. V. (2008). 
Damage detection of composite materials with LAMB wave method. 
MATERIALE PLASTICE, 45(2), 203. 

65. Su, Z., & Ye, L. (2005). Lamb wave propagation-based damage identification 
for quasi-isotropic CF/EP composite laminates using artificial neural 
algorithm: Part I-methodology and database development. Journal of 
intelligent material systems and structures, 16(2), 97-111. 

66. Purekar, A. S., & Pines, D. J. (2010). Damage detection in thin composite 
laminates using piezoelectric phased sensor arrays and guided Lamb wave 
interrogation. Journal of Intelligent Material Systems and Structures, 
21(10), 995-1010. 

67. Dayal, V., & Kinra, V. K. (1991). Leaky Lamb waves in an anisotropic plate. 

II: Nondestructive evaluation of matrix cracks in fiber-reinforced 

composites. The Journal of the Acoustical Society of America, 89(4), 1590-

1598. 
68. Zhang, H., Hua, J., Gao, F., & Lin, J. (2020). Efficient Lamb-wave based 

damage imaging using multiple sparse Bayesian learning in composite 
laminates. NDT & E International, 116, 102277. 

69. Toyama, N., Yashiro, S., Takatsubo, J., & Okabe, T. (2005). Stiffness 
evaluation and damage identification in composite beam under tension 
using Lamb waves. Acta materialia, 53(16), 4389-4397. 

70. Luo, K., Liu, Y., Liang, W., Chen, L., & Yang, Z. (2024). Rapid damage 
reconstruction imaging of composite plates using non-contact air-coupled 
Lamb waves. NDT & E International, 143, 103047. 

71. Huo, H., He, J., & Guan, X. (2021). A Bayesian fusion method for composite 
damage identification using Lamb wave. Structural Health Monitoring, 
20(5), 2337-2359. 

72. Driss, H., El Mahi, A., Bentahar, M., Beyaoui, M., & Haddar, M. (2023). 
Characterization of Tensile and Fatigue Damages in Composite Structures 
Using Lamb Wave for Improved Structural Health Monitoring. International 
Journal of Applied Mechanics, 15(02), 2350014. 

73.  Su, C., Jiang, M., Lv, S., Lu, S., Zhang, L., Zhang, F., & Sui, Q. (2019). Improved 
damage localization and quantification of CFRP using Lamb waves and 
convolution neural network. IEEE Sensors Journal, 19(14), 5784-5791. 

74. Gao, F., Shao, Y., Hua, J., Zeng, L., & Lin, J. (2021). Enhanced wavefield 
imaging method for impact damage detection in composite laminates via 
laser-generated Lamb waves. Measurement, 173, 108639. 

75. Su, C., Jiang, M., Liang, J., Tian, A., Sun, L., Zhang, L., ... & Sui, Q. (2019). 
Damage identification in composites based on Hilbert energy spectrum and 



152 
 

 

Lamb wave tomography algorithm. IEEE Sensors Journal, 19(23), 11562-
11572. 

76. Mal, A. K., Shih, F. J., Ricci, F., & Banerjee, S. (2005, May). Impact damage 
detection in composite structures using Lamb waves. In Health Monitoring 
and Smart Nondestructive Evaluation of Structural and Biological Systems 
IV (Vol. 5768, pp. 295-303). SPIE. 

77. Liu, Y., Fard, M. Y., Kim, S. B., Chattopadhyay, A., & Doyle, D. (2011, April). 
Damage detection in composite structures using Lamb wave analysis and 
time-frequency approach. In Sensors and Smart Structures Technologies for 
Civil, Mechanical, and Aerospace Systems 2011 (Vol. 7981, pp. 1034-1048). 
SPIE. 

78. Guo, J., Zeng, X., Liu, Q., & Qing, X. (2022). Lamb wave-based damage 
localization and quantification in composites using probabilistic imaging 
algorithm and statistical method. Sensors, 22(13), 4810. 

79. Worden, K., Pierce, S. G., Manson, G., Philp, W. R., Staszewski, W. J., & 
Culshaw, B. (2000). Detection of defects in composite plates using Lamb 
waves and novelty detection. International Journal of Systems Science, 
31(11), 1397-1409. 

80. Tie, Y., Zhang, Q., Hou, Y., & Li, C. (2020). Impact damage assessment in 
orthotropic CFRP laminates using nonlinear Lamb wave: Experimental and 
numerical investigations. Composite Structures, 236, 111869. 

81. Rahbari, A., Rébillat, M., Mechbal, N., & Canu, S. (2021). Unsupervised 
damage clustering in complex aeronautical composite structures 
monitored by Lamb waves: An inductive approach. Engineering 
Applications of Artificial Intelligence, 97, 104099. 

82. Lu, Y., Ye, L., Wang, D., & Zhong, Z. (2009). Time-domain analyses and 
correlations of Lamb wave signals for damage detection in a composite 
panel of multiple stiffeners. Journal of Composite Materials, 43(26), 3211-
3230. 

83. Yu, F., Saito, O., & Okabe, Y. (2022). Detection of a single transverse crack 
in a CFRP cross-ply laminate by visualizing mode conversion of Lamb waves. 
Composite Structures, 283, 115118. 

84. Hameed, M. S., & Li, Z. (2019). Transverse damage localization and 
quantitative size estimation for composite laminates based on Lamb waves. 
IEEE Access, 7, 174859-174872. 

85. Gonzalez-Jimenez, A., Lomazzi, L., Junges, R., Giglio, M., Manes, A., & 
Cadini, F. (2024). Enhancing Lamb wave-based damage diagnosis in 
composite materials using a pseudo-damage boosted convolutional neural 
network approach. Structural Health Monitoring, 23(3), 1514-1529. 

86. Bar-Cohen, Y., Mal, A. K., Lih, S. S., & Chang, Z. (1999, January). Composite 
materials stiffness determination and defects characterization using 
enhanced leaky Lamb wave dispersion data acquisition method. In 



153 
 

 

Nondestructive Evaluation of Aging Aircraft, Airports, and Aerospace 
Hardware III (Vol. 3586, pp. 250-255). SPIE. 

87. Gao, Y., Sun, L., Song, R., Peng, C., Wu, X., Wei, J., ... & Zhang, L. (2024). 
Damage localization in composite structures based on Lamb wave and 
modular artificial neural network. Sensors and Actuators A: Physical, 377, 
115644. 

88. Hua, J., Zhang, H., Miao, Y., & Lin, J. (2022). Modified minimum variance 
imaging of Lamb waves for damage localization in aluminum plates and 
composite laminates. Ndt & E International, 125, 102574. 

89. Nandyala, A. R., Darpe, A. K., & Singh, S. P. (2022). Damage severity 
assessment in composite structures using multi-frequency lamb waves. 
Structural Health Monitoring, 21(6), 2834-2850. 

90. De Luca, A., Perfetto, D., De Fenza, A., Petrone, G., & Caputo, F. (2018). 
A sensitivity analysis on the damage detection capability of a Lamb waves 
based SHM system for a composite winglet. Procedia Structural Integrity, 
12, 578-588. 

91. Su, C., Jiang, M., Liang, J., Tian, A., Sun, L., Zhang, L., ... & Sui, Q. (2020). 
Damage localization of composites based on difference signal and lamb 
wave tomography. Materials, 13(1), 218. 

92. Pysarenko A.M. (2024). Propagation of Lamb waves in laminar composites. 
International scientific conference "Global science and education in the 
modern realities '2024". Proconference in conjunction with KindleDP 
Seattle, Washington USA. No 24 on May 21 2024, 54 - 62. 

93. Pysarenko O.M. (2024). Group Velocity Dispersion of Lamb Wave Modes in 
Laminar Composites. Comat 2024.  8th International Conference on Recent 
Trends in Structural Materials. Abstracts. September 10-12, 2024. Vienna 
House Easy by Wyndham, Pilsen, Cz, Eu, p. 14. 

94. Wang, L., & Yuan, F. G. (2007). Group velocity and characteristic wave 
curves of Lamb waves in composites: Modeling and experiments. 
Composites science and technology, 67(7-8), 1370-1384. 

95. Barouni, A. K., & Saravanos, D. A. (2016). A layerwise semi-analytical 
method for modeling guided wave propagation in laminated and sandwich 
composite strips with induced surface excitation. Aerospace Science and 
Technology, 51, 118-141. 

96. Su, Z., & Ye, L. (2004). Selective generation of Lamb wave modes and their 
propagation characteristics in defective composite laminates. Proceedings 
of the institution of mechanical engineers, Part L: journal of materials: 
design and applications, 218(2), 95-110. 

97. Wang, L., & Yuan, F. G. (2007). Group velocity and characteristic wave 
curves of Lamb waves in composites: Modeling and experiments. 
Composites science and technology, 67(7-8), 1370-1384. 



154 
 

 

98. Barouni, A. K., & Saravanos, D. A. (2017). A layerwise semi-analytical 
method for modeling guided wave propagation in laminated composite 
infinite plates with induced surface excitation. Wave Motion, 68, 56-77. 

99. Yang, C., Ye, L., Su, Z., & Bannister, M. (2006). Some aspects of numerical 
simulation for Lamb wave propagation in composite laminates. Composite 
structures, 75(1-4), 267-275. 

100. Yashiro, S., Takatsubo, J., & Toyama, N. (2007). An NDT technique for 
composite structures using visualized Lamb-wave propagation. Composites 
Science and Technology, 67(15-16), 3202-3208. 

101. Mardanshahi, A., Shokrieh, M. M., & Kazemirad, S. (2022). Simulated 
Lamb wave propagation method for nondestructive monitoring of matrix 
cracking in laminated composites. Structural Health Monitoring, 21(2), 695-
709. 

102. Guo, N., & Cawley, P. (1993). Lamb wave propagation in composite 
laminates and its relationship with acousto-ultrasonics. Ndt&E 
International, 26(2), 75-84. 

103.  Samaratunga, D., & Jha, R. (2012, May). Lamb wave propagation 
simulation in smart composite structures. In SIMULIA Community 
Conference (pp. 1-11). 

104. Weber, R., Hosseini, S. M. H., & Gabbert, U. (2012). Numerical simulation 
of the guided Lamb wave propagation in particle reinforced composites. 
Composite Structures, 94(10), 3064-3071. 

105.  Wang, L., & Yuan, F. G. (2007, April). Lamb wave propagation in 
composite laminates using a higher-order plate theory. In Nondestructive 
Characterization for Composite Materials, Aerospace Engineering, Civil 
Infrastructure, and Homeland Security 2007 (Vol. 6531, pp. 137-148). SPIE. 

106.  Sikdar, S., Fiborek, P., Kudela, P., Banerjee, S., & Ostachowicz, W. (2018). 
Effects of debonding on Lamb wave propagation in a bonded composite 
structure under variable temperature conditions. Smart Materials and 
Structures, 28(1), 015021. 

107. Sherafat, M. H., Quaegebeur, N., Hubert, P., Lessard, L., & Masson, P. 
(2016). Finite element modeling of Lamb wave propagation in composite 
stepped joints. Journal of Reinforced Plastics and Composites, 35(10), 796-
806. 

108.  Deng, P., Saito, O., Okabe, Y., & Soejima, H. (2020). Simplified modeling 
method of impact damage for numerical simulation of Lamb wave 
propagation in quasi-isotropic composite structures. Composite Structures, 
243, 112150. 

109.  Rhee, S. H., Lee, J. K., & Lee, J. J. (2007). The group velocity variation of 
Lamb wave in fiber reinforced composite plate. Ultrasonics, 47(1-4), 55-63. 



155 
 

 

110.  Castaings, M., & Hosten, B. (2003). Guided waves propagating in 
sandwich structures made of anisotropic, viscoelastic, composite materials. 
The Journal of the Acoustical Society of America, 113(5), 2622-2634. 

111.  Agostini, V., Delsanto, P. P., Genesio, I., & Olivero, D. (2003). Simulation 
of Lamb wave propagation for the characterization of complex structures. 
IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 
50(4), 441-448. 

112.  Voß, M., Ilse, D., Hillger, W., Vallée, T., Eppmann, M., de Wit, J., &  
von Dungern, F. (2020). Numerical simulation of the propagation of Lamb 
waves and their interaction with defects in C-FRP laminates for non-
destructive testing. Advanced Composite Materials, 29(5), 423-441. 

113.  Lee, B. C., & Staszewski, W. J. (2007). Lamb wave propagation modelling 
for damage detection: I. Two-dimensional analysis. Smart Materials and 
Structures, 16(2), 249. 

114.  Noiret, D., & Roget, J. (1989). Calculation of wave propagation in 
composite materials using the Lamb wave concept. Journal of composite 
materials, 23(2), 195-206. 

115. Han, J., Kim, C. G., & Kim, J. Y. (2006). The propagation of Lamb waves in 
a laminated composite plate with a variable stepped thickness. Composite 
structures, 76(4), 388-396. 

116.  Liu, H., Liu, S., Chen, X., Lyu, Y., & Liu, Z. (2020). Coupled Lamb waves 
propagation along the direction of non-principal symmetry axes in 
pre-stressed anisotropic composite lamina. Wave Motion, 97, 102591. 

117.  Pant, S. (2014). Lamb wave propagation and material characterization of 
metallic and composite aerospace structures for improved structural health 
monitoring (shm) (Doctoral dissertation, Carleton University). 

118.  Milosavljevic, D., Zmindak, M., Dekys, V., Radakovic, A., & Cukanovic, D. 
(2021). Approximate phase speed of Lamb waves in a composite plate 
reinforced with strong fibres. Journal of Engineering Mathematics, 129, 1-
11. 

119.  Vasudeva, R. Y., & Govinda Rao, P. (1991). Influence of voids in interface 
zones on Lamb wave propagation in composite plates. The Journal of the 
Acoustical Society of America, 89(2), 516-522. 

120.  Collet, M., Ruzzene, M., & Cunefare, K. A. (2011). Generation of Lamb 
waves through surface mounted macro-fiber composite transducers. Smart 
Materials and Structures, 20(2), 025020. 

121.  Lee, B. C., & Staszewski, W. J. (2003). Modelling of Lamb waves for 
damage detection in metallic structures: Part I. Wave propagation. Smart 
materials and structures, 12(5), 804. 

122.  Rosalie, S. C., Vaughan, M., Bremner, A., & Chiu, W. K. (2004). Variation 
in the group velocity of Lamb waves as a tool for the detection of 



156 
 

 

delamination in GLARE aluminium plate-like structures. Composite 
Structures, 66(1-4), 77-86. 

123.  Pysarenko A.N. (2024). Lamb waves in multilayered anisotropic media. 
Міжнародна наукова інтернет-конференція "Інформаційне 
суспільство: технологічні та технічні аспекти становлення". Випуск 88. 
Секція 3. Технічні науки. 14-15 травня 2024. м. Тернопіль, Україна - м. 
Ополе Польща, 136-138. 

124.  Feng, B., Ribeiro, A. L., & Ramos, H. G. (2018). A new method to detect 
delamination in composites using chirp-excited Lamb wave and wavelet 
analysis. NDT & E International, 100, 64-73. 

125. Tan, K. S., Guo, N., Wong, B. S., & Tui, C. G. (1995). Experimental 

evaluation of delaminations in composite plates by the use of Lamb waves. 

Composites science and technology, 53(1), 77-84. 
126. Pant, S., Laliberte, J., Martinez, M., & Rocha, B. (2014). Derivation and 

experimental validation of Lamb wave equations for an n-layered 
anisotropic composite laminate. Composite Structures, 111, 566-579. 

127.  Birchmeier, M., Gsell, D., Juon, M., Brunner, A. J., Paradies, R., & Dual, J. 
(2009). Active fiber composites for the generation of Lamb waves. 
Ultrasonics, 49(1), 73-82. 

128.  Dıáz Valdés, S. H., & Soutis, C. (2002). Real-time nondestructive 
evaluation of fiber composite laminates using low-frequency Lamb waves. 
The Journal of the Acoustical Society of America, 111(5), 2026-2033. 

129.  Okabe, Y., Fujibayashi, K., Shimazaki, M., Soejima, H., & Ogisu, T. (2010). 
Delamination detection in composite laminates using dispersion change 
based on mode conversion of Lamb waves. Smart materials and structures, 
19(11), 115013. 

130. Toyama, N., & Takatsubo, J. (2004). Lamb wave method for quick 
inspection of impact-induced delamination in composite laminates. 
Composites science and technology, 64(9), 1293-1300. 

131. Yelve, N. P., Mitra, M., & Mujumdar, P. M. (2017). Detection of 
delamination in composite laminates using Lamb wave based nonlinear 
method. Composite Structures, 159, 257-266. 

132. Su, Z., & Ye, L. (2004). Lamb wave-based quantitative identification of 
delamination in CF/EP composite structures using artificial neural 
algorithm. Composite Structures, 66(1-4), 627-637. 

133. Watkins, R., & Jha, R. (2012). A modified time reversal method for Lamb 
wave based diagnostics of composite structures. Mechanical Systems and 
Signal Processing, 31, 345-354. 

134. Tian, Z., Yu, L., & Leckey, C. (2015). Delamination detection and 
quantification on laminated composite structures with Lamb waves and 
wavenumber analysis. Journal of Intelligent Material Systems and 
Structures, 26(13), 1723-1738. 



157 
 

 

135. Bar-Cohen, Y., Lih, S. S., & Mal, A. K. (2001). NDE of composites using leaky 
lamb waves (LLW). Nondestructive Testing and Evaluation, 17(2), 91-119. 

136. Xu, C., Yang, Z., Tian, S., & Chen, X. (2019). Lamb wave inspection for 
composite laminates using a combined method of sparse reconstruction 
and delay-and-sum. Composite Structures, 223, 110973. 

137. Tao, C., Ji, H., Qiu, J., Zhang, C., Wang, Z., & Yao, W. (2017). 
Characterization of fatigue damages in composite laminates using Lamb 
wave velocity and prediction of residual life. Composite Structures, 166, 
219-228. 

138. Gao, F., Wang, L., Hua, J., Lin, J., & Mal, A. (2021). Application of Lamb 
wave and its coda waves to disbond detection in an aeronautical 
honeycomb composite sandwich. Mechanical Systems and Signal 
Processing, 146, 107063. 

139. Pierce, S. G., Culshaw, B., Philp, W. R., Lecuyer, F., & Farlow, R. (1997). 
Broadband Lamb wave measurements in aluminium and carbon/glass fibre 
reinforced composite materials using non-contacting laser generation and 
detection. Ultrasonics, 35(2), 105-114. 

140. Yilmaz, C., Topal, S., Ali, H. Q., Tabrizi, I. E., Al-Nadhari, A., Suleman, A., & 
Yildiz, M. (2020). Non-destructive determination of the stiffness matrix of a 
laminated composite structure with lamb wave. Composite Structures, 237, 
111956. 

141. Huang, L., Zeng, L., Lin, J., & Luo, Z. (2018). An improved time reversal 
method for diagnostics of composite plates using Lamb waves. Composite 
Structures, 190, 10-19. 

142. Dayal, V., & Kinra, V. K. (1989). Leaky Lamb waves in an anisotropic plate. 
I: An exact solution and experiments. The Journal of the Acoustical Society 
of America, 85(6), 2268-2276. 

143. Seale, M. D., Smith, B. T., Prosser, W. H., & Zalameda, J. N. (1998). Lamb 
wave assessment of fiber volume fraction in composites. The Journal of the 
Acoustical Society of America, 104(3), 1399-1403. 

144. Singh, R. K., Ramadas, C., Shetty, P. B., & Satyanarayana, K. G. (2017). 
Identification of delamination interface in composite laminates using 
scattering characteristics of lamb wave: numerical and experimental 
studies. Smart Materials and Structures, 26(4), 045017. 

145. Attar, L., Leduc, D., El Kettani, M. E. C., Predoi, M. V., Galy, J., & Pareige, 
P. (2020). Detection of the degraded interface in dissymmetrical glued 
structures using Lamb waves. NDT & E International, 111, 102213. 

146. Cawley, P., & Alleyne, D. (1996). The use of Lamb waves for the long range 
inspection of large structures. Ultrasonics, 34(2-5), 287-290. 

147. Gao, F., Hua, J., Wang, L., Zeng, L., & Lin, J. (2020). Local wavenumber 
method for delamination characterization in composites with sparse 



158 
 

 

representation of Lamb waves. IEEE Transactions on Ultrasonics, 
Ferroelectrics, and Frequency Control, 68(4), 1305-1313. 

148. Ebrahiminejad, A., Mardanshahi, A., & Kazemirad, S. (2022). 
Nondestructive evaluation of coated structures using Lamb wave 
propagation. Applied Acoustics, 185, 108378. 

149. Wandowski, T., Radzienski, M., & Kudela, P. (2024). Lamb wave S0/A0 
mode conversion for imaging the internal structure of composite panel. 
Composite Structures, 118748. 

150. Kang, K. T. Et al. (2011). Quantitative accessibility of delamination in 
composite using lamb wave by experiments and FEA. Advanced Composite 
Materials, 20(4), 361-373. 

151. Attar, L., Leduc, D., El Kettani, M. E. C., Predoi, M. V., Galy, J., & Pareige, 
P. (2020). Detection of the degraded interface in dissymmetrical glued 
structures using Lamb waves. NDT & E International, 111, 102213. 

152. Koh, Y. L., Chiu, W. K., & Rajic, N. (2002). Integrity assessment of 
composite repair patch using propagating Lamb waves. Composite 
structures, 58(3), 363-371. 

153. Liu, Z., Zhong, X., Dong, T., He, C., & Wu, B. (2017). Delamination 
detection in composite plates by synthesizing time‐reversed Lamb waves 
and a modified damage imaging algorithm based on RAPID. Structural 
Control and Health Monitoring, 24(5), e1919. 

154. Petculescu, G., Krishnaswamy, S., & Achenbach, J. D. (2007). Group delay 
measurements using modally selective Lamb wave transducers for 
detectionand sizing of delaminations in composites. Smart Materials and 
Structures, 17(1), 015007. 

155. Yu, L., Xiao, W., Mei, H., & Giurgiutiu, V. (2023). Delamination imaging in 
composites using cross-correlation method by non-contact air-coupled 
Lamb waves. Smart Materials and Structures, 32(10), 105013. 

156. Ryuzono, K., Yashiro, S., Onodera, S., & Toyama, N. (2023). Lamb wave 
mode conversion and multiple-reflection mechanisms for simply and 
reliably evaluating delamination in composite laminates. Advanced 
Composite Materials, 32(5), 749-766. 

157. Liu, Z., Yu, H., Fan, J., Hu, Y., He, C., & Wu, B. (2015). Baseline-free 
delamination inspection in composite plates by synthesizing non-contact 
air-coupled Lamb wave scan method and virtual time reversal algorithm. 
Smart Materials and Structures, 24(4), 045014. 

158. Pysarenko O. (2024). Dispersion of Lamb waves in multilayer structures. 
Mechanics and Mathematical Methods, VI (2), 124‒135.  

159. Alleyne, D. N., & Cawley, P. (1992). The interaction of Lamb waves with 
defects. IEEE transactions on ultrasonics, ferroelectrics, and frequency 
control, 39(3), 381-397. 



159 
 

 

160. Guo, N., & Cawley, P. (1993). The interaction of Lamb waves with 
delaminations in composite laminates. The Journal of the Acoustical Society 
of America, 94(4), 2240-2246. 

161. Munian, R. K., Mahapatra, D. R., & Gopalakrishnan, S. (2018). Lamb wave 
interaction with composite delamination. Composite Structures, 206, 484-
498. 

162. Pant, S., Laliberte, J., Martinez, M., Rocha, B., & Ancrum, D. (2015). Effects 
of composite lamina properties on fundamental Lamb wave mode 
dispersion characteristics. Composite Structures, 124, 236-252. 

163. Baid, H., Schaal, C., Samajder, H., & Mal, A. (2015). Dispersion of Lamb 
waves in a honeycomb composite sandwich panel. Ultrasonics, 56, 409-
416. 

164. Ng, C. T., Veidt, M., Rose, L. F., & Wang, C. H. (2012). Analytical and finite 
element prediction of Lamb wave scattering at delaminations in quasi-
isotropic composite laminates. Journal of Sound and Vibration, 331(22), 
4870-4883. 

165. Ramadas, C., Balasubramaniam, K., Joshi, M., & Krishnamurthy, C. V. 
(2010). Interaction of guided Lamb waves with an asymmetrically located 
delamination in a laminated composite plate. Smart Materials and 
Structures, 19(6), 065009. 

166. Ng, C. T., & Veidt, M. (2011). Scattering of the fundamental anti-
symmetric Lamb wave at delaminations in composite laminates. The 
Journal of the Acoustical Society of America, 129(3), 1288-1296. 

167. Pudipeddi, G. T., Ng, C. T., & Kotousov, A. (2019). Mode conversion and 
scattering of Lamb waves at delaminations in composite laminates. Journal 
of Aerospace Engineering, 32(5), 04019067. 

168. Ramadas, C., Balasubramaniam, K., Hood, A., Joshi, M., & Krishnamurthy, 
C. V. (2011). Modelling of attenuation of Lamb waves using Rayleigh 
damping: Numerical and experimental studies. Composite Structures, 
93(8), 2020-2025. 

169. Patra, S., Ahmed, H., Saadatzi, M., & Banerjee, S. (2019). Evidence of 
dissipative and growing nonlinearity in Lamb waves due to stress-relaxation 
and material degradation in composites. Ultrasonics, 96, 224-231. 

170.  Soleimanpour, R., & Ng, C. T. (2022). Scattering analysis of nonlinear 
Lamb waves at delaminations in composite laminates. Journal of Vibration 
and Control, 28(11-12), 1311-1323. 

171. Devillers, D., Taillade, F., Osmont, D., Balageas, D., & Royer, D. (2002). 
Interaction of Lamb waves with defects in composite sandwich structures. 
OFFICE NATIONAL D ETUDES ET DE RECHERCHES AEROSPATIALES ONERA-
PUBLICATIONS-TP, (172). 



160 
 

 

172. Draudviliene, L., Aider, H. A., Tumsys, O., & Mazeika, L. (2018). The Lamb 
waves phase velocity dispersion evaluation using an hybrid measurement 
technique. Composite Structures, 184, 1156-1164. 

173. Ono, K., & Gallego, A. (2012). Attenuation of Lamb Waves in CFRP Plates. 
Journal of Acoustic emission, 30. 

174. Chiu, W. K., Rose, L. F., & Nadarajah, N. (2017). Scattering of the 
fundamental anti-symmetric Lamb wave by a mid-plane edge delamination 
in a fiber-composite laminate. Procedia Engineering, 188, 317-324. 

175. Duflo, H., Morvan, B., & Izbicki, J. L. (2007). Interaction of Lamb waves on 
bonded composite plates with defects. Composite structures, 79(2), 229-
233. 

176. Ramadas, C. (2014). Three-dimensional modeling of Lamb wave 
attenuation due to material and geometry in composite laminates. Journal 
of Reinforced Plastics and Composites, 33(9), 824-835. 

177. Veidt, M., & Ng, C. T. (2011). Influence of stacking sequence on scattering 
characteristics of the fundamental anti-symmetric Lamb wave at through 
holes in composite laminates. The Journal of the Acoustical Society of 
America, 129(3), 1280-1287. 

178. Park, H. W., Sohn, H., Law, K. H., & Farrar, C. R. (2007). Time reversal 
active sensing for health monitoring of a composite plate. Journal of Sound 
and Vibration, 302(1-2), 50-66. 

179. Philibert, M., Yao, K., Gresil, M., & Soutis, C. (2022). Lamb waves-based 
technologies for structural health monitoring of composite structures for 
aircraft applications. European Journal of Materials, 2(1), 436-474. 

180. Carboni, M., Gianneo, A., & Giglio, M. (2015). A Lamb waves based 
statistical approach to structural health monitoring of carbon fibre 
reinforced polymer composites. Ultrasonics, 60, 51-64. 

181. Diaz Valdes, S. H., & Soutis, C. (2000). Health monitoring of composites 
using Lamb waves generated by piezoelectric devices. Plastics, Rubber and 
Composites, 29(9), 475-481. 

182. Cardoni, M., Gianneo, A., & Giglio, M. (2014). A low frequency lamb-
waves based structural health monitoring of an aeronautical carbon fiber 
reinforced polymer composite. Journal of Acoustic Emission, 32, 1. 

183. Balasubramaniam, K. (2014). Lamb-wave-based structural health 
monitoring technique for inaccessible regions in complex composite 
structures. Structural Control & Health Monitoring, 21(5). 

184. Gorgin, R., Luo, Y., & Wu, Z. (2020). Environmental and operational 
conditions effects on Lamb wave based structural health monitoring 
systems: A review. Ultrasonics, 105, 106114. 

185. Rajagopalan, J., Balasubramaniam, K., & Krishnamurthy, C. V. (2006). 
A phase reconstruction algorithm for Lamb wave based structural health 



161 
 

 

monitoring of anisotropic multilayered composite plates. The Journal of the 
Acoustical Society of America, 119(2), 872-878. 

186. Zeng, L., Lin, J., & Huang, L. (2017). A modified Lamb wave time-reversal 
method for health monitoring of composite structures. Sensors, 17(5), 955. 

187. Yang, B., Xuan, F. Z., Xiang, Y., Li, D., Zhu, W., Tang, X., ... & Luo, C. (2017). 
Lamb wave-based structural health monitoring on composite bolted joints 
under tensile load. Materials, 10(6), 652. 

188. Gangadharan, R., Murthy, C. R. L., Gopalakrishnan, S., & Bhat, M. R. 
(2011). Time Reversal Health Monitoring of Composite Plates using Lamb 
waves. International Journal of Aerospace Innovations, 3(3). 

189. Sekhar, B. S., Balasubramaniam, K., & Krishnamurthy, C. V. (2006). 
Structural health monitoring of fiber-reinforced composite plates for low-
velocity impact damage using ultrasonic Lamb wave tomography. 
Structural Health Monitoring, 5(3), 243-253. 

190. Schubert, K. J., Brauner, C., & Herrmann, A. S. (2014). Non-damage-
related influences on Lamb wave–based structural health monitoring of 
carbon fiber–reinforced plastic structures. Structural Health Monitoring, 
13(2), 158-176. 

191. Zhao, J., Ji, H., & Qiu, J. (2014). Modeling of Lamb waves in composites 
using new third-order plate theories. Smart materials and structures, 23(4), 
045017. 

192.  Zhao, J., Qiu, J., Ji, H., & Hu, N. (2013). Four vectors of Lamb waves in 
composites: Semianalysis and numerical simulation. Journal of Intelligent 
Material Systems and Structures, 24(16), 1985-1994. 

193. Moulin, E., Assaad, J., Delebarre, C., & Osmont, D. (2000). Modeling of 
Lamb waves generated by integrated transducers in composite plates using 
a coupled finite element–normal modes expansion method. The Journal of 
the Acoustical Society of America, 107(1), 87-94. 

194. Pysarenko A.N. Application of wavelet transforms for inhomogeneous 
structures. Monograph. Odesa. 2024, 134 p. 

195. Veidt, M., Liu, T., & Kitipornchai, S. (2002). Modelling of Lamb waves in 
composite laminated plates excited by interdigital transducers. Ndt&E 
International, 35(7), 437-447. 

196. Hong, M., Mao, Z., Todd, M. D., & Su, Z. (2017). Uncertainty quantification 
for acoustic nonlinearity parameter in Lamb wave-based prediction of 
barely visible impact damage in composites. Mechanical Systems and Signal 
Processing, 82, 448-460. 

197. Kulkarni, G., & Mitra, M. (2012). Simulation of time reversibility of Lamb 
wave in symmetric composite laminate. International journal of mechanical 
sciences, 54(1), 277-286. 



162 
 

 

198. Schmidt, D., Sinapius, M., & Wierach, P. (2013). Design of mode selective 
actuators for Lamb wave excitation in composite plates. CEAS Aeronautical 
Journal, 4, 105-112. 

199. Xu, C., Yang, Z., Zuo, H., & Deng, M. (2021). Minimum variance Lamb wave 
imaging based on weighted sparse decomposition coefficients in quasi-
isotropic composite laminates. Composite Structures, 275, 114432. 

200. Willberg, C., Koch, S., Mook, G., Pohl, J., & Gabbert, U. (2012). Continuous 
mode conversion of Lamb waves in CFRP plates. Smart Materials and 
Structures, 21(7), 075022. 

201. Mahfoud, E., & Harb, M. (2023). Numerical lamb wave modeling and 
analysis for cure cycle shortening of carbon fiber composites. Journal of 
Composite Materials, 57(9), 1683-1703. 

202. Lin, C. M., Chen, Y. Y., & Pisano, A. P. (2010). Theoretical investigation of 
Lamb wave characteristics in AlN/3C–SiC composite membranes. Applied 
Physics Letters, 97(19): 193506 - 193506-3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



163 
 

 

 
INDEX 
 

A displacement field, 30 
antisymmetric wave, 6 displacement vector, 11 

A0 mode, 5 Doppler vibrometer, 8 
A1 mode, 17 double Fourier transform, 73 

A2 mode, 18 E 

acoustic excitation, 5 elastic property, 5 
actuator, 75 elastic wave, 5 

angle, 8 elasticity theory, 6 
angular frequency, 6 electric displacement, 74 

anisotropic layer, 11 energy intensity, 32 
anisotropic material, 5 excitation region, 8 

attenuation, 21 extended strain vector, 68 

B extended stress vector, 68 
Born approximation, 114 F 

boundary condition, 5 Fast Fourier Transform, 88 
C Fermat's principle, 51 

Cartesian coordinates, 34 fiber-reinforced composite, 41 

Cartesian tensor notation, 36 finite difference method, 11 
Cauchy residue theorem, 72 Flugge shell theory, 55 

central frequency, 11 Fourier domain, 143 
composite, 5 Fourier spectrum, 88 

continuous wavelet-transform, 33 Fourier transform, 11 
crack density, 45 frequency domain excitation, 50 

cumulative effect, 17 G 

D Gaussian distribution function, 53 
damage detection, 29 glass transition temperature, 23 

deformation, 11 Green’s matrix, 11 
degrees of freedom, 130 group delay method, 21 

dehydration, 24 group velocity, 5 

delamination, 15 guided wave mode, 21 
density, 7 H 

dimensionless frequency, 14 half-space, 8 
dimensionless velocity, 14 Hamilton's principle, 140 

Dirac delta-function, 72 harmonic wave, 21 
direction, 5 hidden characteristics, 33 

dispersion curve, 14 homogeneity, 5 

dispersion pattern, 8 humidity, 24 
dispersion, 5 Huncel function, 115 



164 
 

 

hydrolysis, 23 partial reflection, 8 

hydrothermal aging, 23 phase matching method, 16 

I phase velocity, 7 
immersion technique, 24 piezoelectric sensor, 5 

impedance matrix, 24 Poisson ratio, 36 
incident angle, 17 R 

incident wave, 8 refraction, 8 
interaction, 6 reinforced composite, 5 

isotropy, 5 rotation matrix, 12 

L S 
Lamb pulse echo, 21 S0 mode, 15 

Lamb wave leakage, 39 S1 mode, 17 
Lamb wave propagation, 38 S2 mode, 17 

Lamb wave, 5 scalogram, 33 

Lame’ constant, 30 scattering wave, 8 
laminated composite, 5 SH0 mode, 15 

layered media, 11 shear lag parameter, 45 
longitudinal mode, 30 shear modulus, 36 

longitudinal velocity, 6 shear wave, 8 
longitudinal wave, 8 signal-to-noise ratio, 17 

M Snell's law, 5 

magnitude, 7 speed of sound, 8 
mechanical stress, 12 standing wave, 6 

Michelson interferometer, 32 stiffness matrix, 6 
Mindlin plate theory, 113 stiffness tensor, 12 

mode, 5 strain, 6 

moisture distribution, 5 stress transformation matrix, 81 
monoclinic plate, 56 structural health monitoring, 54 

Morlet wavelet, 11 surface, 5 
mother wavelet, 11 symmetric wave, 6 

motion, 6 T 
multilayer composite, 6 temperature field, 5 

N tensile wave, 55 

Navier displacement equation, 39 thermal cycling, 15 
non-viscous liquid, 8 thermal fatigue, 15 

normalized amplitude, 23 thermal stress, 15 
O time-harmonic wave, 6 

ordinary derivative, 13 time-reversal approach, 35 
orthogonal function, 33 transducer, 8 

P transit time, 34 

partial derivative, 14 transverse matrix, 15 



165 
 

 

transverse velocity, 6 wave front, 11 

transverse wave, 23 wave packet, 12 

U wave spectroscopy, 16 
ultrasonic pressure, 8 wave vector, 7 

ultrasonic wave, 5 wavelet transform, 11 
upper surface, 12 wavelet, 5 

V wavenumber, 5 
vacuum, 5 wedge, 17 

viscoelastic module, 25 Y 

W Young’s modulus, 37 
water absorption, 23  

 



 
 

 

Наукове видання 
Scientific publication 

 
 

Писаренко О.М. 
Pysarenko O.M. 

 
 

LAMB WAVE-BASED TECHNIQUES  
FOR NONDESTRUCTIVE MONITORING I 

N LAYERED COMPOSITES 
 

Монографія 
Monograph 

 
(англійською мовою) 

(in English) 
 
 

Signed for printing on 04/24/2025 

Format 6084/16 Offca paper Times Font  
Digital printing. Conditiona printing sheets 9.65. 

Circulation 50 copies. Order No. 25-3 
 

Publisher and manufacturer: 
Odesa State Academy of Civil Engineering and Architecture  

Certificate No. 4515 dated 04/01/2013 
Ukraine, 65029, Odesa, 4, Didrikhson St. 

tel.: (048) 729-85-34, e-mail: rio@odaba.edu.ua 
______________________________________________________________ 

Printed in the authors edition from a ready-made original layout 
In the editorial and publishing department of OSACEA 

 
 

Підписано до друку 24.04.2025 р. 

Формат 6084/16 Папір офісний Гарнітура Times 
Цифровий друк. Ум. -друк. арк.9,65 

Наклад 50 прим. Зам. № 25-3 
 

Видавець і виготовлювач: 
Одеська держвана академія будівництва та архітектури  

Свідоцтво ДК № 4515 від 01.04.2023 р. 
Україна, 65029б м. Одеса, вул Дідрихсона, 4 

Тел.: (048) 729-85-34, e-mail: rio@odaba.edu.ua 

 
_______________________________________________________________ 

Надруковано в авторській редакції з готового орігінал-макету 
В редакційно-видавничому відділі ОДАБА 

mailto:rio@odaba.edu.ua

