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PREFACE 

 

Study guide “Physics course. Electromagnetism, optics and quantum physics" is 

intended for students of higher educational institutions of specialty #192 

"Construction and Civil Engineering". This study guide aims to provide an up-to-date 

and comprehensive coverage of the core curriculum in physics specified in the 

current Odessa State Academy of Civil Engineering and Architecture syllabus. 

The guide covers topics related to electricity, magnetism, optics, heat radiation 

and quantum physics. It builds from concrete experiments to more abstract 

understanding. Elements of the study guide include the following: 

 fundamental concepts of physics 

 test questions 

 problem-solving examples 

 problems 

 appendices. 

The problem-solving examples at the end of each chapter are provided to clarify 

concepts and to guide students in the analytical approach to the solutions of 

problems. In order to unify conceptual, analytical and calculation skills within the 

learning process, the International System of Units is used in study guide.  

Most of the chapters are relatively independent, but some necessary background is 

established in certain key chapters. Chapter 7 provides an introduction to the 

quantitative law of electromagnetic induction. The generalized form of this law is 

included in the Maxwell’s equations presented in Chapter 8. Chapter 10 and Chapter 

11 introduce the idea of secondary waves interaction (Huygens-Fresnel principle). 

By the end of study guide “Physics course. Electromagnetism, optics and quantum 

physics" students will be able to: 

 apply principles and concepts of physics to explain various phenomena 

 construct models and simulations to describe and explain natural phenomena 

 use mathematics as a precise method for showing relationships 

 solve problems by applying physics principles and laws 

 select and use appropriate technological instruments to collect data, 

 analyze data, check it for accuracy and construct reasonable conclusions 

 use precise scientific language in oral and written communication. 

Physics is the science that studies the simplest and, at the same time, the most 

general patterns of natural phenomena, the properties and structure of matter.  

The most simple forms of matter motion (mechanical, thermal, electromagnetic) 

are part of more complex movements (chemical and biological).  

Physics has common objects and research methods with other natural sciences, as 

a result of which the following areas of knowledge have emerged: physical 

chemistry, chemical physics, chemical thermodynamics, astrophysics, biophysics, 

geophysics.  

 Mathematics is the basis of modern physics. The mathematical apparatus is 

widely used in the processing and generalization of experimental results. The 

electromagnetic field theory, statistical theory, thermodynamics, the theory of 
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relativity, as well as quantum mechanics could not be developed without 

mathematics.  

 Physics is the basis of modern scientific and technological progress. The 

successful development of such areas of technology as: mechanical transport, 

electrical engineering, electronics, heat engineering, automation and remote control, 

construction equipment, modern technology, semiconductor and computing 

technology is strongly dependent on knowledge of physical laws and phenomena.  

 Physics is of great importance in the development of all areas of the economy. 

This fact determines the place of the physics course in the curriculums of higher 

education, especially in the curriculums of higher technical educational institutions. 

Acquaintance with the main physical phenomena, their mechanisms, laws and 

practical application can be postulated as the goal of studying physics. Achieving this 

goal is the physical basis for the study of general technical and special disciplines. 

Proper understandings of the nature of physical phenomena are particularly important 

in the practice of engineering.  

 Course of general physics refers to the experimental knowledge, and one of its 

main tasks is to represent knowledge as a result of observation, experiment, reflection 

and generalization of the experience. Therefore, in general, the course statement must 

be inductive. However, this does not preclude the use of the deductive method of 

presentation.  

 The model nature of physical theories, various methods for determining 

physical quantities and concepts, features of measuring physical quantities, the 

correct choice of units of measurement and systems of units occupy a significant 

place in this study guide. 

 It is well known that theoretical knowledge is useless without the ability to use 

it to solve practical problems. Therefore, the acquisition of problem solving skills is 

an integral part of studying the course of general physics. Currently, there are a 

sufficient number of collections of physical problems, but, unfortunately, there are 

practically no manuals intended for training in methods of solving problems. The 

material located at the end of each chapter of study guide is intended to remove the 

indicated disadvantage. This material is divided into three blocks. The first block 

contains test questions on the theoretical information that is present in the chapter. 

Examples of solving typical problems are included in the second block. The third 

block contains a number of problems for independent solution. These tasks are 

accompanied only by short answers. It is worth noting that in the theoretical part, the 

descriptions of experiments and in the methods of solving problems, the SI system is 

mainly used, which is convenient from a practical point of view. 

 The appendices placed at the end of the textbook are, on the one hand, an 

illustrative addition to the laws and phenomena that are described in the physics 

course, and on the other hand, have a reference character necessary for successful 

problem solving. 
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CHAPTER 1. ELECTRIC FIELD IN VACUUM 

1.1. Coulomb Law 

 

Electrostatics is a section of electricity that studies the interaction and 

properties of electric charge systems, which are fixed relative to their chosen 

reference frame. Two types of electric charges, in particular positive and negative 

charges, exist in nature. French physicist Charles François de Cisternay du Fay  (1698 

– 1739) established the existence of two types of electricity: glass and resin, which 

were manifested when rubbing glass about silk and resin on the wool. A positive 

charge, for example, appears on glass rubbing the skin, and a negative charge appears 

on amber, rubbed with wool. Two objects that carry the same type of charge repel 

each other, and two objects that carry opposite charges attract each other. 

Experiments carried out by American physicist Robert Andrews Milliken (1868 – 

1953). He showed that the electric charge of any body consists of an entire number of 

elementary charges equal to 1.6010–19 C. The smallest particle with a negative 

elemental charge is called the electron. The electron mass is 9.1110–31 kg. The 

smallest stable part having a positive elemental charge is called the proton. Proton 

mass is 1.6710–27 kg. Protons and electrons are the part of all atoms and molecules.  

The assignment of bodies to the category of conductors, dielectrics, and 

semiconductors depends on the concentration of free charges in these bodies. Bodies 

in which the electric charge can move freely throughout its volume are called 

conductors. Conductors can be divided into two groups: 1) conductors of the first 

kind (metals), i.e. conductors in which the transfer of charges (free electrons) is not 

accompanied by chemical transformations; 2) conductors of the second kind (for 

example, molten salts, solutions of acids), i.e. conductors, in which the transfer of 

charges (positive and negative ions, electrons) leads to chemical changes. Bodies in 

which there are no free charges (e.g. glass, plastics) are called dielectrics. 

Semiconductors (e.g. germanium, silicon, selenium, tellurium, a large number of non-

limiting substances, etc.) occupy an intermediate position between conductors and 

dielectrics. This classification of bodies is not absolute, since the ability of bodies to 

conduct electricity depends on conditions (for example, temperature, concentration of 

impurities, the presence of different types of radiation) in which they are located.  

Charge conservation is one of the fundamental laws of nature: the algebraic 

sum of electrical charges of bodies or particles forming an electrically isolated system 

does not change with any processes occurring in this system. 

The basic law of electric charges interaction (Coulomb’s law) was found by 

French physicist Charles-Augustin de Coulomb (1736 – 1806) as a result of 

measuring the force of charged balls interaction with the help of torsion weights. S. 

Coulomb found that the interaction strength F  between small charged balls is 

inversely proportional to the square of the distance between them r  and depends on 

the size of their charges  1q  and  2q  (namely, directly proportional to the product of 

charges): 
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2
21

1
r

qq
kF  ,                                                (1.1) 

 

where 1k  is the proportionality factor ( 01 k ). 

Electric forces acting on the charges are central, that is, these forces are 

directed along one line that connects the charges. For charges of same sign, the 

inequality 021 qq  is performed, therefore, the force  12FF


   (Figure 1.1, a) 

corresponds to the case of mutual repulsion of charges, and the force 21FF


  (Figure 

1.1, b) corresponds to the case of mutual attraction of charges with different signs. 

Coulomb's law can be written in vector form. The repulsive force 12F


 between 

charges is equal to 

r

r

r

qq
kF 12

2
21

112


 ,                                           (1.2) 

 

where 12r


 is a radius vector that connects charges 1q  and 2q , and rr 12


. 

 

 

The attractive force 21F


 between charges 1q  and 2q  is  

 

r

r

r

qq
kF 21

2
21

121


 ,                                            (1.3) 

 

where 1221r r


   is a radius vector that connects charges 2q  and 1q . 

 The Coulomb’s law is valid only for the interaction of point electric charges, 

that is, charged bodies whose linear dimensions can be neglected in comparison with 

the distance between them. In addition, the Coulomb's law expresses the power of 

interaction between fixed charges, that is, this law has electrostatic character (the 

force of interaction between two moving point charges is different from Coulomb's 

force). The Coulomb's law in the given mathematical form is also valid for the 

interaction of non-intersecting charged bodies of a globular shape under the condition 

of uniform distribution of charges in volume or on the surface of bodies.  

Further experimental studies have shown that the force F  and coefficient 1k  in 

the Coulomb's law depend on the properties of the medium, namely 

12F


 12r


 

01 q  02 q  

21F


 21r


 

01 q  02 q  

Figure 1.1, a. Repulsive force 

between like-charged objects.  

 

Figure 1.1, b. Attractive force 

between opposite charged object. 
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/1 kk   ,                                             (1.4) 

 

where k  is the coefficient, which depends only on the choice of system units; 

            is the dimensionless quantity characterizing the electrical properties of the 

medium, which does not depend on the choice of the system of units and is 

called the relative permittivity of the medium ( 1  for vacuum).  

So, the Coulomb's law can be rewritten in form  

 

2
21

r

qq
kF


 .                                                (1.5) 

 

Formulas that include the value of  , in contrast to the formula that expresses 

the Coulomb's law for vacuum, are not universal. These formulas are correct if the 

point charges 1q  and 2q  are in a homogeneous, infinite and isotropic gaseous or 

liquid dielectric. Charges in solid dielectrics are always located inside some cavities 

and the calculation of forces acting on charges is greatly complicated, in particular, 

for various shapes of cavities. The coefficient k  in the formula of the Coulomb’s law 

in the system of units SI is  

 

04/1 k .                                            (1.6) 

 

The value 0  is called the electric constant ( 0 8.8510–12 C2/ (Nm2)). 

Coulomb's law in the case of using the system of units SI can be written as 

 

2
21

04

1

r

qq
F


 .                                       (1.7) 

 

This form of Coulomb's law and all the laws of electrostatics arising from it, 

commonly used in electrical and radio engineering, is called the rationalized system. 

1.2. Electrostatic Field Intensity 

 

The placement of the electric charge 2Q  in the space that surrounds the charge 

1Q  leads to the appearance of a Coulomb’s force acting on the charge 2Q . It follows 

that there is a force field in the space surrounding the electric charges. According to 

the ideas of modern physics, the field really exists and, along with matter, is one of 

the forms of matter through which certain interactions are realized between 

macroscopic bodies or particles that make up the substance. In this case, we mean an 

electric field through which electric charges interact. We will consider electric fields, 

which are created by stationary electric charges and are called electrostatic fields. 

Detection and experimental investigation of the electrostatic field is carried out 

using a test charge, i.e. such a charge, which does not distort the field under 

investigation (does not cause a redistribution of the charges creating the field). The 
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placement of the test charge 
0Q  in the field of charge Q  results in a force F  that 

acts on the charge 
0Q  and is different at different points in the electrostatic field. This 

force, according to the Coulomb’s law, is proportional to the test charge 
0Q . 

Therefore, the ratio 0/ QF  does not depend on 
0Q  and characterizes the electric field 

at the point where the test charge is located. This quantity is called the electric field 

intensity and is the electrostatic field power characteristic. 

The electric field intensity at a given point is a physical quantity determined by 

the force acting on a unit positive charge placed at this point   

 

0/ QFE  .                                               (1.8) 

 

The electric field intensity of a point charge located in a vacuum is 

 

r

r

r

Q
E


2

04

1


 .                                            (1.9) 

 

or in the scalar form  

2
04

1

r

Q
E


 .                                            (1.10) 

  

 

 

 

 

 

 

 

 

 

The direction of the vector E


 coincides with the direction of the force acting 

on the positive charge. If the field is created by a positive charge, the vector E


 is 

directed along the radius vector from the charge to the outer space (repulsion of the 

test positive charge); if the field is created by a negative charge, then the vector E


 is 

directed to the charge (Figure 1.2).  

Graphically, the electrostatic field is represented by field lines. The lines 

tangent to which at each point coincide with the direction of the vector are called 

electric field lines. The field lines are assigned a direction that coincides with the 

direction of the vector E


.  

 

  
A  

A  

E


 

E


 

Q  

Q  

 

Figure 1.2. Electric field of point charges. 
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Since at each given point in space the vector of electric field intensity has only 

one direction, the field lines never intersect. Field lines are parallel to the vector E


 

for the homogeneous field (when the electric field intensity vector at any point is 

constant in magnitude and direction). Field lines coincide with radial lines that leave 

the charge if the field is created by a positive point charge. Field lines coincide with 

radial lines entering the charge if the field is created by a negative point charge.  

The graphical method describing electric field is widely used in electrical 

engineering. Field lines are drawn with a certain density (Figure 1.3) in order to 

characterize not only the direction, but also the magnitude of the electrostatic field 

intensity [7].  

The number of force lines that permeate a unit of surface area perpendicular to 

the lines of electric field intensity should be equal to the of vector E


 magnitude. The 

number of field lines penetrating the elementary area dS , the normal n


 of which 

forms an angle   with the vector E


, is  

 

dSEEdS ncos ,                                       (1.11) 

 

where nE  is the projection of the vector E


 onto the normal n


 to the area dS  (Figure 

1.4).  

 

 

 

 

 

 

 

 

 

 

 

 

1 

2  

1E


 

2E


 

 

Figure 1.3. Module and direction of vector E in a 

non-uniform electric field. 

 

dS  E


 

  
n


 
nE  

 

Figure 1.4. The flux of the electric field intensity vector. 
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The quantity  

SdEdSEdФ nE


                                   (1.12) 

 

is called the electric flux through area dS  where ndSSd


  is a vector whose 

magnitude is dS , and the direction coincides with the direction of the normal n


 to 

the area. Choice of the direction of the vector n


 (and therefore, Sd


) is conditional, 

since it can be directed to either side. The electric flux is an algebraic quantity, 

because the sign of the flux depends not only on the configuration of the field E


, but 

also on the choice of the direction n


. The positive direction of the normal for closed 

surfaces coincides with the direction of the outer normal.  

1.3. Superposition of Electrostatic Fields. Dipole Field 

 

Let us consider a method for determining the value and direction of the electric 

field intensity vector E


 at each point of the electrostatic field produced by a system 

of stationary charges nQQQ ,..., 21 . 

As a result of numerous experiments, it was found that the principle of the 

independence of the action of forces, which was considered in mechanics, is 

applicable to Coulomb’s forces. The net force F


 acting on the test charge 0Q  is 

equal to the vector sum of the forces 
iF


 applied to it from the side of each of the 

charges iQ : 






n

i

iFF

1


.                                            (1.13) 

 

The following relationships are valid 

 

EQF


0 ,                                              (1.14) 

and  

ii EQF


0 ,                                             (1.15) 

 

where E


 is the intensity of the resulting field, and iE


 is the field intensity created by 

the charge iQ . Substituting the last expressions into the formula 

 






n

i

iFF

1


                                            (1.16) 

 we get  






n

i

iEE

1


.                                           (1.17) 
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The last formula expresses the superposition principle of electrostatic fields, 

according to which the intensity of the resultant field created by the system of 

charges is equal to the geometric sum of the field intensities created at a given point 

by each of the charges separately.  

The superposition principle allows us to calculate the electrostatic fields of any 

fixed-charge system, since if charges are not point charges, then they can always be 

reduced to a set of point charges.  

The superposition principle is applicable for calculating the electrostatic field 

of an electric dipole. Consider a system of two point charges whose modules are 

equal, and the signs are opposite, ( Q , Q ). Let the distance l  between these 

charges be much less than the distance between charges and considered points of the 

field. A system of such charges is called an electric dipole.  

 

 

 

 

 

 

 

 

Vector directed along the axis of the dipole (the straight line passing through 

both charges) from the negative charge to the positive one and equal to the distance 

between them is called the displacement vector l


. 

Vector  

lQp


 ,                                                 (1.18) 

 

coinciding with the displacement vector and equal to the product of the charge Q  on 

the displacement vector l


, is called the electric dipole moment (Figure 1.5).  

According to the principle of superposition, the intensity E


 of the electric field 

of a dipole at an arbitrary point is equal to  

 

  EEE


,                                         (1.19) 

 

where E


 and E


 are the intensities of the electric fields produced by the positive 

and negative charges, respectively. 

1.4. Gauss's Theorem for the Electrostatic Field in Vacuum 

 

The calculation of the electric field strength of a system of electric charges 

using the principle of superposition of electrostatic fields can be considerably 

simplified using the theorem derived by German mathematician and physicist Johann 

Carl Friederich Gauss (1777 – 1855), which determines the electric flux through an 

 

Q  Q  
l


 p


 

 

Figure 1.5. Electric dipole. 
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arbitrary closed surface. The electric flux through a spherical surface of radius r  

enclosing the point charge Q , located in the centre of the sphere, is equal to 

 

.
4 0

2
0

 

S

nE

Q

r

Q
dSEФ


                             (1.20) 

 

This result is valid for a closed surface of any form. If we surround the sphere 

with an arbitrary closed surface, then each field line penetrating the sphere will pass 

through this surface. Suppose that a closed surface of an arbitrary shape covers a 

charge.  

In this case, when any selected field line is crossed with the surface, it first 

enters the surface, and then exits it. An odd number of intersections in the calculation 

of the flux eventually reduces to a single intersection, since the flux is assumed to be 

positive if the field lines exit the surface, and negative for the lines entering the 

surface. For the case when the closed surface does not cover the charge, the flux 

through it is zero, since the number of field lines entering the surface is equal to the 

number of field lines emerging from it. 

Thus, for a surface of any form, if it is closed and encloses a point charge Q , 

the flux of the vector E


 will be equal 
0

Q
, i.e.  

 

  

S S

nE

Q
dSESdEФ

0


.                                  (1.21) 

 

The sign of the flux coincides with the sign of charge Q . Let us consider the 

general case of an arbitrary surface surrounding n  charges. In accordance with the 

superposition principle, the intensity E


 of the electric field created by all charges is 

equal to the sum of the intensities iE


 of the electric fields created by each charge 

separately  


i

iEE


.                                            (1.22) 

Therefore  

   















i S

i

S S i

iE SdESdESdEФ


.                  (1.23) 

 

Each of the integrals in the sum is 0/iQ .  

Consequently   

 




n

i

i

S S

n QdSESdE

10

1




.                             (1.24) 
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The last formula expresses the Gauss’s theorem for an electrostatic field in a 

vacuum: the electric flux in vacuum through an arbitrary closed surface is equal to 

the algebraic sum of the charges contained inside this surface divided by 0 .  

Electric charges can be distributed with a certain volume density  

 

dV

dQ
 ,                                            (1.25) 

 

which varies in different places of space. The total charge enclosed within a volume 

V  with side surface S  is  

 
i V

i dVQ  .                                     (1.26) 

 

The Gauss’s theorem can be written as follows  

 

  

VS S

n dVdSESdE 
0

1
.                           (1.27) 

1.5. Gauss’s Theorem Applications 

 

The electric field of a uniformly charged infinite plane. Consider the case of 

the infinite plane (Figure 1.6) charged with a constant surface charge density   

( dSdQ /  is the charge distributed per unit surface). Field lines are perpendicular 

to this plane and are directed away from it in both directions. We construct a cylinder 

whose bases are parallel to the charged plane, and the axis is perpendicular to it. 

Generating lines of this cylinder are parallel to the electric field intensity lines 

( 0cos  ), therefore the electric flux through the cylinder's side surface is zero, and 

the total flux through the cylinder is equal to the sum of the fluxes through its bases 

(the base areas are equal and for base nE  coincides with E ), i.e.  is equal to ES2 . 

The charge enclosed inside the constructed cylindrical surface is S .  

According to the Gauss’s theorem we get 

 

0/2 SES  .                                        (1.28) 

 

Hence 

 02/ E .                                        (1.29) 

 

Consequently, the intensity E  does not depend on the length of the cylinder, 

that is, the electric field intensity at any distance is the same in magnitude. The 

electric field of a uniformly charged plane is homogeneous.  

The electric field of two infinite parallel planes, with charges of opposite signs. 

Consider the case when charges with opposite signs are uniformly distributed on two 

parallel planes. The surface charge densities are  , and  . The electric field of 
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such planes can be found as a superposition of electric fields created by each of the 

planes separately. The electric field intensities of left and right planes are subtracted 

(field lines are directed towards each other), therefore the net electric field intensity is 

0E . Electric field intensity between the planes is 

 

  EEE                                          (1.30) 

and the net electric field intensity is  

0/E .                                           (1.31) 

 

Thus, the net electric field intensity in the region between the planes is described by 

the formula 0/E , and outside the volume bounded by the planes is zero. 

The electric field of a uniformly charged spherical surface. Let us consider a 

spherical surface with a radius of R . The charge Q  with a surface density of   is 

uniformly distributed on this surface. Uniform charge distribution on the surface 

causes the appearance of a spherically symmetric electric field. Therefore, the field 

lines are directed along the radius. We construct a sphere of radius r  with a centre in 

the charged sphere. Consider the case Rr  , then the whole charge Q  that generates 

the electric field is located on the surface. According to the Gauss’s theorem, we get  

 

0
2 /4  QEr  ,                                          (1.32) 

then 

2
04

1

r

Q
E


 ,  Rr  .                                    (1.33) 

 

The electric field decreases with distance r  ( Rr  ) according to the same law 

as for a point charge. For the case of small distances Rr ' , the closed surface does 

not contain any charges inside, so there is no electrostatic field inside the uniformly 

charged spherical surface ( 0E ). 

The electric field of a volume-charged sphere. Consider the case of a sphere 

with radius R . Sphere contains a charge  Q  which uniformly distributed over its 

volume. The volume density of the charge is dVdQ / . The electric field intensity 

outside the sphere depends on the distance to the same law as the electric field 

intensity of a charged spherical surface. 

The sphere of radius Rr '  covers the charge  

 

 33/4 rQ  .                                          (1.34) 

 

Therefore, according to the Gauss’s theorem, we get 

 

0
3

0
2 /3/4/4  rQEr  .                             (1.35) 
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Taking into account that  

)3/4/( 3RQ   ,                                    (1.36) 

we obtain  

r
R

Q
E 

3
04

1


,  Rr  .                                  (1.37) 

 

The electric field of a uniformly charged infinite cylinder (filament). An 

infinite cylinder of radius R  is charged uniformly with a linear charge density of   

( dtdQ /  is the charge per unit length). Taking into account the electric field 

symmetry we get that the field lines will be directed along the radii of the circular 

sections of the cylinder with the same density in all directions relative to the axis of 

the cylinder. We construct a closed surface in the form of a coaxial cylinder with 

radius r  and height l . The flux of vector E


 through the ends of the coaxial cylinder 

is zero (ends of the cylinder are parallel to the field lines), and through the side 

surface the flux of the vector E


 is equal to rlE2 . According to the Gauss’s 

theorem, for Rr   we have  

0/2  lrlE  ,                                      (1.38) 

hence 

r
E



02

1
 ,  Rr  .                                 (1.39) 

 

Electric charges are not located inside a closed surface for the case then Rr  , 

therefore, in this region 0E . 

1.6. Circulation of the Electrostatic Field Intensity Vector 

 

 The Coulomb’s force performs the work if a point charge 0Q  moves along the 

arbitrary trajectory in the electrostatic field of the point charge Q  from point 1 to 

  

S  

E


 

 

Figure 1.6. The field of a uniformly charged 

infinite plane. 
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point 2 along the arbitrary trajectory. The work of the force F


 in the case of an 

elementary displacement ld


of the charge is 

 




 cos
4

1
cos

2
0

0

 DL
r

QQ
FdlldFdA


.              (1.40) 

Since  

drdl cos ,                                     (1.41) 

then 

dr
r

QQ
dA

2
0

04

1


 .                                (1.42) 

 

 The work of the Coulomb’s force in the case of the displacement of the charge  

0Q  from point 1 to point 2 is equal to 

 









 

2
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1

0

0
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0

0
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1

4

2

1

2

1

r

QQ

r

QQ

r

drQQ
dAA

r

r

r

r


.            (1.43) 

 

This work does not depend on the trajectory of displacement, but is determined 

only by the positions of the initial and final points. Consequently, the electrostatic 

field of a point charge is potential, and the electrostatic forces are conservative. It 

follows from the last formula that the work performed when the electric charge is 

moved in an external electrostatic field along any closed path L  is zero 

 

 

L

dA 0 .                                          (1.44) 

 

 Let us consider the displacement of a single point positive charge in an 

electrostatic field. Then the elementary work of the field forces on the path ld


 is 

 

dlEldE l


,                                      (1.45) 

 

where cosEEl   is the projection of the vector E


 on the direction of the 

elementary displacement.  

In this case, formula dlEldE l


 can be written in the form 

 

  

L L

ldlEldE 0


.                                 (1.46) 

The integral  

                                             
L L

ldlEldE


                                      (1.47) 
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is called the circulation of electric field intensity vector. Consequently, the circulation 

of the vector of the intensity of the electrostatic field along any closed contour is 

zero. A force field with property  

 

  

L L

ldlEldE 0


                                  (1.48) 

 

is called potential. The property of the potentiality of the electrostatic field leads to 

the fact that the lines of the electrostatic field intensity can not be closed, they begin 

and end on charges (respectively positive or negative) or move to infinity.  

1.7. Potential of Electrostatic Field 

 

 The body in the potential force field (the electrostatic field) has potential 

energy. The electrostatic field forces are associated with potential energy and perform 

work. The work of conservative forces performs by the loss of potential energy. 

Therefore, the work of the forces of the electrostatic field can be represented as the 

difference in the potential energies possessed by a point charge  0Q  at the initial and 

final points of the charge Q  field 

21
2

0

01

0

0
12

4

1

4

1
UU

r

QQ

r

QQ
A 


.                 (1.49) 

 

Therefore the potential energy of charge 0Q  in the electric field generated by charge 

Q  is equal to  

C
r

QQ
U  0

04

1


.                                   (1.50) 

 

The potential energy is not uniquely determined, but accurate to an arbitrary 

constant C . Under the assumption that when the charge is removed to infinity 

( r ), the potential energy vanishes ( 0U ) and 0C . The potential energy of 

charge 0Q  in the electric field generated by charge Q  at a distance r  is equal to  

 

r

QQ
U 0

04

1


 .                                         (1.51) 

 

 In the case of charges of the same sign 00 QQ  and the potential energy of 

their interaction (repulsion) is positive. In the case of charges with opposite signs 

00 QQ  and the potential energy of their interaction (attraction) is negative.   

 Let us consider the field created by the system of n  point charges nQQQ ,...,, 21 . 

We’ll place the charge 0Q  in this area. The work of the electrostatic charges 

nQQQ ,...,, 21  performed over the charge 0Q  is equal to the algebraic sum of the work 
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of the forces due to each of the charges separately. Therefore, the potential energy U  

of the charge 0Q  located in this field is equal to the sum of its potential energies iU , 

created by each of the charges separately 

 






n

i i

i
n

i

i
r

Q
QUU

1 0
0

1
4

.                             (1.52) 

 

 Consequently, the ratio 0/ QU  does not depend on 0Q  and is therefore the 

energy characteristic of the electrostatic field. This characteristic is called a potential  

 

0Q

U
 .                                                     (1.53) 

 

 The potential at some point of the electrostatic field is a physical quantity 

determined by the potential energy of a single positive charge placed at this point. 

The potential of the electrostatic field created by the point charge Q  is 

 

r

Q

04

1


  .                                            (1.54) 

 

The work done by the forces of the electrostatic field for the case when the 

charge 0Q  moves from point 1 to point 2 can be represented as 

 

 2102112   QUUA .                             (1.55) 

 

This work is equal to the product of the transported charge by the potential 

difference at the initial and final points. The potential difference between the two 

points 1 and 2 in the electrostatic field is determined by the work done by the field 

forces when the unit positive charge moves from point 1 to point 2. The displacement 

of charge 0Q  from point 1 to point 2 is accompanied by the work of field forces, 

which is equal to  

 


2

1

012 ldEQA


.                                        (1.56) 

 

 Equating the expressions for the work, we obtain a formula for the potential 

difference  

 

2

1

2

1

21 dlEldE l


 ,                                (1.57) 
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where integration can be performed along any line connecting the initial and final 

points, since the work of the forces of the electrostatic field does not depend on the 

trajectory of displacement. 

 The potential of the electrostatic field for an infinitely distant point is zero. The 

work done by the forces of the electrostatic field for the case of electric charge 0Q  

displacement from an arbitrary point to infinity, is  

 

0QA  .                                         (1.58) 

 

Thus, the potential is a physical quantity determined by the work that is done 

when the point positive charge moves from a given point to infinity. This work is 

numerically equal to the work done by external forces (with the direction against the 

forces of the electrostatic field) and is accompanied by the displacement of a single 

positive charge from infinity to a given point of the field.  

 The field of a system of several charges generates a potential that is equal to 

the algebraic sum of the potentials of the fields created by each of the charges 

separately  

 
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
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i

n

i i

i
i

r

Q

1 104

1


 .                               (1.59) 

1.8. Intensity and Potential of Electrostatic Field 

 

 Let us find the relationship between the electrostatic field intensity,(power 

characteristic) and the potential ( energy characteristic).  

 Let us consider the case when points 1 and 2 are located on the x-axis. The 

distance between these points is small dxxx  12 . The work done by Coulomb’s 

force in the case when a single point positive charge moves from point 1 to point 2 is 

equal to dxEx . The same work is equal  

 

 d 21 .                                         (1.60) 

 

Equating both expressions, we can write  

 

xEx  / ,                                         (1.61) 

 

where the symbol of the partial derivative emphasizes that differentiation is 

performed only with respect to X . We repeat the analogous arguments for the x-axis 

and y-axis. Then we can find the vector  
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where kji


,,  are the unit vectors of the coordinate axes. It follows from the definition 

of the gradient that 

gradE 


                                           (1.63) 

or  

E


,                                             (1.64) 

 

that is, the electric field intensity is equal to the gradient of the potential with a minus 

sign. The minus sign is determined by the fact that the directions of the vector E


 of 

the electrostatic field intensity and the direction of the potential decrease coincide. 

 A graphical representation of the distribution of the electrostatic field potential, 

as in the case of a gravitational field, is made using equipotent surfaces. Surfaces at 

all points of which the potential has the same value are called equipotent surfaces.  

 A point charge generates an electrostatic field with potential  
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1
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 .                                          (1.65) 

 

Consequently, the equipotent surfaces of the electrostatic field, in this case, 

have the form of concentric spheres. On the other hand, the field lines in the case of a 

point charge are radial lines. The above leads to the conclusion that the field lines in 

the case of a point charge are perpendicular to equipotent surfaces.  

 Field lines are always normal to equipotent surfaces. Indeed, all points of the 

equipotent surface have the same potential, so the work that is done when the charge 

moves along this surface is zero, i.e. the electrostatic forces acting on the charge are 

always directed along the normal to equipotent surfaces.  

 Each charge and each system of charges assumes the possibility of constructing 

an infinite number of equipotent surfaces. However, they are usually carried out so 

that the potential differences between any two adjacent equipotent surfaces are the 

same. Then the density of equipotent surfaces clearly characterizes the electric field 

intensity at different points. The arrangement of equipotent surfaces with a higher 

density corresponds to an increase in the electric field intensity.  

 The arrangement of the field lines of the electrostatic field makes it possible to 

construct equipotent surfaces and, conversely, from the known location of the 

equipotent surfaces, the magnitude and direction of the electric field intensity can be 

determined at each point of the field.  

1.9. Calculation of the Potential Difference 

  

 The interrelation between the field intensity and the potential makes it possible 

to find the potential difference between two arbitrary points of this field from the 

known field intensity. 

1. The electric field of a uniformly charged infinite plane is determined by the 

formula  
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,
2 0


E                                               (1.66) 

 

 where   is the surface charge density. Consider two points that are at distances 

1x  and 2x  from the charged plane. The potential difference between these points 

is  
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 .                 (1.67) 

 

2. The electric field of two infinite parallel planes with charges of different signs 

is determined by the formula  

0


E ,                                            (1.68) 

where   is the surface charge density.  

      The potential difference between the charged planes is equal 

 

ddxEdx

d d

00 0 0
21








    ,                        (1.69) 

 

where d  is the distance between the planes.  

3. The field of a uniformly charged spherical surface with radius R  and the net 

charge Q  outside the sphere ( Rr  ) is calculated according to the formula  
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.                                          (1.69) 

 

The potential difference between two points located at distances 1r  and 2r  from 

the centre of the sphere ( Rr 1 , Rr 2 ) is equal to 
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If we assume that rr 1  and 2r , then the field potential outside the 

spherical surface is given by the expression 
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  .                                        (1.71) 

 

Inside a spherical surface, the potential is everywhere the same and equal to 
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R

Q

04
  .                                           (1.72) 

 

4. The electric field of a volume-charged sphere with radius R  and charge Q  is 

characterized by a potential difference between two points located at distances 

1r   and 2r   from the centre of the sphere ( Rr '1 , Rr 2' ). This potential 

difference is  
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5. The electric field of a uniformly charged infinite cylinder with radius R  at 

distances Rr   is given by the formula 

r
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 ,                                         (1.74) 

 

where   is the linear charge density. Consequently, the potential difference 

between two points located at distances 1r  and 2r  from the axis of the charged 

cylinder ( Rr 1 , Rr 2 ) is equal to 
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Test questions 

 

1. What is the difference between electrostatics and electrodynamics? 

2. Name the two groups into which the conductors can be divided. 

3. What type of charges can not be present in dielectrics? 

4. Formulate the law of conservation of electric charge. 

5. How will the interaction force between two electric charges in a vacuum 

change if the distance between them has decreased by 0.25 times? 

6. Does the value of relative dielectric constant depend on the choice of a system 

of units? 

7. Indicate the functional dependence of the modulus of the electric field intensity 

vector generated by a point electric charge on the distance. 

8. Specify the method for constructing the direction of the electric field lines. 

9. Give the definition of the electric field flux. 

10. Formulate the principle of superposition of electrostatic fields. 

11. Give examples of physical factors that prevent the convergence of the charges 

of the opposite sign in the electric dipole. 

12. Formulate the Gauss’s theorem for the electric field intensity. 

13. Calculate the electric field intensity of a uniformly charged infinite plane. 
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14. Under what conditions can the electric field between two parallel plates of 

finite size be considered homogeneous? 

15. Explain why the dependence of the electric field intensity on the distance will 

be different inside and outside the charged spherical surface. 

16. Plot the electrostatic field intensity depending on the distance to the volume-

charged sphere. 

17. Write a formula for the electrostatic field intensity of a uniformly charged 

infinite cylinder. 

18. Give a definition of a potential force field. 

19. How does the potential of a point electric charge depend on the distance? 

Draw the mutual arrangement of the electric field lines and the equipotential 

surfaces that are generated by a point electric charge. 

 

Problem-solving examples 
 

Problem 1.1  

 

Problem description. Three identical positive charges nCQQQ 2321   are 

located at the vertices of an equilateral triangle. The 4Q  charge is located in the 

centre of the triangle. The force of attraction of the charge 4Q  balances the force of 

mutual repulsion of the charges that are at the vertices of the triangle. Find the 

amount of charge 4Q . 

 

Known quantities: nCQQQ 2321  . 

 

Quantities to be calculated: 4Q . 

 

Problem solution. All three charges, located at the vertices of the triangle, are in the 

same conditions. Therefore, to solve the problem, it suffices to find out which charge 

should be placed in the centre of the triangle so that one of the three charges, for 

example, 1Q , is in equilibrium.. 

 In accordance with the principle of superposition, any other charge acts 

independently of the others. Consequently, the charge 1Q  will be in equilibrium if the 

vector sum of the forces acting on it is zero: 

 

04432  FFFFF


.                          (1.1.1) 

 

Where 432 ,, FFF


 are the forces with which charges 432 ,, QQQ  act on the charge 

1Q ; 

            F


 is the resultant of forces 2F


 and 3F


.   

Since forces F


 and 4F


 are directed along one straight line, the vector equality 

can be replaced by a scalar sum 
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04  FF  or FF 4 .                              (1.1.2) 

 

Expressing in the last equality F  through 2F  and 3F , and taking into account 

that 23 FF  , we get 

 cos1224  FF .                              (1.1.3) 

 

Applying the Coulomb's law and considering that 132 QQQ  , we find 

 

 


cos12
4

1

4

1
2

2
1

0
2

1

41

0


r

Q

r

QQ
,                  (1.1.4) 

and 

 cos12
2

2
11

4 
r

rQ
Q ,                                (1.1.5) 

 

where 1r  is the distance between charges 1Q  and 4Q ; 

           r  is  the side of the triangle. 

 The ratio 

 
3/

30cos

2/
01 r

r
r  ,  2/160coscos 0                  (1.1.6) 

 

holds for distances r  and 1r  in an equilateral triangle 

 

 Then we get 

3/14 QQ  .                                       (1.1.7) 

 

We insert the numerical values into last formula: nCQ 16.14  . 

 

Answer. The charge 4Q  is 1.16 nC. 

 

Problem 1.2 

 

Problem description. Two long filaments are located at a distance of 12 cm 

from each other. Charges of the same sign are placed on the filaments. The linear 

charge density on the filaments is 10–7 C / cm. 

Find the magnitude and direction of the strength of the resulting electric field at a 

point at a distance of 12 cm from each filament. 

 

Known quantities: cmacmCcmr 12;/10;12 7
21   . 
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Quantities to be calculated: E


. 

 

Problem solution. We denote the linear charge density on the filaments as  . So, 

we get   21  for each filament.  

Consequently, the intensity of each filament at point C, which is 12 cm away 

from each filament, is equal to 

a
EE

0
21

2 


 ,                                    (1.2.1) 

 

where a  is the distance from the filament to point C; 

             is the relative dielectric constant of the medium;  

           0  is the electrical constant.  

According to the superposition principle, the resultant field strength is  

 

21 EEE


 .                                      (1.2.2) 

 

The line on which the vector E


 lies is perpendicular to the plane B  passing 

through both filaments. Consider a triangle whose plane is perpendicular to the plane 

B . Two vertices of this triangle are on the filaments, and the third vertex coincides 

with point C. Such a triangle is equilateral with a side equal to the distance r  

between the filaments: ar  . 

 This implies 

mV
a

E /106.2
2

3 6

0





.                  (1.2.3) 

 

Answer. The line on which the vector E


 lies is perpendicular to the plane B  passing 

through both filaments. The magnitude of the electric field vector is 

mVE /106.2 6 . 

 

Problem 1.3  

 

Problem description. The positive charges CQ 31  and CnQ 202  are in vacuum 

at a distance of mr 5.11  from each other. Calculate the work A , which must be 

done to bring the charges closer to the distance mr 12  . 

 

Known quantities: CQ 31  , CnQ 202  , mr 5.11  , mr 12  . 

 

Quantities to be calculated: A . 
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Problem solution. Suppose that the first charge remains stationary, while the second 

one moves in the field created by the first charge, approaching it from distance 1r  to 

distance 2r . 

The work A  performed by an external force when a charge Q  moves from 

one point of a field with a potential of 1  to another, whose potential is 2 , is equal 

in magnitude and opposite in sign to work A , which make the field forces when the 

charge moves between the same points:  

 

AA  .                                                 (1.3.1) 

 

The work of the field forces to move the charge is equal to 

 

 21  QA .                                          (1.3.2) 

 

Then the work A  of external forces can be written as 

 

   1221   QQA .                             (1.3.3) 

 

The potentials of the start and end points are equal  

 

10

1
1

4 r

Q


  , 

20

2
2

4 r

Q


  .                               (1.3.4) 

 

Substituting the expressions 1  and 2  into the formula for work A  and 

considering that for a given case the transferred charge is 2QQ  , we get 

 











120

21 11

4 rr

QQ
A


.                                      (1.3.5) 

 

We substitute numerically JA 180 . 

 

Answer.The work A  is 180  J. 

 

Problems 
 

Problem A  

 

Problem description. Two identical conducting balls are at a distance equal to 

cmr 30 . The balls have an electric charge. The force of attraction of the balls is 

NF 901  . After the balls were brought into contact and removed from each other to 

the previous distance, the strength of their mutual repulsion became equal to 
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NF 1602  . Calculate the charges 1Q  and 2Q , which were on the balls before their 

contact. The diameter of the balls can be considered much smaller than the distance 

between them. 

 

Answer. CQ 8
1 109  , CQ 8

2 101  . 

 

Problem B  

 

Problem description. A thin filament, the length of which is cmL 20 , is uniformly 

charged with a linear density of mnC /10 . At a distance of cma 10  from the 

filament, a point charge nCQ 1  is located opposite its center. Calculate the force 

acting on this charge from the side of the charged filament. 

 

Answer. NF 61027.1  . 

 

Problem C  

 

Problem description. The distance between two long thin wires arranged parallel to 

each other is cmd 16 . The wires are uniformly charged with opposite charges with 

a linear density of mC /150  . What is the electric field strength at a point at a 

distance of cma 10  both from the first and from the second wire? 

 

Answer. mVE /1032.4 7 . 

 

Problem D  

 

Problem description. A flat square plate with a side length of cma 10  is located at 

some distance from an infinite uniformly charged ( 2/1 mC  ) plane. The plane of 

the plate makes an angle of  30  with the lines of force of the electric field. Find 

the displacement flux   through this plate. 

 

Answer. C9105.2  . 

 

Problem E  

 

Problem description. A metal ball with a diameter of сmd 2  is negatively charged 

to potential V150 . How many electrons are on the surface of the ball? 

 

Answer. 
91004.1 N . 
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CHAPTER 2. DIELECTRICS IN ELECTRIC FIELD 
 

2.1. Types of Dielectrics 

 

 The dielectric consists of atoms and molecules. Since the positive charge of all 

the nuclei of the molecule is equal to the total charge of the electrons, the molecule as 

a whole is electrically neutral. The molecule can be considered as an electric dipole if 

the positive charges of the nuclei of the molecule are replaced by the total charge Q  

located in the "centre of gravity" of the positive charges, and the charges of all 

electrons are replaced by the total negative charge Q  located in the "centre of 

gravity" of the negative charges.  

 The first type of dielectrics includes substances  ,...,,,, 42222 CHCOOHN  

whose molecules have a symmetrical structure, that is, the "centres of gravity" of 

positive and negative charges coincide in the absence of an external electric field, and 

consequently the dipole moment p


 of the molecule is zero. The molecules of such 

dielectrics are called nonpolar molecules. Under the influence of an external electric 

field, the charges of nonpolar molecules are displaced in opposite directions (positive 

in the direction of the electric field intensity, and negative against the direction of the 

electric field intensity) and the dipole moment of the molecule becomes nonzero.  

 The second type of dielectrics includes substances  ,...,,, 232 COSONHOH  

whose molecules have an asymmetric structure, that is, the "centres of gravity" of the 

positive and negative charges do not coincide. Thus, in the absence of an external 

electric field, these molecules have a dipole moment. The molecules of such 

dielectrics are called polar molecules. The dipole moments of polar molecules due to 

thermal motion are oriented in space randomly and their resultant moment is zero in 

the absence of an external field. If such a dielectric is placed in an external field, then 

the forces of this field will tend to rotate the dipoles along the field and a nonzero 

resultant moment arises.  

 The third type of dielectrics includes substances  ,...,, KBrKClNaCl  whose 

molecules have an ionic structure. Ionic crystals have spatial lattices with a regular 

alternation of ions of different signs. The behaviour of individual molecules is not 

considered for such crystals. Ionic crystals can be considered only as a system of two 

ion sub lattices inserted one into another. In the presence of an external electric field, 

some deformation of the crystal lattice of the ionic crystal or relative displacement of 

the sub lattices occurs. This displacement is the reason for the appearance of dipole 

moments.  

 Thus, placing all three types of dielectrics in an external electric field leads to 

the appearance of a nonzero resultant electrical moment of dielectric, or, in other 

words, leads to the polarization of dielectric. The process of dipoles orientation or the 

process of the appearance of field-oriented dipoles under the action of an electric 

field is called polarization. 

 Accordingly, three types of dielectrics are distinguished by three types of 

polarization: 
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a) electronic or deformation polarization of a dielectric with nonpolar molecules, 

associated with the appearance of an induced dipole moment in atoms due to 

deformation of electronic orbits; 

b) dipole or orientation polarization of a dielectric with polar molecules, associated 

with the orientation of the existing dipole moments of molecules over the field. 

Thermal motion prevents the complete orientation of the molecules, but as a result of 

the combined effect of both factors (electric field and thermal motion), a predominant 

orientation of the dipole moments of molecules over the field arises. This orientation 

increases with increasing electric field intensity and with temperature decreasing; 

c) ion polarization of dielectrics with ionic crystal lattices, associated with the 

displacement of the sub lattice with positive ions along the field. The sub lattice with 

negative ions is displaced against the field. Such a displacement leads to the 

appearance of dipole moments. 

2.2. Polarization. Electric Field Intensity in Dielectric 

 

 The dielectric polarization is associated with nonzero dipole moment  

 


i

iV pp


,                                                 (2.1) 

 

 where ip


 is the dipole moment of one molecule. Polarization is defined as the dipole 

moment of the unit volume of dielectric  

 



i

iV

V

p

V

p
P


.                                            (2.2) 

 

 It follows from experiment that for a large class of dielectrics (with the 

exception of ferroelectrics) the polarization P


 depends linearly on the electric field 

intensity E


. Let us consider the case of an isotropic dielectric located in a weak 

external electric field. In this case, for the polarization, we get 

 

EP


0 ,                                               (2.3) 

 

 where   is the dielectric susceptibility of the substance, which characterizes the 

properties of the dielectric;   is a dimensionless quantity.  

The value of   is always positive. For most dielectrics (solid and liquid) the 

susceptibility is equal to several units (although, for alcohol 25~ , for water 

80~ ). 

 Consider two infinite parallel planes with charges of opposite signs. These 

planes create a uniform external electrostatic field with a intensity of 0E


. We insert a 

plate from a homogeneous dielectric in the field 0E


, and arrange it as shown in 
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Figure 2.1. Under the action of the field, the dielectric is polarized, that is, the 

charges are shifted. Positive charges are displaced in the direction of the electric field, 

and negative charges are displaced against the field. As a result, on the right side of 

the dielectric, which is located near the negative plane, an excess of positive charge 

with a surface density   is formed, and a negative charge with a surface density of 

  appears on the left side.  

These uncompensated charges, which appear as a result of the polarization of 

the dielectric, are called bound charges. The surface density of bound charges    is 

less than the surface density of free charges   on the planes of the capacitor. As a 

result, not all field E


 is compensated by the dielectric charge field. Some of the force 

lines pass through the dielectric, while the other part of the force lines terminates on 

bound charges.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consequently, the polarization of the dielectric causes a decrease in the electric 

field intensity in it in comparison with the original external field. The electric field 

strength outside the dielectric is  

0EE


 .                                                  (2.4) 

 

Thus, the appearance of bound charges leads to the appearance of an additional 

electric field (the field created by the bound charges), which is directed against the 

external field (the field created by free charges) and weakens it. The resulting field 

inside the dielectric is 

EEE  0 .                                             (2.5) 

 

The field created by two infinite charged planes is equal  

 

 

  

  

  

  

  

  

  

         

 

Figure 2.1. Electric field created by 

two infinite charged planes. 
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                                                   0/ E  ,                                            (2.6) 

therefore  

        
0

0



 EE .                                            (2.7) 

 

 Let us determine the surface density of bound charges  . The total dipole 

moment of the dielectric plane is equal  

 

PSdPV   ,                                              (2.8) 

where S  is the area of the plane;  

          d  is its thickness.  

On the other hand, the total dipole moment is equal to the product of the bound 

charge of each plane  

                                                   
SQ  

                                                  (2.9) 

 

by the distance d  between them, i.e.  

 

SdPV   .                                             (2.10) 

Thus,  

                                                SdPSd                                              (2.11) 

or  

P ,                                                (2.12) 

 

i.e. the surface density of the bound charges    is equal to the polarization P . 

Then for the intensity we get  

EEE  0                                           (2.13) 

 

from which the intensity of the resulting field inside the dielectric is 

 


00

1

EE
E 


 .                                     (2.14) 

The dimensionless quantity  

 1                                            (2.15) 

 

is called the dielectric permittivity of the medium. The value   shows how many 

times the field is weakened by a dielectric and quantitatively characterizes the 

property of a dielectric to polarize in an electric field.  

 

2.3. Gauss Theorem for Electrostatic Field in Dielectric 

 

 The electrostatic field intensity depends on the properties of the medium. In a 

homogeneous isotropic medium, the electric field intensity E  is inversely 
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proportional to  . The intensity vector E


, passing through the dielectric boundary, 

undergoes an abrupt change, thereby creating inconvenience in the calculation of 

electrostatic fields. Therefore, in addition to the intensity vector, the electric field is 

also characterized by the electric displacement vector. The electric displacement 

vector for an electrically isotropic medium is   

 

ED


0 .                                                  (2.16) 

 

The vector of electric displacement can be expressed as 

 

PED


 0 .                                                (2.17) 

 

Find out the factors that affect the electrical displacement. Bound charges 

appear in the dielectric in the presence of an external electrostatic field created by a 

system of free electric charges. Consequently, an additional field of bound charges is 

superimposed on the electrostatic field of free charges in the dielectric. The resulting 

field in the dielectric is described by the intensity vector E


, and therefore it depends 

on the properties of the dielectric. Vector D


 describes the electrostatic field created 

by free charges. Bound charges in dielectric can cause a redistribution of free charges 

that create an electric field. Therefore, vector D


 characterizes the electrostatic field 

created by free charges, but with such a distribution in space as is observed in the 

presence of a dielectric. Similarly to field E


, the field D


 is represented by electric 

displacement lines, the direction and density of which are determined exactly as for 

field lines. Lines of vector E


 can start and end on any charges both on free and on 

bonded ones, while the lines of vector D


 can start only on free charges. The lines of 

vector D


 are not interrupted in the regions where the bonded charges are located. For 

an arbitrary closed surface S , the flux of the vector D


 through this surface is  

 

 

S S

nD dSDSdDФ


.                                  (2.18) 

 

The Gauss’s theorem for the electrostatic field in a dielectric can be 

represented in the form  

  




S S

n

i

in QdSDSdD

1


.                             (2.19) 

 

The flux of the displacement vector of the electrostatic field in a dielectric 

through an arbitrary closed surface is equal to the algebraic sum of free electric 

charges that are inside this surface. In this form, the Gauss’s theorem is valid for an 

electrostatic field for both homogeneous and isotropic media. Vectors D


 and E


 are 

not collinear in anisotropic dielectrics [1].  

For a vacuum 
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nn ED 0 ,                                       (2.20) 

 

and 1  in the case then the flux of the intensity vector E


 through an arbitrary 

closed surface is equal to 

 




S i

in QndSE

1

0 .                               (2.21) 

 

Since the electric field sources in medium are both free and bound charges, the 

Gauss’s theorem for field E


 can be written in the most general form as 

 

   
 



S S

n

i

k

i

ibin QQdSEdSE

1 1

00 


,                (2.22) 

 

where 


n

i

iQ

1

, and 


k

i

ib
Q

1

 are, respectively, the algebraic sums of free and bound 

charges enclosed by a closed surface.  

However, this formula is unacceptable for describing the field E


 in a 

dielectric, since it expresses the properties of an unknown field E


 through bound 

charges, which, in turn, are determined by it. This again proves the advisability of 

introducing an electric displacement vector.  

 

2.4. Interface between Two Dielectric Media 

 

 Consider the relationship between vectors E


 and D


 at the interface between 

two homogeneous isotropic dielectrics (whose dielectric permittivity are 1  and 2 ) in 

the absence of free charges.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l  

1  

2  A  B  

D  C  

2  

1   

 

Figure 2.2. Interface between Two Dielectric Media. 
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Let us construct near the interface between dielectrics 1 and 2 a small closed 

rectangular contour ABCDA with perimeter  hl 2  (Figure 2.2). According to the 

circulation theorem for vector E


, formula  

 

 

ABCDA

ldE 0


                                          (2.23) 

holds, whence  

012  lElE                                           (2.24) 

 

(the signs of the integrals over AB  and CD  are different, since the integration paths 

are opposite, and the integrals over the segments hBC   and hDA   are negligibly 

small). Therefore,  

 21 EE  .                                           (2.25) 

 

Replacing the projections of the vector E


 by the projections of the vector D


 

divided by 0 , we obtain  

                                                 
2

1

2

1







 
D

D
.                                           (2.26) 

 

 We construct a straight cylinder of negligible height  at the interface between 

two dielectrics. One cylinder is based at the first dielectric, and the other is based at 

the second dielectric. The bases S  are so small that within each of them the vector 

D


 is the same. According to the Gauss’s theorem 

 

012  SDSD nn                                  (2.27) 

 

(normals n


 and n


 to the bases of the cylinder are directed into opposite direction). 

Therefore 

nn DD 21  .                                            (2.28) 

 

Replacing the projections of the vector D


 by the projections of the vector E


 

multiplied by 0 , we obtain  

                                                 
1

2

2

1






n

n

E

E
.                                              (2.29) 

 

Thus, when passing through the interface between two dielectric media, the 

tangential component of the vector E


 ( E ) and the normal component of the vector 

D


 ( nD ) change continuously, and the normal component of the vector E


 ( nE ) and 

the tangential component of the vector D


 ( D ) are discontinuous.  



 38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the conditions for the components of the vectors E


 and D


 it follows that 

the lines of these vectors undergo a break (refracted).  

Let us find the relationship between the angles 1  and 2  provided that 21    

(Figure   2.3). Formulas:  

                                                  12 EE                                              (2.30) 

and  

nn EE 1122                                           (2.31) 

are valid in this case. 

We decompose the vectors 1E


 and 2E


 into tangential and normal components 

near the interface. From Figure 2.3 follows that 
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
 .                                  (2.32) 

 

Taking into account the above conditions, we obtain the law of refraction of 

force lines of electric field intensity E


  (and electric field displacement D


 lines) 

 

1

2

1

2










tg

tg
.                                        (2.33) 

 

Lines E


 and D


 are removed from the normal when entering a dielectric with a 

larger permittivity.  

                             Test questions 

 

1. Do gravity centers of positive and negative charges of non-polar molecules 

coincide in the presence of an external electric field? 

2. List a few examples of nonpolar molecules. 

 

2E


 
nE2


 

2E


 

1E


 nE1


 

1E


 

1  

2  

1  

2  

 

Figure 2.3. Refraction of electric field lines. 
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3. Does the dipole moment modulus of polar molecules depend on the intensity of 

an external electric field? 

4. List a few examples of polar molecules. 

5. Specify the reason that the dipole moments of polar molecules are oriented 

arbitrarily in the absence of an external electric field. 

6. Describe the ionic crystals. 

7. List a few examples of ionic crystals. 

8. Is it possible to consider ionic crystals as a structure consisting of only one 

crystal lattice? 

9. Specify the cause of the appearance of dipole moments in ionic crystals. 

10. Give the definition of polarization. 

11. What type of polarization is a consequence of the appearance of an induced 

dipole moment in atoms due to deformation of electronic orbit? 

12. Describe the orientation polarization. 

13. Indicate competing processes when the resulting dipole moment appears in 

orientational polarization. 

14. What type of polarization is caused by the mutual displacement of the 

sublattices of positive and negative ions? 

15. Write a formula for determining the polarization. 

16. Specify the dimension, sign and characteristic values of the dielectric 

susceptibility. 

17. Specify the relative position of the vector of the external electric field intensity 

and the vector of the electric field intensity caused by the bound charges. 

18. Indicate how the relative dielectric permittivity and dielectric susceptibility are 

interrelated. 

19. Formulate the Gauss theorem for electrostatic field in dielectric. 

20. Specify the conditions for the electric field strength and the electric 

displacement vector at the interface of two dielectrics. 

 

                   Problem-solving examples 
 

Problem 2.1  

 

Problem description. The distance between the iodine atom and the alpha particle is 

nmr 1 . The atom has an induced dipole electric moment mCp  32109.1 . 

Determine the polarizability   of the iodine atom. 

 

Known quantities: nmr 1 , mCp  32109.1 . 

 

Quantities to be calculated:  . 

 

Problem solution. Polarizability can be determined from the formula  
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LE

p

0
  ,                                                       (2.1.1) 

 

where p  is the induced dipole moment of the atom; 

LE  is the intensity of the local electric field in which the atom is located. 

 The local electric field is created by a -particle. The strength of the local 

electric field is 

2
04

2

r

e
EEL


 .                                             (2.1.2) 

 

 Then for polarizability we can write 

 

e

pr22
  .                                                  (2.1.3) 

 

 And finally, with numbers 3301047.7 m . 

 

Answer. The polarizability of the iodine atom is 3301047.7 m . 

 

Problem 2.2  

 

Problem description. Endless plate charged with surface charge density 
2/12 mnC . There is air on one side of the plate, and oil on the other ( 2 ). 

Determine the electric field in oil and in air. 

 

Known quantities: 2/12 mnC , 2 . 

 

Quantities to be calculated: 0E , E . 

 

Problem solution. Since the plate is in contact with different substances, we first 

determine the electric displacement vector D


, and then, knowing the relationship 

between the electric field strength Е


 and the electric displacement D


, we determine 

the electric field strength in different substances. We introduce the following 

notation: 0D


 is the vector of electrical displacement in air, D


 is the vector of 

electrical displacement in oil. We can write for these vectors: 

 

000 ED


 , 00ED


 , 

 

where 0E


 is the electric field strength in the air.  

 We write the Gauss’s theorem for the vector D


: 
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 

S

TQSdD


,                                          (2.2.1) 

where TQ  is total charge. 

 As a free Gauss’s surface, we choose a cylinder whose axis of symmetry is 

perpendicular to the plate. The flux of the vector D


 is determined only by the flow 

through the ends of the cylinder, and the flow through the side surface of the cylinder 

is zero ( 090cos 0  SS DdSSdD


): 

 

   SEESDDDSSDSdD

S

000000  


.         (2.2.2) 

 

 The total charge is determined by the surface charge density 

 

 

S

T SdSQ  .                                      (2.2.3) 

 Equating the right sides of the last two equations, we get 

 

  SSEE   0000 .                                   (2.2.4) 

 Then 

 

    001 E .                                        (2.2.5) 

This implies 

                                             
 






10
0E .                                           (2.2.6) 

 

 The electric field strength in oil is 

 

 



 


10

0E
E .                                     (2.2.7) 

 

 For the given numerical values we get mVE /4.4520  ,   mVE /2.226 . 

 

Answer. The electric field strength in air is mVE /4.4520  . The electric field 

strength in oil is mVE /2.226 . 

 

Problem 2.3 

 

Problem description. Ebonite solid ball of radius cmR 5  contains a charge evenly 

distributed throughout the volume with a bulk density of 3/15 mnC . Determine 



 42 

the electric field strength E , the displacement of the electric field D  at the following 

points: 1) at a distance of cmr 31   from the center of the ball, 2) on the surface of the 

ball ( Rr 2 ), 3) at a distance of cmr 103   from the center of the ball. 

 

Known quantities: cmR 5 , 3/15 mnC , cmr 31  , cmr 53  , cmr 103  . 

 

Quantities to be calculated: 1D , 2D , 3D , 1E , dE2 , VE2 , 3E . 

 

Problem solution. Sources of the electric field are both foreign ( fQ ) and bound ( bQ ) 

electric charges. Therefore, to apply the Gauss’s theorem, it is necessary to know the 

values fQ  and bQ . The flux of vector D


 through a closed surface depends only on 

the algebraic sum of foreign charges that encompass the closed surface. The lines of 

vector D


 are not interrupted when they cross the interface between two dielectrics. 

Therefore, to calculate the electric field in a dielectric, it is convenient to use the 

Gauss theorem for the vector D


: 

 

  

S

inn

S

QdSDSdD


,                             (2.3.1) 

where inQ  is internal charge.  

 We’ll take a spherical surface of radius r  as a closed surface 

 
24 rS  .                                          (2.3.2) 

 

 For the case when Rr  , the charge covered by a sphere of radius r  is  

 

3

4 3 r
Qin  .                                        (2.3.3) 

 In this case 

 

 
3

4/
3

4 2
3 r

r
r

D



















 .                         (2.3.4) 

 

 The displacement of the electric field at points Rr 1  and Rr 2  is equal, 

respectively, 

 

3

1
1

r
D


  and 

3
2

R
D


 .                            (2.3.5) 

 

 Since Rr 3 , the charge inQ  is completely covered by a sphere of radius 3r . 

For this case, the displacement D  of the electric field is  
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 
2

3

3
2

3

3

3
3

4/
3

4

r

R
r

R
D




















 .                      (2.3.6) 

 

 The relationship between the electric field strength E  and the displacement of 

the electric field D  is 

 

ED


0 .                                         (2.3.7) 

 The electric field at point Rr 1  is 4 

 

0

1
1

3

r
E  .                                         (2.3.8) 

 

 For cases where point Rr 2  is in the dielectric and in vacuum, the electric 

field is 

 

 
0

2
0

3

2
3

4/
3

4






 R
R

R
E d 














  (dielectric), 

0
2

3

R
E V   (vacuum).                                (2.3.9) 

 

 During the transition from a dielectric to a vacuum, an abrupt change in the 

electric field strength occurs by a factor of  . Therefore, for case Rr 3  we get 

 

2
30

3

3
3 r

R
E




 .                                     (2.3.10) 

 We substitute numerically: 

 
210

1 /105.1 mCD  , 210
2 /1049.2 mCD  , 212

3 /1025.6 mCD  , 

mVE /7.51  , mVE d /41.92  , mVE V /24.282  , mVE /05.73  . 

 

Answer. The displacements of the electric field are 210
1 /105.1 mCD  , 

210
2 /1049.2 mCD  , and 212

3 /1025.6 mCD  . The electric field intensities 

are mVE /7.51  , mVE d /41.92  , mVE V /24.282  , mVE /05.73  . 
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         Problems 
 

Problem A 

Problem description. A plane-parallel glass plate ( 7 ) with a thickness of 

mmd 5.1  and an area of 2200 cmS   was placed perpendicular to the field in a 

uniform electrostatic field of intensity mVE /700 . Determine the electrical 

displacement inside the plate and the polarization of the glass. 

 

Answer. 29 /102.6 mCD  , 29 /1031.5 mCP  . 

 

Problem B  

Problem description. At a height of cmL 1  above the kerosene ( 2 ) surface a 

point charge nCQ 314  hangs. Find the density of the bound charges on the surface 

of the liquid at a distance of cmd 5  from the source. 

 

Answer. 26 /102 mC .  

 

Problem C  

Problem description. Inside the dielectric ball, the permittivity of which is 5 , a 

uniform electric field with a intensity of mVE /100  was created. Calculate the 

maximum surface density of bound charges. 

 

Answer. 29
max /1054.3 mC . 

 

Problem D  

Problem description. On opposite sides of the boundary of air and kerosene ( 2 ) 

on the same perpendicular to it are two point charges. The charge in kerosene is four 

times more than the charge in the air. The position of these charges is such that at the 

point on the border between them there are no polarization charges. How many times 

do the distances differ from the charge to the boundary in the air and in kerosene? 

 

Answer. 5.0N . 

 

Problem E  

Problem description. The vector of electric field intensity in water ( 811  ) near the 

border with glass is directed at an angle of  60  to the normal. Calculate the angle 

  between the normal and the direction of the electric field in the glass, if the 

permittivity in it is 72  . 

 

Answer. rad149.0 . 
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CHAPTER 3. CONDUCTORS IN ELECTRIC FIELD 
 

3.1. Charge Distribution in Conductors 

 

 Let us consider the case of charged conductor or conductor in an external 

electric field. The electric field will act on the charges of the conductor and lead to 

their displacement. The charge displacement (electric current) will continue until an 

equilibrium distribution of charges is established, at which the electrostatic field 

inside the conductor vanishes. The movement of electric charges occurs in a very 

short time. In fact, if the field were not equal to zero, then an ordered movement of 

charges would arise in the conductor without consuming energy from an external 

source, which contradicts the law of conservation of energy. So, the electric field 

intensity at all points inside the conductor is zero 0E . 

 The absence of a field inside the conductor means that the potential at all points 

inside the conductor is constant )( const , i.e. the conductor surface in the 

electrostatic field is equipotential. It follows from this that the field intensity vector 

on the outer surface of the conductor is directed along the normal to each point of its 

surface. Otherwise, under the action of the tangential component E


, charges would 

begin to move along the surface of the conductor, which, in turn, would contradict the 

equilibrium distribution of charges.  

 Uncompensated charges are located only on the surface of the conductor. This 

follows directly from Gauss's theorem, according to which the charge Q  inside the 

conductor is equal to  

  

S S

ndSDSdDQ 0


                                       (3.1) 

 

since at all points inside the surface 0D .  

 Let us find the relationship between the electric field intensity E  near the 

surface of a charged conductor and the surface density of charges on its surface. We 

apply the Gauss’s theorem to an infinitesimal cylinder with bases S , which crosses 

the conductor-dielectric boundary. The axis of the cylinder is oriented along the 

vector E


. The flux of the electric displacement vector through the inner part of the 

cylindrical surface is zero, since inside the conductor the value of 1E


 (and 

consequently 1D


) is equal to zero. It follows that the flux of vector D


 through a 

closed cylindrical surface is determined only by flow through the outer base of the 

cylinder. According to the Gauss’s theorem, this flux ( SD ) is equal to the sum of 

the charges ( SQ  ) covered by the surface  

 

SSD                                                   (3.2) 

i.e.  

D                                                      (3.3) 

or  
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



0

E ,                                                   (3.4) 

 

where   is the dielectric permeability of the medium surrounding the conductor.  

 Thus, the intensity of the electrostatic field at the surface of the conductor is 

determined by the surface density of charges. If a neutral conductor is placed in an 

external electrostatic field, then free charges (electrons, ions) will shift. Positive 

charges will shift in the direction of the field, and negative charges will shift in the 

direction opposite to the field (Figure 3.1, A). At one end of the conductor, an excess 

of positive charge will accumulate, at the other end of the conductor there is an 

excess of negative charge.  

 

 

 

 

 

 

These charges are called induced charges. This process will occur until the 

electric field intensity inside the conductor becomes zero, and field lines outside the 

conductor become perpendicular to its surface (Figure 3.1, B). Thus, a neutral 

conductor located in the electrostatic field breaks a portion of the field lines; they end 

on negative induced charges and again start on positive ones. Induced charges are 

distributed on the outer surface of the conductor. The phenomenon of redistribution 

of surface charges on a conductor in an external electrostatic field is called 

electrostatic induction.  

It follows from Figure 3.1, B that the induced charges appear on the conductor 

due to their displacement under the action of the field. The value of   is the surface 

density of the displaced charges. The electrical displacement D  near the conductor is 

numerically equal to the surface density of the displaced charges. Therefore, the 

vector D


 is called the electric displacement vector. 

 Since there are no charges in the state of equilibrium inside the conductor, the 

appearance of a cavity inside the conductor will not affect the arrangement of the 

charges and thereby the electrostatic field. Consequently, the field will be absent 

inside the cavity. If now this conductor is grounded, then the potential at all points of 

the cavity will be zero, that is, the cavity is completely isolated from the influence of 

external electrostatic fields. This property is the cause of electrostatic protection, i.e. 

screening of bodies, for example measuring instruments, from the influence of 

Figure 3.1. Distribution of electrical charges inside the conductor.  

  
  

  
  

А  Б  

0E  

  
  
  
  
  

 

 B  A 



 47 

external electrostatic fields. A dense metal grid can be used to protect instead of a 

solid conductor. Such a grid, by the way, is effective in the presence of not only 

permanent, but also variable electric fields. 

3.2. Electrical Capacitance of a Solitary Conductor 

 

 Consider a conductor that is remote from other conductors, bodies and charges. 

Such a conductor is called a solitary conductor. Its electric potential is directly 

proportional to the charge of the conductor. It follows from experience that different 

conductors, being equally charged, have different potentials. Therefore, for a solitary 

conductor, we can write  

CQ  .                                                   (3.5) 

The quantity  



Q
C                                                      (3.6) 

 

is called the electrical capacity (or simply the capacity) of a solitary conductor.  

The conductor capacity depends on its size and shape, but it does not depend 

on the material, the aggregate state, the shape and dimensions of the cavities inside 

the conductor. This is due to the fact that excess charges are distributed on the outer 

surface of the conductor. The capacity does not depend either on the charge of the 

conductor or on its potential. The potential of a solitary sphere with a radius R  in a 

homogeneous medium with a permittivity of   is  

 

R

Q




04

1
 .                                         (3.7) 

 

From the above formulas it can be obtained that the capacity of the sphere is 

 

RC 04 .                                           (3.8) 

            3.3. Capacitors 

 

Devices that are capable of accumulating significant charges with small 

dimensions and small potentials with respect to surrounding bodies are often needed 

for practical applications. In other words, such devices must have a large capacity. 

These devices are called capacitors. Reducing the distance between the charged body 

and other bodies leads to the appearance of induced (on a conductor) or connected 

(on dielectric) charges. Charges with opposite sign are placed near charged 

conductor. These charges weaken the field created by the charged conductor, i.e. 

lower the potential of the conductor, which leads to an increase in its electrical 

capacitance. 

The capacitor consists of two conductors (plates) separated by a dielectric. The 

surrounding bodies should not affect the capacitance of the capacitor. Therefore, the 
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conductors are shaped so that the field created by the accumulated charges is 

concentrated in the narrow gap between the capacitor plates. This condition is 

satisfied by: 1) two flat plates; 2) two coaxial cylinders; 3) two concentric spheres. 

The shape of the capacitor determines their type.  The technology uses flat, 

cylindrical and spherical capacitors. 

Since the field is concentrated inside the capacitor, the field lines begin on one 

plate and end on the other, so the free charges on different plates are equal in 

modulus with opposite charges. The physical quantity, which is equal to the ratio of 

the charge Q  , accumulated in the capacitor, to the potential difference  21    

between its plates is called the capacitance of the capacitor  

 

21  


Q
C .                                               (3.9) 

 

We calculate the capacitance of a flat capacitor consisting of two parallel metal 

plates of area S  each, located at a distance d  from each other and having charges of 

+Q  and -Q . The edge effects can be neglected and the field between the plates 

considered homogeneous in the case then the distance between the plates is small in 

comparison with their linear dimensions. Let’s consider the presence of a dielectric 

between the plates. In this case the potential difference between plates is  

 






0
21

d
 ,                                            (3.10) 

where   is the permittivity.  

Then from the last formula, replacing  

 

SQ  ,                                                   (3.11) 

 

we obtain an expression for the capacitance of a flat capacitor  

 

d

S
C

0 .                                                  (3.12) 

 

 We calculate the capacitance of a cylindrical capacitor consisting of two 

hollow coaxial cylinders with radii 1r  and 2r  ( 12 rr  ) inserted one into the other. 

Neglecting edge effects, we assume the field to be radially symmetric and 

concentrated between the cylindrical plates. The potential difference between the 

plates is calculated from the formula for the field of a uniformly charged infinite 

cylinder with a linear charge density  

l

Q
  ,                                                   (3.13) 

where l  is the length of the plates.  
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The potential difference for the case then dielectric is placed between the plates 

is  

1

2

0
21 ln

2 r

r




  .                                      (3.14) 

 

Consequently, the expression for the capacitance of a cylindrical capacitor can 

be written in the following form  

 

1

2

0

ln

2

r

r

l
C


 .                                              (3.15) 

 

 Let us determine the capacitance of a spherical capacitor consisting of two 

concentric plates separated by a spherical dielectric layer. We use the formula for the 

potential difference between two points located at distances 1r  and 2r  ( 12 rr  ) from 

the centre of a charged spherical surface. Taking into account the presence of a 

dielectric between the plates, the potential difference is 











210
21

11

4 rr

Q


 .                               (3.16) 

 

Then we obtain for the capacitance of the spherical capacitor  

 

12

21
04

rr

rr
C


  .                                      (3.17) 

 

 It follows from the above formulas that the capacitance of capacitors of any 

shape is directly proportional to the dielectric constant of the dielectric filling the 

space between the plates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

  

  

А  В  

nС  

2С  

1С  

 

Figure 3.2. Parallel connection of capacitors. 
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Therefore, the use of ferroelectrics as a layer significantly increases the 

capacitance of capacitors. Capacitors are characterized by breakdown voltage, i.e. the 

potential difference between the capacitor plates, at which breakdown occurs. An 

electric discharge through a dielectric layer in a capacitor is called a breakdown. The 

breakdown voltage depends on the shape of the plates, the properties of the dielectric 

and its thickness.  

To increase capacitance and vary its possible values, capacitors are connected 

to batteries, using their parallel and serial connection.  

1. Parallel connection of capacitors (Figure 3.2). Parallel connected capacitors  

are characterized by the same potential difference BA    between the capacitor 

plates. We denote the capacities of the capacitors as follows nCCC ,...,, 21 .  

Capacities charges are  

 BACQ   11 , 

 BACQ   22 ,     

…………………… 

 BAnn CQ                                            (3.18) 

 

The charge of the capacitor bank is 

  




n

i

BAni CCCQQ

1

21 ...  .                           (3.19) 

 

The total battery capacity is  

 









n

i

in
BA

CCCC
Q

C

1

21 ...


,                          (3.20) 

 

that is, when the capacitors are connected in parallel, it is equal to the sum of the 

capacitances of the individual capacitors. 

2. Serial connection of capacitors (Figure 3.3). A battery of series-connected 

capacitors is characterized by equal charges on all plates.  

 

 

 

 

 

 

 

 

 

 

 

        

  

1
  2  

3  
n  

1
C  2C  

3C  
nC  

 

Figure 3.3. Serial connection of capacitors. 
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The potential difference in this case is 





n

i

i

1

 .                                            (3.21) 

 

The potential difference for any of the capacitors is  

 

i
i

C

Q
 .                                                (3.22) 

On the other hand,  














n

i iC
Q

C

Q

1

1
 ,                                      (3.33) 

whence  














n

i iCC
1

11
,                                             (3.34) 

 

that is, when the capacitors are connected in series, the quantities inverse to the 

electric capacitances are added up. Thus, with a series connection of capacitors, 

the resultant capacitance C is always less than the smallest capacitance used in 

the battery.  

3.4. Electrostatic Field Energy 

 

A. The energy of electric field generated by a system of fixed point charges. 

Electrostatic forces of interaction are conservative forces; therefore, the system of 

charges has potential energy. Let us find the potential energy of a system of two fixed 

point charges 1Q , and 2Q , which are at a distance of  r  from each other. Each of 

these charges has a potential energy  

 

      1211 QW  , 

2122 QW                                                 (3.35) 

 

where 12  and 21  are, respectively, the potentials created by the charge 2Q  at the 

point of location of the charge 1Q  and the charge 1Q  at the location of the charge 2Q . 

For potential 12  formulas   

r

Q2

0
12

4

1


                                             (3.36) 

and  

r

Q1

0
21

4

1


                                             (3.37) 

are valid.  
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That's why  

WWW  21                                             (3.38) 

and  

 212121212121
2

1
 QQQQW  .                    (3.39) 

 

Adding charges 3Q , 4Q ,... to the system of two charges, we can verify that in 

the case of n  stationary charges, the interaction energy of the system of point charges 

is  

i

n

i

iQW 




1
2

1
,                                        (3.40) 

 

 where i  is the potential created by all charges except the iQ  at the point where the 

charge iQ  is located.  

B. The energy of electric field generated by a charged solitary conductor. Consider a 

solitary conductor whose charge, capacity and potential, respectively, are ,, CQ . 

Let us increase the charge of this conductor by dQ . To do this, it is necessary to 

transfer the charge dQ  from infinity to a solitary conductor, performing a work equal 

to  

 dCdQdA  .                                 (3.41) 

 

The work that needs to be done to increase the potential from 0 to   is  

2

2

0





C

dCA   .                                 (3.42) 

The energy of a charged conductor is equal to the work that must be done to 

charge this conductor  

C

QQC
W

222

22




.                                (3.43) 

 

C. The energy of electric field generated by a charged capacitor. Like any charged 

conductor, the capacitor has an energy that is  

 

 
C

QQC
W

222

22










 ,                                (3.44) 

where Q  is the charge of the capacitor,  

   C  is its capacitance,  

     is the potential difference between the plates of the capacitor. 
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 We transform the formula expressing the energy of a flat capacitor, using the 

expression for the capacitance of a flat capacitor 
d

C
0  and the potential difference 

between its plates Ed . Then we get  

 

V
E

Sd
E

W
22

2
0

2
0 

  ,                                (3.45) 

 

where SdV   is the volume of the capacitor.  

The formula shows that the energy of the capacitor is expressed in terms of the 

value characterizing the electrostatic field, namely through the intensity of the 

electrostatic field. The volume energy density of the electrostatic field (energy per 

unit volume) is 

22

2
0 EDE

V

W



 .                                     (3.46) 

 

Test questions 

 

1. Explain the absence of an electric field inside the conductors using energy 

balance. 

2. Can the equipotential surface and the conductor surface intersect? 

3. Set the value of the electric displacement inside the conductor. 

4. What is the value of the electrical displacement inside the conductor? 

5. What factors determine the value of the modulus of the electric field intensity 

vector on the surface of the conductor? 

6. Give the definition of induced charges. 

7. Describe the phenomenon of electrostatic induction. 

8. Does the cavity inside the conductor affect on the arrangement of the charges? 

9. Explain the principle of electrostatic protection. 

10. What character has the dependence of the potential of a solitary capacitor on 

the charge located on it? 

11. Does the potential of a solitary capacitor affect its electrical intensity? 

12. Write the defining formula for the potential of the solitary sphere. 

13. Describe the capacitor device. 

14. Why can we neglect edge effects on capacitor plates? 

15. Build a graph of the electric capacitance of a flat capacitor on the distance 

between its plates. 

16. Calculate the relative change in potential difference on the plates of a 

cylindrical capacitor with a decrease in the relative dielectric constant of the 

substance between its plates by 2 times. 

17. Write the formula for the electrical capacitance of a spherical capacitor. 

18. What are the reasons for using serial and parallel capacitor connections? 

19. Calculate the capacity of four identical capacitors connected in series. 
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20. Write the formula for the energy of a charged conductor, using the values of its 

electric charge and potential. 

 

              Problem-solving examples 
 

Problem 3.1  

 

Problem description. The capacitance of the two capacitors are respectively 

FC 31  , FC 72  .  These capacitors are charged to voltage VU 1001  and 

VU 1502  . Determine the voltage on the capacitor plates after their connection. 

 

Known quantities: FC 31  , FC 72  , VU 1001  , VU 1502  . 

 

Quantities to be calculated: 2U . 

 

Problem solution. The charges of the capacitors before they were connected to each 

other were equal: 

 

111 UCQ  , 222 UCQ  ,                                   (3.1.1) 

 

where Q  is the electric charge on the capacitor plate, 

U  is the voltage on the capacitor plates, 

indices 1 and 2 correspond to the states of capacitors before and after their 

connection. 

For the case when the capacitors are connected in parallel with oppositely 

charged plates, the total charge on the capacitor plates will be equal to:  

 

112212 UCUCQQQ  .                             (3.1.2) 

 

Since, when they are connected in parallel, the capacitance of capacitors is  

 

21 CCC  ,                                          (3.1.3) 

 

the voltage on the plates of capacitors after their connection is 

 

V
CC

UCUC

C

Q
U 75

21

1122
2 




 .                          (3.1.4) 

 

Answer. the voltage on the capacitor plates after their connection is VU 752  . 
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Problem 3.2  

 

Problem description. Flat air capacitor with a capacity of pFC 151   is charged to 

a voltage of  VU 5001  . After disconnecting the capacitor from the voltage source, 

the distance between the plates of the capacitor was increased by 3 times. Determine 

the following values: 1) potential difference on the capacitor plates after increasing 

the distance between them; 2) the work of external forces that must be done to 

increase the distance between the plates. 

 

Known quantities: pFC 151  , VU 5001  , 12 3dd  . 

 

Quantities to be calculated: 2U , A . 

 

Problem solution. Due to the fact that the capacitor was disconnected from the 

source, the charges Q  on its plates before and after the connection are equal  

 

21 QQ  .                                     (3.2.1) 

 

Therefore, for the voltage U  on the plates of the capacitor and the electric 

capacity С  we get 

 

UCQ  , 

 2211 CUCU  , 

12 3dd  ,  

33

1

1

0

2

0
2

C

d

S

d

S
С 


,                           (3.2.2) 

 

where   is the dielectric constant of the substance between the plates, 

          0  is the electric constant, 

          S  is the capacitor plate area, 

          d  is the distance between the capacitor plates, indices 1 and 2 

correspond to the states of the capacitor before and after increasing the 

distance between the plates. 

The voltage on the capacitor plates after increasing the distance between them 

is equal to 

 

 
VU

C

CU

C

CU
U 15003

3/
1

1

11

2

11
2  .            (3.2.3) 

 

The work of external forces, which must be done in order to push the plates of 

the capacitor to a distance of 2d , is equal to:  

 



 56 

J
UCUC

WWWA ppp
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2
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12 1075.3
22

 ,  (3.2.4) 

 

where pW  is the potential energy of the electric field between the capacitor plates. 

 

Answer. The potential difference on the capacitor plates after increasing the distance 

between them is VU 15002  . The work of external forces that must be done to 

increase the distance between the plates is JA 61075.3  . 

 

Problem 3.3 

 

Problem description. A metal sphere with an electrical capacity of pFC 5.4  is 

charged up to a potential of kV2.1 . Determine the electric field energy enclosed 

in the spherical layer between the sphere and the spherical surface concentric with it, 

whose radius is 4 times larger than the radius of the metal sphere. 

 

Known quantities: pFC 5.4 , kV2.1 . 

 

Quantities to be calculated: W . 

 

Problem solution. The electric field strength in a spherical layer is equal to 

 

2
04 r

Q
E


 ,                                        (3.3.1) 

 

where Q  is the electric charge of the metal sphere, 

           0  is the electrical constant, 

           r  is the distance from the charge to the center of the metal sphere. 

 Then the volume density of the electric field energy in a spherical layer is equal 

to 

2

2
0E

  .                                              (3.3.2) 

 

Substitute the expression for the electric field strength E  in the formula for the 

bulk energy density of the electric field  

 

  
4

0
2

222
00

322

4/

r

QrQ




  .                              (3.3.3) 

 

The elementary volume of the spherical layer is equal to 
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drrdV 24 .                                           (3.3.4) 

 

The energy of a spherical layer with an inner radius of Rr 1  and an outer 

radius of Rr 42   is  
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 .                 (3.3.5) 

 

 

Electrical intensity of the metal sphere equals 

 

RС 04 .                                          (3.3.6) 

 

Then the relationship between the energy of the electric field and the electric 

capacity is 

 

С

Q
W

8

3 2

                                             (3.3.7) 

 

In addition, for electric charge and potential we get 

 

CQ  .                                              (3.3.8) 

 

Consequently, the energy of the electric field, which is in the spherical layer 

between the sphere and the spherical surface concentric with it, is equal to 

 

J
C

C

C
W 6

222

1043.2
8

3

8

3 


.                 (3.3.9) 

 

Answer. The electric field energy enclosed in the spherical layer between the sphere 

and the spherical surface concentric with it is JW 61043.2  . 

 

         Problems 

Problem A  

 

Problem description. A capacitor filled with a substance with a dielectric constant of 

2  was charged to voltage VU 2201   and disconnected from the source. The 
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dielectric was removed from the capacitor and doubled the distance between the 

plates. Calculate the voltage 2U  on the capacitor plates. 

 

Answer. VU 2
2 108.8  . 

 

Problem B  

 

Problem description. The radius of the inner plate of a spherical air condenser is 

cmR 21  , and the radius of the outer plate is cmR 62  . A potential difference of 

VU 400  is applied between the spheres. Determine the energy of this capacitor 

after filling the space between the plates with paraffin with a dielectric constant of 

2 . 

 

Answer. JW 7103.5  . 

 

Problem C  

 

Problem description. In parallel to three series-connected capacitors 

FССC 36.0321  , two series-connected capacitors FC 2.04   and 

FC 3.05   are connected. Calculate the electrical capacity of this capacitor bank. 

 

Answer. FС 71024.1  . 

 

Problem D  

 

Problem description. A constant voltage of VU 113  is applied to the flat square-

faced air condenser. The side of the square is cma 10 . The width of the gap is 

mmd 8.0 . The capacitor is lowered into the water ( 81 ) at a constant speed of 

sm /1 . What current flows in this circuit? 

 

Answer. AI 81085.8  . 

 

Problem E  

 

Problem description. A voltage of VU 20  is applied to the plates of a cylindrical 

capacitor. The radii of the coaxial cylinders forming the capacitor are mmR 41   and 

mmR 162  . Calculate the surface charge densities on each plate. 

 

Answer.
28

1 /10192.3 mС , 
29

2 /1098.7 mС . 

 



 59 

CHAPTER 4. LAWS OF DIRECT CURRENT 
 

4.1. Quantitative Characteristics of Electric Current 

 

 Section, which deals with phenomena and processes caused by the movement 

of electric charges or macroscopic charged bodies, is called electrodynamics. The 

most important concept in electrodynamics is the concept of electric current. Any 

ordered (directed) motion of electric charges is called an electric current. Free 

electrical charges of the conductor under the action of the applied electric field move 

both along the field (for positive charges) and against the field (for negative charges). 

Consequently, an electric current appears in the conductor. This current is called the 

conduction current. The ordered motion of electric charges can be cased by the 

displacement of a charged macroscopic body in the space. An orderly movement of 

this type is called convection current [2]. 

 For the appearance and existence of an electric current, it is necessary to fulfil 

two conditions. 1. The presence of free carriers i.e. charged particles, capable of 

moving in an orderly manner. 2. The presence of electric field which energy is spent 

on ordered movement of free carriers. The direction of the ordered motion of positive 

charges coincides with the direction of the current.  

 The current strength (current) is a quantitative measure of the electric current. 

The scalar physical quantity determined by the electric charge passing through the 

cross section of the conductor per unit time is called the current strength (current)  

 

dt

dQ
I  .                                                 (4.1) 

 

Direct current (DC) is the unidirectional flow of electric charge. Direct current 

is determined by formula  

t

Q
I  ,                                                  (4.2) 

 

where Q  is the electric charge passing through the fixed cross section of the 

conductor.  

 The physical quantity determined by the strength of the current passing through 

the unit of the cross-sectional area of the conductor perpendicular to the direction of 

the current is called the current density  




dS

dI
j .                                             (4.3) 

 

 We express the force and current density through the velocity   of the 

ordered motion of charges in the conductor. Suppose that a carriers concentration is  

n  and each carrier has an elementary charge e  (which is not necessary for ions). 

During time dt , the charge  

SdtnedQ                                     (4.4) 
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is passed through the conductor cross-section S . The current strength is  

 

Sne
dt

dQ
I   ,                                (4.5) 

and the current density is  

 


nej .                                     (4.6) 

 

The current density is a vector that is oriented along the direction of the 

current, that is, the direction of the vector coincides with the direction of the ordered 

motion of the positive charges.  

 The current through an arbitrary surface is defined as the flux of the vector j


, 

i.e.  


S

SdjI


,                                         (4.7) 

where dSnSd


  ( n


 is the unit normal vector to the area dS ); 

              is the angle between the normal n


 and the vector j


. 

4.2. Extraneous Forces. Electromotive Force and Tension 

 

 The presence only the forces of the electrostatic field in the electric circuit 

leads to the carriers transport (they are assumed to be positive) from points with a 

large potential to points with a smaller potential. This will lead to equalization of the 

potentials at all points of the circuit and to the disappearance of the electric field. 

Therefore, for the existence of a direct current, it is necessary to have in the circuit a 

device capable of creating and maintaining a potential difference due to the operation 

of forces of non-electrostatic origin. Such devices are called current sources. Forces 

of non-electrostatic origin, acting on charges from current sources, are called 

extraneous forces. 

 The nature of extraneous forces can be different. For example, in galvanic cells 

these forces arise due to the energy of chemical reactions between electrodes and 

electrolytes; in the generator, extraneous forces arise due to the mechanical energy of 

rotation of the generator of the generator, and so on. The role of the current source in 

the electrical circuit is the same as, for example, the role of the pump, which is 

necessary for pumping fluid in the hydraulic system. Under the action of extraneous 

forces, the electric charges move inside the current source against the forces of the 

electrostatic field, due to which the potential difference is maintained at the ends of 

the circuit and a constant electric current flows in the circuit.  

 The work on moving electric charges is performed by extraneous forces. The 

physical quantity, which is determined by the work done by extraneous forces when 

moving a single positive charge, is called the electromotive force (EMF)  

0Q

A
 .                                              (4.8) 
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The value   can also be called the electromotive force of the current source 

included in the circuit.  The term "electromotive force" is used as a characteristic of 

extraneous forces. EMF, as well as potential, is expressed in volts. The extraneous 

force eF


 acting on the charge 0Q  can be expressed as  

 

0QEF ee


 ,                                       (4.9) 

 

where eE


 is the intensity of the electric field of the extraneous forces. The work of 

third-party forces on charge 0Q  transfer on a closed circuit segment is equal to 

 

  ldEQldFA e


0 .                                 (4.10) 

 

 Dividing the equation by 0Q , we obtain the expression for the EMF acting in 

the circuit  


2

1

ldEe


 .                                       (4.11) 

 

The EMF acting in a closed circuit can be defined as the circulation of the  

field vector of extraneous forces. The EMF acting on section 1 – 2 of the electrical 

circuit is 


2

1

12 ldEe


 .                                      (4.12) 

 Electrostatic field forces  

EQFc


0                                         (4.13) 

 

also act on the charge 0Q  in addition to extraneous forces. Thus, the resultant force 

acting on the charge 0Q  in the electrical circuit is  

 

 EEQFFF ece


 0 .                                (4.14) 

 

The work done by the resultant force over charge 0Q  in section 1-2 is 

 

2

1

2

1

0012 ldEQldEQA e


.                                (4.15) 

In this case, the formula  

 21012012   QQA                                 (4.16) 

 

is valid. The work of electrostatic forces for a closed circuit is zero, so in this case 
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12012 QA  .                                           (4.17) 

 

The physical quantity determined by the work done by the total field of 

electrostatic (Coulomb) and extraneous forces when a unit positive charge moves on 

a given section of the circuit is called the voltage U  in this section. Thus, for the 

voltage we get  

122112  U .                                    (4.18) 

 

The concept of voltage is a generalization of the concept of potential 

difference. The voltage at the ends of the section of the circuit is equal to the potential 

difference if there is no EMF on this section, that is, there are no extraneous forces. 

4.3. Ohm's Law. Conductor Resistance 

 

 German physicist Georg Simon Ohm (1789 – 1854) experimentally found that 

the current I  passing through a homogeneous metallic conductor (i.e., a conductor in 

which the extraneous forces do not act) is proportional to the voltage U  at the ends of 

the conductor 

R

U
I  ,                                             (4.19) 

 

 where R  is the electrical resistance of the conductor. The equation expresses the 

Ohm's law for the circuit section (which does not contain the source of the 

electromotive force): the current in the conductor is directly proportional to the 

applied voltage and inversely proportional to the resistance of the conductor. A 

homogeneous linear conductor is characterized by a resistance R  that is directly 

proportional to its length l  and inversely proportional to its cross-sectional area S : 

 

S

l
R


 ,                                               (4.20) 

 

where   is the coefficient of proportionality characterizing the material of the wire 

and is called the resistivity.  

Ohm's law can be represented in a differential form  

 

l

U

l

U

S

I






















1
 ,                                    (4.21) 

 

where the value of  , the reciprocal of the resistivity, is caused by the specific 

electrical conductivity of the conductor substance.  

Considering that 

E
l

U
                                                (4.22) 



 63 

is the intensity of the electric field in the conductor, and 

 

j
S

I
                                                  (4.23) 

 

is the current density, Ohm's law can be written in the form  

 

Ej  .                                                (4.24) 

 

Since in an isotropic conductor the current carriers at each point move in the 

direction of the vector E


, the directions j


 and E


 coincide. Therefore, the following 

formula holds  

Ej


 .                                                 (4.25) 

 

The last expression is Ohm's law in differential form, connecting the current 

density at any point inside the conductor with the electric field intensity at the same 

point. This relation is also valid for variable fields. Experience shows that, in the first 

approximation, the change in resistivity and, consequently, in resistance, with 

temperature is described by a linear law  

 t  10                                                (4.26) 

or  

 tRR  10 ,                                      (4.27) 

 

 where   and 0 , R  and 0R  are respectively the resistances and resistivity of the 

conductor at t  and C0 ,   is the temperature coefficient of resistance, for pure 

metals (at not very low temperatures) close to 1/273 K–1. The temperature 

dependence of the resistance can be represented in the form  

 

TRR 0 ,                                         (4.28) 

 

where T  is the thermodynamic temperature. The qualitative temperature dependence 

of the resistance of the metal is shown in Figure 4.1 (curve 1). Subsequently, it was 

found that the resistance of many metals (for example, ZnPbAl ,,  etc.) and their 

alloys at very low temperatures  KTk 2014,0  , called critical temperatures, which 

are characteristic of each substance, abruptly decreases to zero (Figure 4.1, curve 2), 

i.e. metal becomes an absolute conductor.  
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For the first time this phenomenon, called superconductivity, was discovered 

by Dutch physicist Heike Kamerlingh Onnes (1853 – 1926) for mercury. The 

phenomenon of superconductivity is explained on the basis of quantum theory. The 

principle of action of resistance thermometers is based on the dependence of the 

electrical resistance of metals on temperature. Resistance thermometers allow to 

measure the temperature with accuracy up to 0,003 K according to the graded 

relationship of resistance to temperature. The use of semiconductors, prepared 

according to a special technology as the working substance of resistance 

thermometers, makes it possible to measure temperatures in millionths of kelvin. 

Such resistance thermometers are called thermistors. Thermistors are used to measure 

temperatures in the case of small dimensions of semiconductors.  

4.4. Joule–Lenz Law 

 

 Let us consider a homogeneous conductor. Constant voltage U  is applied to 

the ends of this conductor. Through the cross section of the conductor, a charge  

 

Idtdq                                                   (4.29) 

 

is transferred during a time of dt . Since the current represents the charge dq  transfer 

under the action of the electric field the work done by current is equal to 

 

IUdtUdqdA  .                                        (4.30) 

 

In the assumption that the resistance of the conductor is equal to R  we get  

 

dt
r

U
RdtIdA
















2
2 .                                 (4.31) 

 

In this case the power of the current is 

R  

KT ,  KT  

1 

2  

 
Figure 4.1. Temperature dependence of resistance for metals. 
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R

U
RIUI

dt

dA
P

2
2  .                                 (4.32) 

 

If the current passes through a fixed metal conductor, then all the work  is 

performed to heat this conductor. According to the law of conservation of energy we 

get  

dAdQ                                                  (4.33) 

 

or, using the previously mentioned relationships  

 

dt
R

U
RdtIIUdtdQ

2
2  .                                (4.34) 

 

The last expression represents Joule-Lenz law. This law appeared thanks to the 

studies of English physicist James Prescott Joule (1818 – 1889). 

 We select an elementary cylindrical volume dSdldV   in the conductor (the 

axis of the cylinder coincides with the direction of the current), whose resistance is 

 











dS

dl
R  .                                                (4.35) 

 

According to the Joule-Lenz law we obtain  

 

  dVdtjdtjdS
dS

dl
RdtIdQ 222 


                                 (4.36) 

 

Therefore, the heat will be released in this volume during the time dt . 

 The amount of heat that is released per unit of volume per unit time is called 

the specific thermal power. It is equal to  

 
2j  .                                               (4.37) 

 

Using the differential form of Ohm's law 

 
Ej                                                             (4.38) 

and the relation 

 /1 ,                                               (4.39) 

we obtain  
2EjE   .                                           (4.40) 

 

These formulas are a generalized expression of the Joule-Lenz law in 

differential form, they are suitable for any conductor.  
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4.5. Ohm's Law for the Inhomogeneous Section of the Circuit 

 

 We consider an inhomogeneous section of the circuit where the actual EMF in 

section 1-2 is denoted by 12 , and the potential difference applied at the ends of the 

section will be denoted by 21   .  

 If the current passes through the fixed conductors forming section 1-2, then the 

work 12A  of all forces (extraneous and electrostatic) performed over the current 

carriers, according to the law of conservation and transformation of energy, is equal 

to the heat released in this section. The work performed when the charge 0Q  is 

moved in section 1-2, is  

 21012012   QQA .                                (4.41) 

 

EMF 12  as well as the current I  is a scalar quantity. EMF must be taken 

either with a positive or a negative sign, depending on the sign of the work performed 

by external forces. If the EMF facilitates the movement of positive charges in the 

chosen direction (direction 1-2), then 012  .  The amount of heat that is released in 

the conductor during time t  is  

  0
2 IRQItIRRtIQ  .                                (4.42) 

For the quantity IR  we obtain  

  1221  IR ,                                    (4.43) 

then  

R
I 1221  
 .                                       (4.44) 

 

The expression for I  is the Ohm's law for the inhomogeneous section of a 

circuit in integral form, which is a generalized Ohm's law. For the case when there is 

no current source in this section of the circuit ( 012  ), we obtain Ohm's law for a 

homogeneous part of the circuit  

 
R

U

R
I 


 21 

                                       (4.45) 

 

Voltage U  at the ends of the section is equal to the potential difference in the 

absence of extraneous forces. For the case when the electrical circuit is closed, i.e. the 

selected points 1 and 2 are the same ( 21   ) we obtain Ohm's law for a closed chain  

R
I


  ,                                               (4.46) 

where   is the EMF acting in the circuit,  

           R  is the total resistance of the entire circuit.  

In the general case the total resistance is 

 

1RrR  ,                                             (4.47) 
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where r  is the internal resistance of the EMF source,  

          1R  is the resistance of the external circuit.  

Therefore, Ohm's law for a closed chain will have the form  

1Rr
I





.                                              (4.48) 

If the circuit is open and, consequently, there is no current in it ( 0I ), then 

from Ohm's law we get that  

1212   ,                                            (4.49) 

 

i.e., the EMF acting in an open circuit is equal to the potential difference at its ends. 

Therefore, in order to find the EMF of the current source, it is necessary to measure 

the potential difference when the circuit is open.  

4.6. Kirchhoff's Laws  

 

 The generalized Ohm's law allows us to calculate almost any complex chain. 

However, the direct calculation of branched chains containing several closed contours 

(contours can have common areas, each of the circuits can have several sources of 

EMF, etc.) is rather complicated. This problem is solved more simply with the help of 

two Kirchhoff’s laws. These laws were established by German physicist Gustav 

Robert Kirchhoff (1824 – 1887). 

 The Kirchhoff’s first law: the algebraic sum of currents converging at a node is 

zero  

 

k

kI 0 .                                              (4.50) 

 

Figure 4.2 presents the scheme for the Kirchhoff’s first law. According to this 

scheme we can write  

 

054321  IIIII .                                (4.51) 

 

 The Kirchhoff’s first law is based on the law of conservation of electric charge. 

Indeed, in the case of steady-state direct current, no electrical charges should 

accumulate at any point in the conductor and in any of its sections. Otherwise, the 

currents could not remain constant.  

The Kirchhoff’ second law is based on the generalized Ohm's law for branched 

chains. Consider a contour consisting of three sections (Figure 4.3). The direction of 

the clockwise rotation will be taken as positive, noting that the choice of this 

direction is completely arbitrary. All currents that coincide in direction with the 

direction of contour traversal are considered positive, and currents that do not 

coincide with the direction of traversal are considered negative. 

The sources of EMF are considered positive if they create a current directed 

towards the contour traversal. Applying Ohm's law to the sections, we can write  
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111   BARI  

222   CBRI  

333   ACRI                                                  (4.52) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adding these equations, we obtain  

 

321332211   RIRIRI .                                (4.53) 

 

The resulting equation expresses Kirchhoff's second law: in any closed contour 

arbitrarily chosen in a branched electrical circuit, the algebraic sum of the products of 

the currents by the resistances of the corresponding sections of this circuit is equal to 

the algebraic sum of the EMF encountered in this contour  

 

 
i k

kii RI  .                                         (4.54) 

 

 Additional rules should be taken into account.  

1. It is necessary to select an arbitrary direction of currents on all sections of the 

circuit. The actual direction of the currents is determined when solving the 

problem. If the desired current is positive, then its direction was chosen 

correctly, and if the current value is negative, then its true direction is opposite 

to the chosen one.  

2. It is necessary to choose the direction of circumvention and strictly adhere to it. 

The product IR  is positive if the current in this section coincides with the 

direction of the circumvention, and vice versa. The EMF values acting in the 

selected circumvention direction are considered positive, and those acting 

against the bypass direction are considered negative.  

3. The number of equations that are compiled according to Kirchhoff’s laws must 

be equal to the number of unknown quantities. The system of equations should 

include all the resistance and EMF of the electrical circuit. Each contour must 

1I  

5I  

4I  

3I  

2I  

 

 

B  

A  C  

111 ,, IRE  
222 ,, IRE  

333 ,, IRE  

 Figure 4.2. Scheme for the 

Kirchhoff’s first law. 

Figure 4.3. Scheme for the 

Kirchhoff’s second law. 
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contain at least one element that is not contained in the previous outlines. 

Otherwise, we obtain equations that are a simple combination of already 

compiled ones.  

Test questions 

 

1. Can any movement of electric charges be called an electric current? 

2. List the conditions under which a convection current occurs. 

3. What conditions are necessary for the appearance and maintenance of any 

electrical current? 

4. Does the current depend on the cross-section area of the conductor? 

5. Give the units of current density. 

6. Specify the direction of current density. 

7. Describe the main task for which the current sources are intended. 

8. Give some examples of extraneous forces. 

9. Write the formula by which the electromotive force is determined. 

10. Indicate the functional relationship between the electromotive force and the 

electric field intensity. 

11. Specify the components of the resultant force that acts on the charge in the 

electrical circuit. 

12. Determine the voltage in the electrical circuit. 

13. In which case the voltage is equal to the potential difference at the ends of the 

circuit? 

14. Formulate Ohm's law. 

15. Calculate the relative change in resistance of the conductor if its cross section 

decreases four times. 

16. Explain the phenomenon of superconductivity. 

17. What is the difference between thermistors and ordinary thermometers? 

18. Formulate the Joule law. 

19. Specify the conditions under which instead of the generalized Ohm's law, we 

can apply Ohm's law for a homogeneous section of the circuit. 

20. List the laws on which the first and second Kirchhoff rules are based. 

 

Problem-solving examples 
 

Problem 4.1  

 

Problem description. Resistance, voltmeter and current source are connected in 

parallel. The amount of resistance is  61R . The voltmeter voltage is VU 121  . If 

one increase the resistance to 152R , then the voltmeter will show the voltage 

VU 142  . Determine the EMF and internal resistance of the current source. The 

current through the voltmeter is neglected. 

 

Known quantities:  61R , VU 121  , 152R , VU 142  . 
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Quantities to be calculated:  , 0R . 

 

Problem solution. The current through the voltmeter can be neglected. Consequently, 

the current through the resistance is equal to the current through the current source. 

Ohm’s law for a complete chain is 

0RR
I





,                                             (4.1.1) 

 

where 0R  is the internal source resistance, 

           R  is load resistance, 

            I  is a current. 

We write the formulas for the forces of currents with different resistances 1R  and 2R  

 

01
1

RR
I





,                                             (4.1.2) 

02
2

RR
I





.                                             (4.1.3) 

 

These resistances provide voltages 1U  and 2U  

 

111 RIU  , 

222 RIU  .                                              (4.1.4) 

 

Use Ohm's law and write down the ratio for the currents 

 

01

02

2

1

RR

RR

I

I




 .                                             (4.1.5) 

Rewrite the last equation 

 

02220111 RIRIRIRI  ,                                  (4.1.6) 

then 
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R .                       (4.1.7) 

 

Using the expression for Ohm's law, we find the EMF 

 

   01
1

1
011 RR

R

U
RRI  .                              (4.1.8) 

Substitute the numerical values in the formulas for resistance and EMF 
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 87.10R , V75.15 .                                    (4.1.9) 

 

Answer. The EMF is V75.15 . The internal resistance of the current source is 

 87.10R . 

 

Problem 4.2  

 

Problem description. The current in the conductor increases uniformly from 01 I  to 

AI 62   during the time interval 01 t , st 5.12  . Conductor resistance equals 

 20R . Determine the amount of heat that will be released in the conductor during 

the time interval 01 t , st 2.13  . The temperature dependence of the conductor 

resistance is neglected. 

 

Known quantities: 01 I , AI 62  , 01 t , st 5.12  ,  20R , st 2.13  . 

 

Quantities to be calculated: Q . 

 

Problem solution. We write the Joule-Lenz law for thermal power that will stand out 

on the resistance 

RIP 2 ,                                                     (4.2.1) 

 

where I  is the current that passes through the resistance, 

           R  is the resistance value. 

The amount of heat dQ , which is formed during the time interval  dttt ,  

equals  

RdtIPdtdQ 2 .                                             (4.2.2) 

 

The current increases evenly, i.e. is a linear function of time 

 

batI  .                                             (4.2.3) 

 

At the initial moment of time 01 t , the current strength is zero 01 I , 

therefore 0b , thus 

atI  .                                                (4.2.4) 

 

The coefficient "a" we find from the condition that AI 42   at st 22  : 

 

22 atI  .                                              (4.2.5) 

 Then we get 
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sA
t

I
a /4

2

2  .                                        (4.2.6) 

 

 Now we can find the amount of heat that will stand out in the conductor 

 

 3
1

3
3

2
222

3

3

1

3

1

tt
Ra

dttRaRdtIQ

t

t

t

t

  .                     (4.2.7) 

 

Substitute the numerical values 

 

JQ 3.184 .                                       (4.2.8) 

 

Answer. The amount of heat that will be released in the conductor is JQ 3.184 . 

 

Problem 4.3  

 

Problem description. Determine the average speed of the ordered movement of 

electrons in a copper conductor with a current of AI 12  and a conductor cross 

section of 21mmS  . Assume that for each copper atom there are two conduction 

electrons. 

 

Known quantities: AI 12 , 21mmS  . 

 

Quantities to be calculated:  . 

 

Problem solution. The current density j  in a conductor is by definition equal 

to 

S

I
j  .                                             (4.3.1) 

 

 On the other hand, the relationship for current density can be obtained through 

the average speed of charge carriers in a conductor (electrons)   and the carrier 

concentration (number of carriers per unit volume of the conductor) n  using the 

expression  

enj  ,                                             (4.3.2) 

 

Where e  is an elementary charge ( Ce 19106.1  ). 

Equating the right parts of the obtained formulas, we obtain the expression for 

the average speed  
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enS

I
 .                                             (4.3.3) 

 

 The electron concentration is found from the following considerations.. First, 

from the periodic table we find the molar mass of copper: molkgM /1064 3 . 

One mole of any substance contains 231002.6 AN  atoms (Avogadro number).  

The volume of one mole of copper is equal to 

 

/MV  ,                                             (4.3.4) 

 

Where   is the density of copper ( 33 /1093.8 mkg ). 

Therefore, the number of copper atoms per unit volume will be equal to  

 

M

N

V

N
n AA 

0 .                                             (4.3.5) 

 

 Since for each copper atom there are two conduction electrons, the 

concentration of conduction electrons will be equal to 02nn  . As a result, the 

average electron velocity is: 

S

I

Ne

M

A


2
 .                                             (4.3.6) 

 

 Substituting numerical values into this formula, we get sm /1046.4 4 . 

 

Answer. The average speed of the ordered movement of electrons in a copper 

conductor sm /1046.4 4 . 

 

Problems 
 

Problem A  

 

Problem description. The voltage on the tires of the power station is kVU 6.6 . The 

consumer is at a distance of kmL 10 . Determine the cross-sectional area S  of 

copper wire, which should be taken for the device of a two-wire transmission line, if 

the current in the line is AI 20  and the voltage loss in the wires should not exceed 

3%. 

 

Answer. 251042.3 mS  . 

 

Problem B  
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Problem description. A coil with a resistance of  1.0R  was connected to a current 

source with an EMF of VE 5.1 . The ammeter showed a current strength of 

AI 5.01  . When another current source with the same EMF was connected in series 

to a current source, the current strength in the same coil was AI 4.02  . Calculate the 

internal resistances of the first 1r  and second 2r  current sources. 

 

Answer.  9.21r ,  5.42r . 

 

Problem C  

 

Problem description. Three batteries with EMF VE 121  , VE 52  , VE 73   and 

the same internal resistance 1r , interconnected by the same poles. The resistance 

of the connecting wires is negligible. Determine the strength of the currents flowing 

through each battery. 

 

Answer. AI 31  , AI 42  , AI 13  . 

 

Problem D  

 

Problem description. A battery heater is attached to the battery terminals. The EMF 

of the battery is VE 24 , and the internal resistance is 1r . The heater included 

in the circuit consumes WP 80  power. Calculate the current I  in the circuit and 

the efficiency   of the heater. 

 

Answer. AI 4 , 83.0 . 

 

Problem E  

 

Problem description. A conductor, whose resistance is equal to  3R , passes a 

current, the strength of which increases. The amount of heat released in the conductor 

during time s8  is JQ 200 . Determine the amount of electricity that has flowed 

through the conductor during this time. At the time taken as the initial, the current in 

the conductor is zero. 

 

Answer. Cq 20 . 
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CHAPTER 5. MAGNETIC FIELD IN VACUUM 
 

5.1. Quantitative Description of Magnetic Field 

 

 Numerous experiments indicate the presence of a magnetic field both around 

permanent magnets and in the vicinity of moving charges and electric currents. The 

presence of a magnetic field is detected by force acting on conductors with current or 

permanent magnets. 

 The electric field acts on both static and electric charges moving in it. The 

magnetic field acts only on moving electric charges and this is its most important 

feature. The influence of the magnetic field on the electric current depends on the 

shape of the conductor and its location in space, as well as on the direction of the 

current. Therefore, in order to characterize the magnetic field, we must consider its 

effect on a certain current. Just as point charges were used in the investigation of an 

electrostatic field, a closed planar circuit with a current is used to study the magnetic 

field. The size of this circuit should be small compared to the distance to circuit.  

The orientation of the contour with current in space is characterized by the 

direction of the normal to the contour. The direction associated with the current by 

the rule of the right screw is adopted as the positive direction of the normal. The 

positive direction of the normal assumes the direction of the translational motion of 

the screw, whose head rotates in the direction of the current flowing in the contour. 

The magnetic field exerts an orienting action on the frame with the current, rotating it 

in a certain way. This result is associated with a certain direction of the magnetic 

field.  

The direction of magnetic field at a given point is taken along the positive 

normal to the contour (Figure 5.1).  

The direction of the magnetic field can also be related to the direction of the 

force that acts on the north pole of the magnetic needle placed at a given point.  

Since both poles of the magnetic needle lie at close points of the field, the 

forces acting on both poles are equal to each other.  

 

 

 

 

 

 

 

Consequently, a pair of forces acts on the magnetic needle, turning it so that the 

axis of the arrow that connects the south pole with the north pole coincides with the 

direction of the field.  

A contour with current can also be used for quantitative description of the 

magnetic field. Since the contour experiences the orienting action of the field, a pair 

 

S  N  

n


 I  

 

Figure 5.1. Magnetic field of circular current. 
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of forces acts on it in a magnetic field. The torque of the forces depends both on the 

properties of the field at a given point, and on the properties of the contour 

 

 BpM m


 ,                                                       (5.1) 

 

where B


 is the vector of magnetic induction, which is a quantitative characteristic of 

the magnetic field;  

           mp


 is the magnetic moment of the contour with current.  

The magnetic moment of a plane circuit with a current is  

 

nISpm


 ,                                                       (5.2) 

 

where S  is the surface area of the contour, 

           I  is the current,  

           n


 is the unit vector of the normal to the surface of the contour.  

The mp


 direction coincides, thus, with the direction of the positive normal. If 

we place contours with different magnetic moments at a given point of the magnetic 

field, then different torque acts on them, but the relation 
mp

M max  (
maxM  is the 

maximum torque) for all contours is the same and therefore can serve as a 

characteristic of the magnetic field. This characteristic  

 

mp

M
B max                                                      (5.3) 

is called magnetic induction. 

The magnetic induction at a given point of a homogeneous magnetic field is 

determined by the maximum torque acting on the contour with current. The rotational 

moment is maximum one, when the normal to the contour is perpendicular to the 

direction of the field. Since the magnetic field is a force field, it is, by analogy with 

the electric field, represented by lines of magnetic induction. The lines tangent to 

which at each point coincide with the direction of the vector B


 are called magnetic 

field lines. Their direction is given by the rule of the right screw: the screw head 

screwed in the direction of the current rotates in the direction of the magnetic field 

lines.  

 Magnetic field lines are always closed and cover conductors with current. 

Magnetic field lines differ from the electrostatic field lines, which are open (start on 

positive charges and end on negative ones).  

 The vector of magnetic induction B


 characterizes the resulting magnetic field 

created by all macro- and micro currents. In the case of the same current and other 

equal conditions the vector B


 in different media will have different values.  
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 The magnetic field of macro-currents is described by the magnetic field 

intensity vector H


. For the case of isotropic medium, the vector of magnetic 

induction is 

HB


0 ,                                                     (5.4) 

 

 where 0  is the magnetic constant,  

             is a dimensionless quantity, called the magnetic permeability.   

The magnetic permeability shows how many times the magnetic field H  of 

macro-currents is amplified by the field of micro currents in the medium. Comparing 

the vector characteristics of the electrostatic ( E


, and D


)  and magnetic ( B


, and H


)  

fields, we will point out that the vector B


 of magnetic field induction is analogous to 

the vector E


 of the intensity of the electrostatic field, since the vectors E


, and B


 

determine the force actions of these fields and determine the properties of the 

medium. The magnetic field intensity vector H


 is an analogy of the electric 

displacement vector D


. 

5.2. Biot-Savart Law 

  

 French physicist Jean-Baptiste Biot (1774 – 1862) and French physicist Félix 

Savart (1971 – 1841) established the basic experimental law relating the magnetic 

induction B


. The Biot-Savart law for a conductor with current I , whose element dl  

creates at some point A  the induction of the field Bd


, is written in the form  

 

 
3

0 ,

4 r

rldI
Bd







 ,                                           (5.5) 

 

 where ld


 is a vector whose modulus is equal to the length dl  of the element of the 

conductor and coincides in direction with the current, 

  r


 is the radius vector directed from the conductor element dl  to the point A  

of the field,  

             r  is the module of the radius vector r


.  

Assuming that linear superposition holds, the Biot-Savart law can be integrated 

to determine the magnetic-flux density due to various configurations of current-

carrying wires [9]. The direction of vector Bd


 is perpendicular to ld


 and r


, and 

coincides with the tangent to magnetic field lines. This direction can be found by the 

rule of determining the magnetic field lines direction (rule of the right screw): the 

direction of the screw head rotation gives the direction of the vector Bd


 if the 

translatory movement of the screw corresponds to the direction of the current in the 

element. 

 The  modulus of vector Bd


 is given by  
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2

0 sin

4 r

Idl
dB






 ,                                    (5.6) 

 

 where   is the angle between vectors ld


 and r


.  

The superposition principle is valid for both the magnetic field and the electric 

field: magnetic induction of the resultant field created by several currents or (and) 

moving charges is equal to the vector sum of the magnetic inductions of fields 

created by each current or (and) each moving charge 
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iBB
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
.                                               (5.7) 

 Determining the characteristics of the magnetic field ( B


 and H


) according to 

the above formulas is quite complicated in general case. However, if the current 

distribution has a certain symmetry, then the application of the Biot-Savart law 

together with the superposition principle allows us to calculate the specific fields 

quite simply. Consider two examples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. The magnetic field of straight current current-carrying wire, i.e. current passing 

through a thin straight wire of infinite length (Figure 5.2). At an arbitrary point A , 

which is located at a distance R  from the axis of the conductor, the vectors Bd


 from 

all elements of the current have the same direction perpendicular to the plane of the 

drawing ("to us"). Therefore, the addition of vectors Bd


 can be replaced by adding 

their moduli. As the integration constant, we choose the angle   (the angle between 

vectors ld


 and r


). We express all other quantities through this angle. Using the 

construction in Figure 5.2, we get  





 sin
,

sin

rd
dl

R
r  .                                        (5.8) 
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Figure 5.2. Magnetic field of straight current-carrying wire. 
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The radius of the arc CD  due to the smallness of dl  is r . The angle FDC  for 

the same reason can be considered straight. Taking into account the obtained 

expressions, we find that the magnetic induction created by element dl  of the 

conductor is  





d

R

I
dB sin

4

0 .                                  (5.9) 

 

Since the angle   for all elements of the straight current varies from 0  to  , 

then the formula 
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
                 (5.10) 

 

 is valid. Consequently, the magnetic induction of the forward current field is 

 

R

I
B

2

4

0




 .                                       (5.11) 

 

2. The magnetic field in the centre of a circular current loop (Figure 5.3). All 

elements of a circular conductor with a current create in the centre a magnetic fields 

of same direction along the normal from the current loop.  

 

 

 

 

 

 

 

 

Therefore, the addition of vectors Bd


 can be replaced by the addition of their 

modules. Since all the elements of the conductor are perpendicular to the radius 

vector ( 1sin  ) and the distance of all the elements of the conductor to the centre of 

the circular current is the same and equal R , then  
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Hence 
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Figure 5.3. Magnetic field in the centre of a circular current loop. 
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Consequently, the magnetic induction of the field at the center of the circular 

conductor with current is equal to  

R

I
B

2
0 .                                            (5.14) 

 

 The magnetic field exerts an orienting action on the contour with current. 

Consequently, the torque that is experienced by the contour is the result of the action 

of forces on its individual elements.  

Summarizing the results of studying the effect of a magnetic field on various 

conductors with current, French physicist André-Marie Ampère (1775 – 1836) 

established that the force Fd


  with which a magnetic field acts on an element of a 

conductor  dl  with a current  is directly proportional to the current I   and the vector 

product of  element  ld


 of the conductor per magnetic induction B


 (Ampère's force 

law):  

 BldIFd


, .                                         (5.15) 

5.3. Magnetic Field of Moving Charge 

 

 Each conductor with a current creates a magnetic field in the surrounding 

space. The electric current is an ordered movement of electric charges. Therefore, we 

can say that any charge moving in a vacuum or medium creates a magnetic field 

around itself. The motion of a charge with a constant velocity is called free motion. 

The law determining the field B


 of the point charge Q  moving freely with a 

nonrelativistic velocity 


 was established as a result of generalization of the 

experimental data. This law is expressed by the formula  

 

 
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rQ
B

 




 ,                                          (5.16) 

 

where r


 is the radius vector directed from the charge Q  to the observation point M .  

The vector B


 is directed perpendicular to the plane in which the vectors 


 and 

r


 are located, namely: its direction coincides with the direction of the translational 

motion of the right screw as it rotates from 


 to r


. The magnetic induction module 

is calculated by the formula  







sin

4 2

0

r

Q
B  ,                                   (5.17) 

 

where   is the angle between vectors 


 and r


. 

5.4. Lorentz Force 

 

 Experience shows that the magnetic field acts not only on conductors with 

current, but also on individual charges moving in a magnetic field. The force acting 
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on the electric charge Q , which moves in a magnetic field with a velocity of 


, is 

called the Lorentz force and is expressed by the formula 

 

 BQF


 ,                                            (5.18) 

 

where B  is the induction of the magnetic field in which the charge moves.  

The frmula (5.18) is named after the Dutch physicist Hendrik Antoon Lorenz 

(1853 – 1928). The direction of the Lorentz force is determined by the rule of the left 

hand: if the palm of the left hand is positioned so that the vector B


 enters it, and four 

straight fingers are directed along the vector 


 (for 0Q  directions I  and 


 

coincide , for 0Q  directions are opposite), then the bent thumb will show the 

direction of the force acting on the positive charge. The Lorentz force is always 

perpendicular to the velocity of the charged particle, so it changes only the direction 

of this velocity, without changing its modulus. Consequently, the Lorentz force does 

not perform the work. For the case when an electric field with intensity of E


 acts on 

a moving electric charge in addition to a magnetic field with induction B


, the 

resultant force F


 applied to the charge is equal to 

 

 BQEQF


 .                                       (5.19) 

 

This expression is called the Lorentz formula. The speed   in this formula is 

the charge velocity with respect to the magnetic field. 

5.5. Circulation of Magnetic Field Induction  

 

 Similarly to the circulation of the vector E


, we introduce the circulation of the 

vector B


. Circulation of vector B


 along a given closed contour is the integral 

 

 
L L

ldlBldB


,                                      (5.20) 

 where ld


 is the vector of the elementary length of the contour directed along the 

contour;  

            cos1 BB   is the component of the vector B


 in the direction of the tangent 

to the contour (taking into account the selected direction of traversal);  

              is the angle between the vectors B


 and ld


.  

 The circulation theorem for vector B


: the circulation of the vector B


 over an 

arbitrary closed circuit is equal to the product of the magnetic constant 0  by the 

algebraic sum of the currents covered by this circuit 

 




L

n

k

k

L

l IdlBldB

1

0


,                            (5.21) 
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 where n  is the number of conductors with currents covered by a contour L  of 

arbitrary shape.  

Each current is counted as many times as it is covered by the circuit. The 

current whose direction is connected with the direction of traversing the contour by 

the rule of the right screw is considered positive; the current of the opposite direction 

is considered negative. The circulation of the electrostatic field vector E


 is always 

equal to zero, that is, the electrostatic field is potential. The circulation of the 

magnetic field vector B


 is not zero. Such a field is called a vortex field.  

The circulation theorem for the vector B


 has the same value in the study of a 

magnetic field as the Gauss’s theorem in electrostatics, since it allows one to find the 

magnetic induction of the field without applying the Biot-Savart law.  

5.6. Magnetic Field of Solenoid and Toroid 

 

 We calculate, by applying the circulation theorem, the induction of the 

magnetic field inside the solenoid. Consider a solenoid with length l , having N  

turns, along which current I  passes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The length of the solenoid is assumed to be many times larger than the 

diameter of its turns, that is, the solenoid being considered is infinitely long. 

Experimental study of the magnetic field of the solenoid shows that the field is 

homogeneous inside the solenoid, and the field outside the solenoid is 

inhomogeneous and very weak. Figure 5.4 presented the magnetic field lines inside 

and outside the solenoid. Increasing the length of the solenoid leads to a decrease in 

the magnetic induction in the surrounding space. Therefore, one can assume that the 

magnetic field of an infinitely long solenoid is concentrated entirely within it, and the 

magnetic field outside the solenoid can be neglected. In order to find the magnetic 

induction B


, we select the closed rectangular contour ABCDA , as shown in Figure 

5.4. Circulation of vector B


 along the closed contour ABCDA , covering all N  turns, 

is equal to 

I  I  

B  C  

A  D  

 

Figure 5.4. Magnetic field of solenoid. 
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NIdlB

ABCDA

l 0 .                                           (5.22) 

 

The contour integral ABCDAcan be represented as the sum of four integrals 

over the segments AB , BC , CD  and DA . In sections AB  and CD  the contour is 

perpendicular to the lines of magnetic induction and 01 B . Outside the solenoid, the 

induction of the magnetic field is 0B . The circulation of vector B


 is Bl  in section 

DA (the contour coincides with the line of magnetic induction), hence 

 

NIBldlB

DA

l 0 .                                    (5.23) 

Then the formula 

l

NI
B 0                                               (5.24) 

 

holds for the vacuum. Consequently, the magnetic field inside the solenoid is uniform 

(the edge effects in the regions adjacent to the ends of the solenoid are neglected in 

the calculations).  

5.7. Gauss’s Law for Magnetism 

 

 The flux of the magnetic induction vector (magnetic flux) through the surface 

dS  is a scalar physical quantity equal to 

 

dSBSdBdФ nВ 


,                                      (5.25) 

 

where cosBBn   is the projection of vector B


 on the direction of the normal to the 

surface dS  (  is the angle between vectors n


 and B


);  

Sd


 is a vector whose modulus is dS , and the direction coincides with the 

direction of the normal n


 to the surface.  

The flux of vector B


 can be either positive or negative depending on the sign 

of cos  (determined by the choice of the positive direction of the normal n


). 

Typically, the flux of vector B


 is associated with a specific circuit, over which 

current passes. In this case, we have already determined the positive direction of the 

normal to the contour: it is connected with the current by the rule of the right screw. 

Thus, the magnetic flux created by the contour through a surface limited by itself is 

always positive.  

 The flux ВФ  of the vector of magnetic induction through an arbitrary surface 

S  is  

 

S S

nB dSBSdBФ


.                                   (5.26) 
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For a homogeneous field and a plane surface perpendicular to the vector B


, 

formulas  constBBn   and BSФB   are valid. 

 Gauss's law for the field B


: the flux of the vector of magnetic induction 

through any closed surface is equal to zero 

 

  

S S

ndSBSdB 0


.                                    (5.27) 

This theorem reflects the fact that there are no magnetic charges, as a result of 

which the magnetic field lines are closed.  

5.8. Contour with a Current in Magnetic Field 

 

 The forces determined by the Ampère's force act on a contour with current in a 

magnetic field. Consider a non-fixed conductor, for example, one of the sides of the 

contour in the form of a movable bridge. Such a conductor will move in a magnetic 

field under the action of Ampère's force. Consequently, the magnetic field performs 

work to move the conductor with a current. To determine this work, consider a 

conductor with length l  and current I  placed in a uniform external magnetic field 

perpendicular to the plane of the contour. This conductor is influenced by the 

Ampère's force IBlF  .  

 Under the action of this force, the conductor will move parallel to itself to the 

segment dx . The work done by the magnetic field is  

 

IdФIBdSIBldxFdxdA  ,                        (5.28) 

 

 where ldxdS   is the surface, crossed by the conductor when it is moved in a 

magnetic field;  

            dФBdS   is the flux of the vector of magnetic induction, which crosses this 

surface.  

Thus, the work that must be performed to move a conductor with a current in a 

magnetic field is equal to the product of the current by the change in the magnetic 

flux during the motion of the conductor  

IdФdA .                                            (5.29) 

 

This formula is also valid for an arbitrary direction of the vector B


.  

 

Test questions 

 

1. Does the magnetic field act on the static electric charges? 

2. What device is used to study the local characteristics of the magnetic field? 

3. Give the formula for the moment of forces acting on the frame with a current in 

a magnetic field. 

4. Indicate the direction of the magnetic moment vector. 

5. Specify a formula by which the magnetic induction can be determined. 



 85 

6. Give the units of measurement of the magnetic field. 

7. Specify the rule for constructing the magnetic induction lines. 

8. Specify for a fixed point the relative position of the magnetic field induction 

vector and line of the magnetic field. 

9. Describe the functional relationship between induction and intensity of the 

magnetic field. 

10. Specify the analogy in electricity for the intensity of the magnetic field. 

11. Formulate the Biot-Savart law. 

12. Specify the rule for determining the direction of the elementary induction 

vector of a magnetic field. 

13. Formulate the superposition principle for the magnetic field induction vector. 

14. Derive the formula for the induction of a magnetic field created by direct 

current. 

15. Calculate the magnetic field in the centre of the circular conductor with 

current. 

16. Formulate the Ampère's force law. 

17. Specify the physical fields that create a moving charge. 

18. Calculate the moving charge magnetic field induction. 

19. Does the Lorentz force perform the work? 

20. Formulate the Gauss's law for magnetism. 

 
Problem-solving examples 

 

Problem 5.1  

 

Problem description. Determine the magnetic induction of the field created by a 

segment of length cmL 20  of an infinitely long straight wire at a point remote from 

the ends of the segment at distances cmL 251   and cmL 152  . The current 

I flowing through the wire is 20 A. The wire is in a vacuum. 

 

Known quantities: cmL 20 , cmL 251  , cmL 152  , AI 20 . 

 

Quantities to be calculated: B . 

 

Problem solution. According to the Biot-Savart law, the induction of the magnetic 

field dB , created by a piece of wire with a current I  and length of dL  at a point 

located at a distance of r  from the middle of the segment dL , is determined by the 

expression 

 
3

0

4

,

r

rLdI
dB






 ,                                            (5.1.1) 

 

where Ld


 is vector equal in magnitude to the length of the segment dL  and 

coinciding in direction with the current,  
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            r


 is the radius vector drawn from the middle of the conductor element to the 

point where the magnetic induction is determined,  

            0 is magnetic constant. 

 For the modulus of the magnetic induction vector, we get 

 

dL
r

I
dB

2
0

4

sin




 ,                                            (5.1.2) 

 

where   is angle between vectors Ld


 and  r


.  

Let the element of conductor dL  is visible from point A  at an angle of d , 

and the distance from point A  to the wire is 0r . Then for these values we can write 

 





sin

rd
dL  ,  

sin

0rr  .                                            (5.1.3) 

 

In this case, for the elementary induction of the magnetic field we get 
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 .                                            (5.1.4) 

 

We determine the induction of magnetic field generated by the segment of 

conductor. To do this, we will integrate the resulting expression over an angle 

ranging from 1  to 2 : 
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B .                     (5.1.5) 

 

Calculating the integral, we get 

 

 21
0

0 coscos
4







r

I
B .                                     (5.1.6) 

 

From the condition of the problem it follows that 
2

2
22

1 LLL  , i.e. 0
2 90 ,  

0cos 2  , 20 Lr  , 8.0cos 1  . 

Substituting the numerical values, we get TB 7.10 . 

 

Answer. The magnetic induction is TB 7.10 . 
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Problem 5.2  

 

Problem description. Electric current AI 7  flows along a square frame with side 

cma 5.1 . The frame is in a non-uniform magnetic field that varies in space 

according to the law kxBz  , where mTk /5.1 , 0 xy BB . Frame plane 

perpendicular to field induction lines. One of the sides of the frame coincides with the 

y -axis, the second coincides with the x -axis. The top of the frame is at the origin of 

the coordinate system. Calculate the work that needs to be done to slowly rotate the 

frame around the y -axis so that the lines of force of the field lie in the plane of the 

frame. 

 

Known quantities: AI 7 , cma 5.1 , kxBz  , mTk /5.1 , 0 xy BB . 

 

Quantities to be calculated: A . 

 

Problem solution. If the frame is rotated slowly in a magnetic field, the 

induction currents can be neglected and the current in the circuit can be considered 

constant. The work that must be done to move the frame with the current in a 

magnetic field is  

ФIA  ,                                                     (5.2.1) 

 

where Ф  is magnetic flux change. Since according to the condition of the problem 

in the final position, the plane of the frame is parallel to the power lines of the field, 

the magnetic flux in the final position of the frame is zero. Consequently, the change 

in the magnetic flux will be equal to its original value, at which the orientation of the 

frame is perpendicular to the field force lines, that is, 0ФФ  . 

To calculate the magnetic flux 0Ф , we divide the plane of the frame into 

narrow strips of width dx  parallel to y -axis. The area of each strip will be equal 

dxads  . The magnetic flux through one of these strips, located at a distance of x  

from the y -axis, will be equal to  

  dxaxkdsxBdФ z  .                                 (5.2.2) 

 

As a result of integration, we find the total flux of magnetic induction through the 

area of the frame: 

2

2

0

0

xk
dxaxkФ

a

  .                                      (5.2.3) 

 

We finally have:  

2

3

0

Ika
IФФIA  .                                (5.2.4) 
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We substitute numerically and calculate the work JA 7.17 . 

 

Answer. The work is JA 7.17 . 

 

Problem 5.3  

 

Problem description. The electron moves in a uniform magnetic field with induction 

mTB 8 . The trajectory of movement is a spiral with a radius of cmR 1  and a step 

of cmh 5.6 . Determine the period T  of electron rotation and its speed  . 

 

Known quantities: mTB 8 , cmR 1 , cmh 5.6 . 

 

Quantities to be calculated: T ,  . 

 

Problem solution. The trajectory of the electron is a result of two movements: 

rotation around a circle under the action of a Lorentz force in a plane perpendicular to 

the magnetic field, and uniform movement along the direction of the field. Newton's 

second law, describing the rotational motion of an electron, is written as 

 

R

m
Be

2


 


 ,                                           (5.3.1) 

where e  is an electron charge, 

          m  is the electron mass, 

            is a component of velocity that is perpendicular to the magnetic field, 

          R  is the radius of the circle, 

          B  is magnetic field induction. 

Then the component   of the electron rotational speed is equal to 

 

m

eBR
 .                                             (5.3.2) 

 

Consequently, the period of rotation of the electron can be found by the 

formula 

eB

mR
T 
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
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.                                       (5.3.3) 

 

The velocity of the electron along the magnetic field is found as 
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Taking into account the expressions obtained above, for full speed we get the 

following formula 

2

2
22

||
2

4


h
R

m

eB
  .                               (5.3.5) 

 

We substitute numerically: nsT 46.4 , sMm /2.20 . 

 

Answer. The period is nsT 46.4 . The velocity is sMm /2.20 . 

 

Problems 
 

Problem A  

 

Problem description. Two long parallel wires are at a distance of cmr 5  from each 

other. Equal currents of AI 10  each flow along wires in opposite directions. Find 

the magnetic field at a point located at a distance of cmr 21   from the first wire and 

cmr 32   from the second wire. 

 

Answer. mAH /132 . 

 

Problem B  

 

Problem description. The thin wire is curved into a regular hexagon. The length of 

the side of the hexagon is equal to cmd 10 . Determine the magnetic induction at 

the centre of the hexagon if a current of AI 25  is flowing along the wire. 

 

Answer. TB 41073.1  . 

 

Problem C  

 

Problem description. An electron in an unexcited hydrogen atom moves around a 

nucleus along a circle with a radius of pmr 53 . Calculate the force of the 

equivalent circular current and the magnetic field at the center of the circle. 

 

Answer. AI 3101.1  , mАH /107 . 

 

Problem D  

 

Problem description. Determine the maximum induction maxB  of the magnetic field 

generated by an electron moving in a straight line at a speed of sMm /10  at a 

point away from the trajectory at a distance of nmd 1 . 



 90 

 

Answer. TB 2
max 106.1  . 

 

Problem E  

 

Problem description. In a uniform magnetic field with induction TB 4.0  in a plane 

perpendicular to the magnetic induction lines, a rod cmL 10  length rotates. The 

axis of rotation passes through one of the ends of the rod. Determine the potential 

difference U  at the ends of the rod at a frequency of 116  sn . 

 

Answer. VU 11001.2  . 
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CHAPTER 6. MAGNETIC PROPERTIES OF MATTER 
 

6.1. Magnetic Moments of Electrons and Atoms 

 

 In order to understand the magnetic properties of media and their effect on 

magnetic induction, it is necessary to consider the effect of a magnetic field on the 

atoms and molecules of matter. The properties of the medium were taken into 

account formally with the help of magnetic permeability  .  

 All substances placed in a magnetic field are magnetized. Consider the cause of 

this phenomenon in terms of the structure of atoms and molecules, based on the 

Ampère hypothesis.  According to the Ampère hypothesis microscopic currents, 

caused by the motion of electrons in atoms and molecules are present in any 

substance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 For a qualitative explanation of magnetic phenomena with sufficient 

approximation, we can assume that the electron moves in an atom along circular 

orbits. Electron moving along one of these orbits is equivalent to a circular current, so 

it has an orbital magnetic moment 

nSIpm


 .                                              (6.1) 

 

The modulus of this moment is equal to  

 

SeISpm  ,                                        (6.2) 

 where eI   is the current;  

             is the frequency of the electron rotation in the orbit;  

          S   is the area of the orbit.  

If the electron moves clockwise (Figure 6.1), then the current is directed 

counter clockwise and the vector mp


 in accordance with the rule of the right screw is 

directed perpendicular to the electron orbit plane. On the other hand, the electron 

moving along the orbit has a mechanical moment eL


, whose modulus is 

 

 

mP


 

I  

r


 




 

e  

eL


 
 

Figure 6.1. Electron orbital magnetic moment. 
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SmrmLe  2 ,                                        (6.3) 

where r 2 , and Sr 2 .  

Vector eL


 (its direction can also be determined with the right-handed screw 

rule) is called the orbital mechanical moment of the electron. Directions mp


 and eL


 

are opposite, therefore  

  eem LgLmep


 2/ ,                                       (6.4) 

 

where the quantity  meg 2/  is called the gyromagnetic ratio of the orbital 

mechanical moment (it is customary to write the relation for mp


 with the sign "-", 

indicating that the directions of the moments are opposite).   

This ratio, defined by universal constants, is the same for any orbit.  Values   

and  r  are different for different orbits. In addition to orbital moments, the electron 

has its own mechanical moment eSL


, called spin. It has now been established that 

spin is an inherent property of the electron, like its charge and mass. Magnetic 

moment mSp


 is proportional to eSL


 and directed to the opposite side 

 

eSSmS Lgp


                                             (6.5) 

 

with respect to the spin of the electron. The quantity Sg  is called the gyromagnetic 

ratio of the spin moments. The projection of the intrinsic magnetic moment on the 

direction of the vector B


 can take only one of the following two values: 

 

BmSB
m

e
p 

2


,                                   (6.6) 

 

 where  2/h  (h  is the Planck constant),  

            B  is the Bohr magneton, which is the unit of the magnetic moment of the 

electron. Values h  and B  are named after German physicist Max Karl Ernst 

Ludvig Planck (1858 – 1947) and Danish physicist Niels Henrik David Bohr 

(1885 – 1962), correspondingly.  

In the general case, the magnetic moment of an electron is consists of the 

orbital and spin magnetic moments. The magnetic moment of the atom, therefore, is 

the sum of the magnetic moments of the electrons entering into the atom and the 

magnetic moment of the nucleus (due to the magnetic moments of the protons and 

neutrons). However, the magnetic moments of the nuclei are thousands of times 

smaller than the magnetic moments of the electrons, and therefore they are neglected. 

Thus, the total magnetic moment of the atom (molecule) ap


 is equal to the vector 

sum of the magnetic moments (orbital and spin) of the electrons entering into the 

atom (molecule)  

  mSma ppp


.                                    (6.7) 
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 When we considered the magnetic moments of electrons and atoms, we used 

the classical theory, not taking into account the limitations imposed on the motion of 

electrons by the laws of quantum mechanics. However, this does not contradict the 

obtained results, since for further explanation of the magnetization of substances, 

only the fact that the atoms have magnetic moments is essential.  

6.2. Diamagnetic and Paramagnetic Phenomena 

 

 Any substance is a magnet, that is, it is capable of acquiring a magnetic 

moment (magnetize) under the action of a magnetic field. To understand the 

mechanism of this phenomenon, it is necessary to consider the effect of a magnetic 

field on electrons moving in an atom. For simplicity, we assume that the electron in 

the atom moves in a circular orbit. Suppose that the orbit of an electron is oriented 

with respect to the vector B


 in an arbitrary way and forms an angle   with it (Figure 

6.2). In this case, the orbit plane moves around B


 and the vector of the magnetic 

moment mp


 rotates around the direction B


 with some angular velocity. The angle   

remains constant. This movement in mechanics is called precession.  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Thus, the electron orbits of an atom under the action of an external magnetic 

field perform a precession motion, which is equivalent to a circular current. This 

micro current is induced by an external magnetic field. Then, according to the Lenz 

rule, a component of the magnetic field appears and this component has a direction 

opposite to the external field. The induced components of the magnetic fields of 

atoms (molecules) add up and form an intrinsic magnetic field of matter, weakening 

the external magnetic field. This effect is called the diamagnetic effect, and 

substances that are magnetized in an external magnetic field against the direction of 

the field are called diamagnetic substances.  

 In the absence of an external magnetic field, the diamagnetic is non magnetic, 

since in this case the magnetic moments of the electrons are mutually compensated, 

 

mP


 

B


 

  

 

Figure 6.2. Mutual arrangement of the electron orbit and vector B


. 
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and the total magnetic moment of the atom (it is equal to the vector sum of the 

magnetic moments (orbital and spin) constituents of the electron atom) is zero. 

Metals (for example, Bi, Ag, Au, Cu) and most organic compounds, resins, carbon 

are diamagnetic.  

 Since the diamagnetic effect is due to the action of an external magnetic field 

on the electrons of atoms, diamagnetism is manifested in all substances. However, 

along with diamagnetic substances, there are also paramagnetic substances. 

Substances that are magnetized in an external magnetic field along the direction of 

the field are called paramagnetic. In the absence of an external magnetic field, the 

magnetic moments of electrons of paramagnetic substances do not compensate each 

other, and the atoms (molecules) of paramagnetic always have a magnetic moment. 

However, due to the thermal motion of molecules, their magnetic moments are 

randomly oriented; therefore, paramagnetic substances do not possess magnetic 

properties.  

The placement of a paramagnetic into an external magnetic field leads to an 

advantageous orientation of the magnetic moments of the atoms over the field. The 

thermal motion of atoms prevents the complete orientation of the magnetic moments. 

Thus, the paramagnetic is magnetized by creating its own magnetic field, co-incident 

with the external field and amplifying it. This effect is called paramagnetic effect. 

The thermal motion breaks the orientation of the magnetic moments and leads to the 

demagnetization of the paramagnet in the case when the external magnetic field 

decreases to zero. Rare-earth elements, Pt, Al, refer to paramagnetic substances. The 

diamagnetic effect is also observed in paramagnets, but it is much weaker than the 

paramagnetic effect, and therefore remains invisible. The explanation of the 

phenomenon of paramagnetic effect coincides with the explanation of the orientation 

(dipole) polarization of dielectrics with polar molecules. The electric moment of the 

atoms in the case of polarization must be replaced by the magnetic moment of the 

atoms in the case of magnetization. Summarizing the qualitative examination of 

diamagnetic and paramagnetic effects, we note once again that the atoms of all 

substances are carriers of diamagnetic properties.  

 The large magnetic moment of atoms leads to the fact that the paramagnetic 

properties predominate over the diamagnetic ones and the substance is paramagnetic. 

If the magnetic moment of the atoms is small, diamagnetic properties predominate 

and the material is diamagnetic.  

6.3. Magnetization 

 

 Just as the polarization was introduced for the quantitative description of the 

properties of dielectrics, a magnetization is introduced for a quantitative description 

of the properties of magnets. The magnetization is determined by the magnetic 

moment of a unit volume of the magnet  

 

 VpVpJ am //


,                                          (6.8)                                              
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 where  am pp


 is the magnetic moment of the magnet, which is the vector sum 

of the magnetic moments of the individual molecules.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Considering the characteristics of the magnetic field, we introduced a vector of 

magnetic induction B


 characterizing the resulting magnetic field created by all 

macro- and micro-currents, and a vector of intensity H


 characterizing the magnetic 

field of macro-currents (Figure 6.3). Consequently, the magnetic field in the 

substance is the sum of their two fields: the external field produced by the current, 

and the field created by the magnetized substance. Then the vector of magnetic 

induction of the resulting magnetic field in the magnet is equal to the vector sum of 

the magnetic inductions of the external field 0B


  (field created by the magnetizing 

current in vacuum) and the field of micro-currents B


 (the field created by the molar 

currents):  

 

BBB 


0 ,                                            (6.9) 

 

 where HB


00  .  

 To describe the field produced by molecular currents, let us consider a magnet 

in the form of a circular cylinder of section S  and length l , placed into a 

homogeneous external magnetic field with induction 0B


. The magnetic field of 

molecular currents arising in a magnetic field will be directed opposite to the external 

field for diamagnetic substances and coincide with it in the direction for 

paramagnetic substances. The planes of all molecular currents will be located 

perpendicular to vector 0B


, since vectors of their magnetic moments mp


 are anti 

parallel to vector 0B


 (for diamagnetic substances) and are parallel to 0B


 (for 

paramagnetic substances). We consider any section of the cylinder perpendicular to 

its axis.  

 
 

Figure 6.3. Molecular currents. 
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The molecular currents of neighbouring atoms in the internal sections of the 

cross section are directed opposite to each other and mutually compensated (Figure   

6.3). Only the molecular currents emerging on the side surface of the cylinder will be 

uncompensated. The current passing along the side surface of the cylinder is similar 

to the current in the solenoid and creates a field inside it. The magnetic induction B  

of this field can be calculated, taking into account that 1N   

 

lIB /0   ,                                             (6.10) 

where I   is the molecular current,  

           l  is the length of the cylinder, and the magnetic permeability   is assumed to 

be unity.  

On the other hand, the value lI /  is the current per unit length of the cylinder, 

or its linear density, so the magnetic moment of this current is 

 

lVIllSIp //  ,                                (6.11) 

where V  is the volume of the magnet.  

If the value of P  is the magnetic moment of a magnet of volume V , then VP /  

is the magnetization of the magnet. Thus,  

 

lIJ / .                                       (6.12) 

Comparing the formulas, we get  

JB 0 ,                                       (6.13) 

or in the vector form 

JB


0 .                                       (6.14) 

 

Substituting the expressions for 0B


 and B


, we get 

 

JHB


00                                         (6.15) 

or 

JHB


0/ .                                     (6.16) 

 

The magnetization in non-strong fields is directly proportional to the field 

intensity H


 causing magnetization, i.e. 

HJ


 ,                                           (6.17) 

 

where   is a dimensionless quantity called the magnetic susceptibility of matter.  

For diamagnetic substances   is negative (the field of molecular currents is 

opposite to external), for paramagnetic substances   is positive (the field of 

molecular currents coincides with the external field).  

 We rewrite the expression for B


: 

 

 HB


  10 .                                       (6.18) 
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Hence 

    1/ 0BH


.                                       (6.19) 

 

The dimensionless quantity  

 1                                                  (6.20) 

 

is the magnetic permeability of the substance.  

Since the absolute value of the magnetic susceptibility for diamagnetic and 

paramagnetic substances is very small (of the order of 10–4 –10–6), the value of   is 

insignificantly different from the unit. This is easy to understand, since the magnetic 

field of molecular currents is much weaker than the magnetizing field. Thus, for 

diamagnetic substances 0 , and 1 , for paramagnetic substances 0 , and 

1 .  

 The circulation theorem for vector B


 in matter: 

 

 IIdlBldB

L L

l   0


,                              (6.21) 

 

 where I  and I   are the algebraic sums of macro-currents (currents of conductivity) 

and micro-currents (molecular currents), covered by an arbitrary closed 

circuits.  

Thus, the circulation of magnetic induction B


 along an arbitrary closed circuit 

is equal to the algebraic sum of the conduction currents and the molecular currents 

covered by this circuit, multiplied by the magnetic constant. The vector B


 thus 

characterizes the resulting field created both by macroscopic currents in conductors 

(conduction currents) and by microscopic currents in magnets, so the magnetic field 

lines have no sources and are closed.  

It can be shown that the circulation of magnetization J


 over an arbitrary closed 

circuit L  is equal to the algebraic sum of the molecular currents covered by this 

circuit 

 

L

IldJ


.                                         (6.22) 

Then the circulation of magnetic induction B


 in matter can also be written in 

the form 

 









L

IdlJ
B 


0
,                                       (6.23) 

 

where I  is the algebraic sum of conduction currents.  

The expression in parentheses is equal to the previously introduced vector of 

magnetic field intensity H


. Thus, the circulation of vector H


 along an arbitrary 

closed circuit L  is equal to the algebraic sum of the conduction currents enclosed by 

this contour: 
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 

L

IdlH


                                               (6.24) 

 (circulation theorem for vector H


).  

6.4. Magnetic Field Boundary Conditions 

 

 Consider the conditions for the vectors B


 and H


 at the interface of two 

homogeneous magnets (magnetic permeabilities 1  and 2 ) in the absence of 

conduction current at the boundary. Let us construct a straight cylinder near the 

interface between magnets 1 and 2 of a negligible height, one base of which is placed 

in the first magnetic, and the other is placed in the second magnetic. The bases of S  

are so small that within each of them the vector B


 is the same. According to the 

Gauss’s theorem,  

012  SBSB nn                                        (6.25) 

 

(normals n


 and n


 to the bases of the cylinder are directed opposite). Therefore 

nn BB 21  . Taking into account that HB


0 , we obtain  

 

1221 // nn HH .                                       (6.26) 

 

 Near the interface of the two magnets 1 and 2, we construct a small closed 

rectangular contour ABCDA with a length l , placing it as shown in Figure 6.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the circulation theorem for vector H


, 

 

 

ABCDA

ldH 0


                                                      (6.27) 

                                                

(there are no conduction currents at the interface), whence 

 

  

B  

C  D  

A  

l  

1  

2  

 

Figure 6.4. Scheme for determining the tangential 

component of the magnetic field. 
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 012  lHlH                                                 (6.28) 

 

(the signs of the integrals over AB  and CD  are different, since the paths of 

integration are opposite, and the integrals along the sections of BC  and DA  are 

negligibly small). Therefore 

 21 HH  .                                                 (6.29) 

 

Replacing, according to formula HB


0 , the projections of the vector H


 by the 

projections of the vector B


, divided by 0 , we obtain 

 

2121 //  BB .                                        (6.30) 

 

 Thus, when passing through the interface of two magnets, the normal 

component of the vector B


 ( nB ) and the tangential component of the vector H


 ( H ) 

change continuously (do not undergo a jump), and the tangential component of the 

vector B


 ( B ) and the normal component of the vector H


 ( nH ) are undergoing a 

jump.  

The conditions for vectors B


 and H


 indicate that the lines of these vectors 

undergo a break (refracted). As in the case of dielectrics, one can find the law of 

refraction of lines B


 (and, in other words, of lines H


): 

 

1212 //  tgtg .                                      (6.31) 

6.5. Ferromagnetic Substances 

 

 In addition to two classes of substances, namely diamagnetic substances 

and paramagnets substances, called weakly magnetic substances, there are still 

strongly magnetic substances (ferromagnetic substances). Substances with 

spontaneous magnetization which are magnetized even in the absence of an external 

magnetic field are called ferromagnetic substances. Iron, cobalt, nickel, gadolinium, 

and their alloys and compounds belong to ferromagnetic substances. 

In addition to the ability to strongly magnetize, ferromagnetic substances also 

have other properties, which substantially distinguish them from diamagnetic 

substances and paramagnetic substances. Magnetization J


 of ferromagnetic 

substances first increases rapidly with increasing H


, then slower increases, and 

finally reaches the so-called magnetic saturation SJ , which no longer depends on the 

field intensity. A similar character of the dependence of J  on H  can be explained by 

the fact that an increase in the magnetizing field leads to an increase in the degree of 

orientation of the molecular magnetic moments over the field. However, this process 

will begin to slow down when there are less and less moments with random 

orientation, and, finally, when all the moments are oriented along the field. A further 
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degree of orientation increase process stops and a magnetic saturation begins. The 

magnetic induction  

 JHB  0                                          (6.32)   

                                                 

in weak fields increases rapidly with growth of H  as a result of the magnetization J  

increase. The value B  grows according to a linear law in strong fields. 

The dependence of J  on H  (and hence B  on H ) is determined by the 

prehistory of the magnetization of the ferromagnetic substances. This phenomenon 

was called the magnetic hysteresis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we magnetize the ferromagnetic substance before saturation (Figure 6.5, 

point 1), and then begin to reduce the intensity H  of the magnetizing field, then the 

decrease in J  is described by curve 1–2 lying above the curve 1–0. In the case when 

0H  the quantity J  differs from zero, that is, a residual magnetization RJ  is 

observed in the ferromagnetic substance. The existence of permanent magnets is 

associated with residual magnetization. The magnetization vanishes under the action 

of the field CH , which has a direction opposite to the field that caused the 

magnetization. The intensity CH  of the magnetic field is called coercive force.  

Thus, when an alternating magnetic field acts on a ferromagnetic substance, the 

magnetization J  varies in accordance with the curve 1-2-3-4-5-6-1, which is called 

the hysteresis loop. Hysteresis leads to the fact that the magnetization of a 

ferromagnetic substance is not a single-valued function of H , i.e., several values of 

H  correspond to the same value J .  

Different ferromagnetic substances correspond to different hysteresis loops. 

Ferromagnetic substances with a small (up to 1–2 A/cm) coercive force and with a 

narrow hysteresis loop are called soft ferromagnetic substances. Ferromagnetic 

substances with a large (up to 1000 A/cm) coercive force and a wide hysteresis loop 

are called rigid ferromagnetic substances. Quantities of MAXRC IH ,,  determine the 

applicability of ferromagnetic substances for various practical purposes. Rigid 
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Figure 6.5. Magnetic hysteresis. 
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ferromagnetic substances (for example, carbon and tungsten steels) are used to make 

permanent magnets. Soft ferromagnetic substances (for example, soft iron, iron alloy 

with nickel) are used for the production of converter cores.  

Each ferromagnetic substance can be associated with the Curie temperature. 

The ferromagnetic substance turns into an ordinary paramagnetic substance when the 

sample is heated above the Curie point. This temperature is named after French 

physicist Pierre Curie (1859 – 1906). 

The process of magnetization of ferromagnetic substances is accompanied by a 

change in its linear dimensions and volume. This phenomenon was called 

magnetostriction. The magnitude and sign of this effect depend on the intensity of the 

magnetizing field, on the nature of the ferromagnetic substance, and on the 

orientation of the crystallographic axes relative to the magnetic field.  

6.6. Nature of Ferromagnetism 

 

According to French physicist Pierre-Ernest Weiss (1865 – 1940) ideas, 

ferromagnetic substances at temperatures below the Curie point possess spontaneous 

magnetization, regardless of the presence of an external magnetizing field. 

Spontaneous magnetization, however, is in apparent contradiction with the fact that 

many ferromagnetic materials, even at temperatures below the Curie point, are not 

magnetized. To eliminate this contradiction, Weiss introduced the hypothesis that a 

ferromagnetic substances below the Curie point is broken down into a large number 

of small macroscopic regions, self-magnetically magnetized to saturation. These 

regions are called domains. The magnetic moments of individual domains are 

randomly oriented and compensate each other in the absence of an external magnetic 

field. Therefore, the resulting magnetic moment of the ferromagnetic substance is 

zero and it is not magnetized. The external magnetic field orientates the entire regions 

of spontaneous magnetization. Therefore, the magnetization J  and the magnetic 

induction B  grow very rapidly in rather weak fields with increasing magnetic 

intensity. 

In the case when the external magnetic field decreases to zero, the 

ferromagnetic substances have the residual magnetization, since the heat movement is 

not able to quickly disorient the magnetic moments of such large formations as the 

domains. Therefore, the phenomenon of magnetic hysteresis is observed. In order to 

demagnetize the ferromagnetic substances, it is necessary to apply a coercive force. 

Shaking and heating also leads to demagnetization of the ferromagnetic substances.  

 

Test questions 

 

1. Formulate the Ampère hypothesis. 

2. What is the orbital mechanical moment of the electron that moves in orbit 

around the nucleus of an atom? 

3. Specify the relationship between the magnetic moment and the orbital 

mechanical moment of the electron. 

4. Give the definition of the electron's orbital mechanical moment. 
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5. Explain the choice of sign for the gyromagnetic ratio. 

6. What physical quantity of an electron can be compared with its spin? 

7. List the values that the projection of the intrinsic magnetic moment can take on 

the direction of the magnetic induction vector. 

8. List the values of the projection of the intrinsic magnetic moment on the 

direction of the magnetic induction vector. 

9. Compare the values of the magnetic moments of the electron and the nucleus. 

10. Describe the precession phenomenon. 

11. Is the diamagnetism manifested in all substances? 

12. Describe the paramagnetic effect. 

13. What types of magnets are rare earth metals? 

14. Give the definition of the magnetization vector. 

15. Specify the relationship between the magnetic induction and magnetization 

vectors. 

16. Indicate the magnetic susceptibility signs for the main types of magnets. 

17. Write down the determining equation for magnetic permeability. 

18. Formulate the theorem on the circulation of the magnetic field strength vector. 

19. Give formulas that describe the conditions for the vectors of induction and 

strength of magnetic field at the interface of two homogeneous magnets. 

20. What physical phenomenon causes the existence of permanent magnets? 

 

Problem-solving examples 

 

Problem 6.1  

 

Problem description. An electron in a hydrogen atom rotates in a circular orbit of 

radius mr 11103.5   at a speed of sm /102.2 6 . Calculate the orbital 

magnetic moment of the electron. 

 

Known quantities: mr 11103.5  , sm /102.2 6 . 

 

Quantities to be calculated: mp . 

 

Problem solution. The motion of an electron in an orbit can be considered as a 

circular current I , which has a magnetic moment 

 

ISpm  ,                                                  (6.1.1) 

 

where 2rS   is the area bounded by the electron orbit. 

 For the case when the frequency of rotation of the electron is n , the current is 

equal to  

enI  ,                                                  (6.1.2) 

where e  is an electron charge. 
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 Then for the electron speed, frequency of turns and current we get 

 

rn 2 , 
r

n




2
 , 

r

e
I





2
 .                                                  (6.1.3) 

 

 The magnetic moment of the electron is 

 

2

2
r

r

e
ISpm 




 .                                                  (6.1.4) 

 And finally, with numbers: 224103.9 mApm   . 

 

Answer. The orbital magnetic moment of the electron is 224103.9 mApm   . 

 

Problem 6.2  

 

Problem description. A solenoid of length cml 25 , with a cross-sectional area of 
212cmS   and a total number of coils 410N  is in a diamagnetic environment. 

Determine the strength of the current in the coil of the solenoid, if its inductance is 

mHL 1  and the magnetization inside the solenoid is mAJ /22 . 

 

Known quantities: cml 25 , 212cmS  , 410N , mHL 1 , mAJ /22 . 

 

Quantities to be calculated: I . 

 

Problem solution. The magnetization inside the solenoid is 

 

HJ  ,                                                  (6.2.1) 

 

where   is the magnetic susceptibility of matter, 

           H  is the magnetic field strength. 

 We can write the following expressions for magnetic permeability and 

magnetization of a substance 

 

 1 ,  HJ 1  .                                                  (6.2.2) 

 

 The circulation of the magnetic field strength vector is equal to the algebraic 

sum of the currents that are covered by the contour l : 

 

  

l l k

kL IdlHldH


.                                                  (6.2.3) 
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 The relationship of the magnetic field strength and the number of turns of the 

solenoid is 

 

NIHl  ,                                                  (6.2.4) 

thus, the magnetic field is 

 

l

NI
H  .                                                  (6.2.5) 

 The inductance of the solenoid is 

 

lSNL /2
0 ,                                                  (6.2.6) 

where 0  is magnetic constant, 

            is the relative magnetic permeability of the diamagnetic environment. 

 Then for   we get  

SN

Ll
2

0
  .                                                  (6.2.7) 

 

 We use the formulas for   and H , and then we write the expression for 

magnetization 

 

l

NI

SN

Ll
J














 1

2
0

,                                                  (6.2.8) 

consequently, current is 


















1
2

0 SN

Ll
N

Jl
I



.                                                  (6.2.9) 

  

We substitute numerically: АI 01.1 . 

 

Answer. The strength of the current in the coil of the solenoid АI 01.1 . 

 

Problem 6.3  

 

Problem description. The solenoid is in a diamagnetic environment. The solenoid has 

a length of cml 50 , a cross-sectional area of 210cmS   and the number of turns 

1200N . The inductance of the solenoid is mHL 36 , and the current flowing 

through the solenoid is AI 6.0 . Determine the magnetic induction and 

magnetization inside the solenoid. 

 

Known quantities: cml 50 , 210cmS  , 1200N , mHL 36 , AI 6.0 . 
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Quantities to be calculated: J , B . 

 

Problem solution. The inductance of the solenoid is related to the number of 

turns N , the cross-sectional area is S  and the length is l  by a ratio  

 

l

SN
L

2
0

 ,                                             (6.3.1) 

 

where   is the magnetic permeability of the medium. 

Due to the fact that the medium is diamagnetic, the magnitude   does not 

depend on the characteristics of the magnetic field that is created by the solenoid. 

 We apply the theorem on the circulation of the magnetic field strength vector 

to the solenoid 

 

 

l

NIldH


,                                           (6.3.2) 

then 

 

l

NI
H  .                                            (6.3.3) 

 

 Contour l  covers the coils of the solenoid, partially passing through it. In this 

case, we will take into account only that part of the contour that is located inside the 

solenoid, i.e. where the field is approximately uniform. 

 The magnetization of the substance inside the solenoid is 

 

 HJ 1                                        (6.3.4) 

or 

  

l

NI

SN

Ll
J














 1

2
0

.                               (6.3.5) 

 

 The relationship of induction and magnetic field strength is 

 

NS

LI
HB  0 .                                   (6.3.6) 

where 0  is magnetic constant. 

 We substitute numerically and calculate the magnetization and magnetic 

induction: mAJ /6.7 , TB 52.0 . 

 

Answer. The magnetization and magnetic induction are mAJ /6.7 , TB 52.0 . 
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Problems 
 

Problem A  

 

Problem description. On the iron ring is wound in a single layer 500N  turns of 

wire. The average ring diameter is cmd 25 . Determine the magnetic induction in 

iron and the magnetic permeability of iron, if the current in the winding is AI 5.0 . 

 

Answer. TB 1 , 3105.2  . 

 

Problem B  

 

Problem description. A closed steel core toroid has 10n  turns for every centimetre 

of length. The current that flows through the solenoid is AI 2 . Calculate the 

magnetic flux Ф  in the core if its cross section is 24 cmS  . 

 

Answer. WbФ 4102.5  . 

 

Problem C  

 

Problem description. The electromagnet is made in the form of a toroid. The core of 

the toroid with an average diameter of cmd 51  has a vacuum gap of length 

mmL 20  . The toroid winding is evenly distributed over its entire length. How 

many times will the induction of the magnetic field decrease in the gap, if, without 

changing the current in the winding, the gap is increased three times? The scattering 

of the magnetic field near the gap is neglected. The magnetic permeability of the core 

is considered constant and taken equal to 800. 

 

Answer. 2N . 

 

Problem D  

 

Problem description. In the iron core of the solenoid, the magnetic field induction is 

TB 3.1 . The iron core was replaced with a steel one. Determine how many times 

the current in the coil of the solenoid should be changed so that the induction in the 

core remains unchanged. 

 

Answer. 4.2N . 

 

Problem E  
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Problem description. The length of the cast-iron torus along the midline is mL 2.1 , 

and the cross section is 220 cmS  . A current flows in the toroid winding, creating a 

magnetic flux in a narrow vacuum gap equal to mWbФ 5.0 . The gap length is 

mmL 80  . What should be the length of the gap so that did the current strength 

doubled? 

 

Answer. mmL 3108.1  . 
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CHAPTER 7. ELECTROMAGNETIC INDUCTION 
 

7.1. Faraday's Law of Induction 

 

British scientist Michael Faraday (1791–1867) came to the quantitative law of 

electromagnetic induction by generalizing the results of experiments. Faraday 

showed that a change in the flux of magnetic induction coupled to the circuit results 

in the generation of an induction current in the circuit. The appearance of an 

induction current indicates the occurrence of an electromotive force (EMF) in a 

circuit, called the electromotive force of electromagnetic induction.  The value of the 

induction current and, consequently, the EMF i  of electromagnetic induction is 

determined only by the rate of change of the magnetic flux, i.e.  

 

dt

dФ
i  .                                                   (7.1) 

 

The sign of the magnetic flux depends on the choice of the positive normal to 

the contour. In turn, the positive direction of the normal is connected with the current 

by the rule of the right screw. Consequently, choosing a certain positive direction of 

the normal, we define both the sign of the flux of magnetic induction, and the 

direction of the current and EMF in the circuit. Using these ideas and conclusions, 

one can accordingly come to the formulation of Faraday's law of electromagnetic 

induction: whatever the reason for the change in flux of magnetic induction, enclosed 

by a closed conducting circuit, the EMF generated in the contour is  

 

dt

dФ
i  .                                           (7.2) 

The minus sign shows that increasing the magnetic flux ( 0
dt

dФ
) causes the 

EMF 0i , that is, the field of the induction current is directed towards the flux; the 

decrease in magnetic flux ( 0
dt

dФ
) causes EMF 0i . The minus sign in the 

formula for the law of electromagnetic induction is a mathematical expression of the 

Lenz’s law: the induction current in the circuit always has such a direction that the 

magnetic field created by it prevents the change of the magnetic flux that caused this 

induction current. This law is named after Russian physicist Heinrich Friedrich Emil 

Lenz (1804 – 1865). 

Faraday's law can also be formulated in this way: the EMF of the 

electromagnetic induction in the contour with circuit is numerically equal and 

opposite in sign in compare with the change rate of the magnetic flux through the 

surface bounded by this contour. This law is universal: EMF does not depend on the 

method of magnetic flux changing.  
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7.2. Rotating Frame in Magnetic Field 

 

The phenomenon of electromagnetic induction is used to convert mechanical 

energy into electric current. Generators are used for this purpose. Let us consider the 

operation of generators using a model of a plane frame rotating in a homogeneous 

magnetic field (Figure 7.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suppose that the frame rotates in a homogeneous magnetic field ( constB  ) 

uniformly with angular velocity const .  The magnetic flux coupled to the frame 

with an area of S  at any time t  is  

 

tBSBSSBФ n  coscos  ,                                (7.3) 

 

 where t   is the angle of rotation of the frame at time t  ( 0  at 0t ).  

When the frame rotates, a variable induction EMF will appear in it 

 

tBS
dt

dФ
i  sin .                                      (7.4) 

 

The EMF reaches its maximum value  

 

 BSmax  ( 1sin t ).                                       (7.5) 

 

The EMF changes according to the harmonic law. It follows from  

    

 BS
axm                                                (7.6) 

 

that 
axm  (and hence also the EMF of induction) is directly dependent on the 

magnitudes of  , B  and S . 

 

~ 

n


 

  N  S  

 
Figure 7.1. Electric generator. 
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7.3. Inductance of the Circuit 

 

The electric current passing in a closed circuit creates around itself a magnetic 

field. The induction of magnetic field, according to the Biot-Savart law, is 

proportional to the current. The magnetic flux Ф  connected to the circuit is 

proportional to the current I  in the circuit:  

 

ILФ  ,                                                 (7.7) 

 

where the proportionality coefficient L is called the inductance of the circuit.  

The change in the current in the circuit results in a change in the magnetic flux 

coupled to the circuit. Consequently, the EMF will be induced in the circuit. The 

phenomenon of self-induction consists in the occurrence of EMF induction in a 

conducting circuit under the condition that the current in it changes. 

We calculate the inductance of an infinitely long solenoid. The total magnetic 

flux through the solenoid is lISN /2
0 . By inserting this expression into formula 

ILФ  , we obtain  

lSNL /2
0 ,                                      (7.8) 

 

 that is, the inductance of the solenoid depends on the number of turns of the solenoid 

N , its length l , the surface S  and the magnetic permeability   of the substance 

from which the core of the solenoid is made.  

It can be shown that the inductance of the contour in the general case depends 

only on the geometric shape of the contour, its dimensions and the magnetic 

permeability of the medium in which it is located. In this sense, the inductance of the 

circuit is an analogy of the electrical capacity of a solitary conductor, which also 

depends only on the shape of the conductor, its dimensions, and dielectric 

permeability of the medium. Applying Faraday's law to the self-induction 

phenomenon, we find that the self-induction EMF is 

 

  









dt

dL
I

dt

dI
LLI

dt

d

dt

dФ
S .                             (7.9) 

 

In the case when the contour is not deformed and the magnetic permeability of 

the medium does not change (it will be shown later that the last condition is not 

always satisfied), then constL   and  

dt

dI
LS  .                                           (7.10) 

 

The minus sign in Lenz’s law shows that the presence of inductance in the 

circuit leads to a slowing of the current change. The increase in current leads to 

0/ dtdI  and 0S , that is, the current of self-induction is opposite directed 
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towards the current caused by the external source, and slows its increase. The 

decrease in current leads to 0/ dtdI  and 0S , that is, the induction current has 

the same direction as the decreasing current in the circuit, and slows its decrease. 

Thus, the circuit, having a certain inductance, acquires an electrical inertia, which is 

included in the fact that any change in the current is inhibited the stronger, the larger 

the inductance of the circuit.  

7.4. Magnetic Field Energy 

 

The conductor with the electric current is always surrounded by a magnetic 

field. A magnetic field appears and disappears together with the appearance and 

disappearance of current. A magnetic field, like the electric field, is the carrier of 

energy. It is natural to assume that the energy of the magnetic field is equal to the 

work that is performed by the current on the creation of this field.  

Consider current loop with inductance L . The magnetic flux 

LIФ corresponds to this circuit. A change  in current dI  is the cause of a change in 

magnetic flux 

LdIdФ  .                                            (7.11) 

 

However, to change the magnetic flux by a value of dФ , it is necessary to 

perform the work  

LIdIIdФdA  .                                     (7.12) 

 

Then the work on creating the magnetic flux Ф  will be  

 

 

I
LI

LIdIA

0

2

2
.                                      (7.13) 

 

Consequently, the energy of the magnetic field associated with the circuit is 

 

2

2LI
W  .                                           (7.14) 

 

The energy of the magnetic field can be represented as a function of the 

quantities characterizing this field in the surrounding space. Consider a particular 

case, namely, a homogeneous magnetic field inside a long solenoid. Substituting the 

expression for L  into the formula for the work A  on creating a magnetic field, we 

obtain  

S
l

IN
W

22

0
2

1
 .                                    (7.15) 

Since  

N

Bl
I

0

                                            (7.16) 
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and  

HB 0 ,                                               (7.17) 

then 

V
BH

V
B

W
22 0

2




,                                  (7.18) 

 

 where VSl   is the volume of the solenoid.  

 The magnetic field of the solenoid is uniform and concentrated inside it; 

therefore the energy is enclosed in the volume of the solenoid and is distributed in it 

with a constant bulk density  

222

2
0

0

2 BHHB

V

W





 .                     (7.19) 

 

 The formula is derived for a homogeneous field, but it is also valid for 

inhomogeneous fields. However, this expression is valid only for media for which the 

dependence of B  on H  is linear, that is, it refers only to paramagnetic and 

diamagnetic substances. 

 

Test questions 

 

1. Explain what the physical factor causes the appearance of an electromotive 

force. 

2. Write the expression for the electromotive force module. 

3. Formulate Faraday's law for electromotive force. 

4. What is the essence of the Lenz’s law? 

5. Does the EMF depend on the method of changing the magnetic flux? 

6. What physical phenomenon underlies the conversion of mechanical energy 

into electric current? 

7. Write down the law of change with time of the magnetic flux, which is 

intersected by a flat frame, rotating in a uniform magnetic field. 

8. Specify the physical quantities whose values affect the maximum value of the 

EMF of a flat frame rotating in a uniform magnetic field. 

9. Write a formula for the magnetic flux associated with a closed circuit through 

which an electric current passes. 

10. What is the phenomenon of self-induction? 

11. How does the total magnetic flux through a solenoid depend on its length? 

12. What determines the inductance of the circuit? 

13. Write down the formula for the electromotive force of self-induction. 

14. Calculate the work of creating a magnetic flux in the circuit with a constant 

inductance. 

15. Write the formula for the energy of the magnetic field associated with the 

circuit? 
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16. Make a quantitative and qualitative description of the magnetic field energy of 

the solenoid. 

17. Where is the solenoid magnetic field energy concentrated? 

18. Is it possible to say that the magnetic field energy outside the solenoid is 

exactly zero? 

19. Is the energy distribution inside the solenoid uniform? 

20. Write the formula for the bulk density of energy inside the solenoid. 

 

Problem-solving examples 
 

Problem 7.1  

 

Problem description. A charged particle moves around a circle of radius cmR 5.2  

in a uniform magnetic field with induction TB 3.0 . The electric field is switched 

parallel to the magnetic field. The electric field depends on time according to the law 
2tE  , where 2/6 sV . Determine the time after switching on the field, which 

is necessary for the kinetic energy of the particle to double. 

 

Known quantities: cmR 5.2 , TB 3.0 , 
2tE  , 2/6 sV . 

 

Quantities to be calculated: 0t . 

 

Problem solution. In the absence of an electric field, the particle was moving in a 

circle under the action of the Lorentz force. Particle acceleration is 

 

m

QB

m

F
a L 1

1


 ,                                        (7.1.1) 

where m  is a particle mass, 

           Q  is a particle charge, 

           1  is the speed of the particle before the electric field is turned on. 

 In this case, the force LF  acts perpendicular to the speed. Therefore, the 

particle acceleration is centripetal 

 

R
a

2
1

1


 ,                                            (7.1.2) 

 We find the rate, which had particle before switching the electric field. 

 

m

RQB
1 .                                       (7.1.3) 

 The kinetic energy of a particle depends on its mass and speed. 
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2

2
1

1

m
E  .                                             (7.1.4) 

 After turning on the electric field at time 0t , the particle begins to 

accelerate in the direction perpendicular to the direction of the vector E


. 

Acceleration of a particle in this direction is determined from Newton's second law 

 

 
 

m

tQE
ta  .                                             (7.1.5) 

 After time 0t , the particle speed will be equal to  

 

  

0

0

3
02

3

t

t
m

Q
dtta


 .                                      (7.1.6) 

 The resulting velocity square will take the value 

 
2

2
2

1   .                                            (7.1.7) 

 Kinetic energy will be equal, respectively 

  

 2
2

2
12

2
 

m
E .                                          (7.1.8) 

Since this energy is twice the initial energy, then 21   .  

 Rewrite the expression for the initial and final speeds 

 

21    или 
3

0
3

t
m

Q

m

RQB 
 .                                  (7.1.9) 

 Express time from the last relation  

 
3/1

0

3












RB
t .                                       (7.1.10) 

 We substitute numerically st 155.00  . 

 

Answer. The time is st 155.00  . 

 

Problem 7.2  

 

Problem description. A flat wire frame, the area of which is equal to 22103 mS  , 

and the resistance  5.1R , is located in a uniform magnetic field with induction 

TB 2.0 initially, the coil plane is perpendicular to the magnetic induction lines. The 

frame is connected to the galvanometer. The total charge flowing through the 
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galvanometer is equal to СQ 4105.8  . Determine the angle of rotation of the 

frame. 

 

Known quantities: 22103 mS  ,  5.1R , TB 2.0 , СQ 4105.8  . 

 

Quantities to be calculated:  . 

 

Problem solution. Let the normal to the coil plane coincide with the direction of the 

magnetic induction vector. The initial magnetic flux through the area bounded by a 

coil is equal to 

 

BSBSФ  0
1 0cos ,                                   (7.2.1) 

 

where B  is magnetic field induction, 

           S  is a coil area. 

 The rotation of the plane of the frame at an angle of   causes the rotation of 

the normal to the frame at an angle of  , so the magnetic flux becomes 44 

 

cos2 BSФ  .                                     (7.2.2) 

 

 Since the magnetic flux Ф  has changed, an EMF of induction has appeared 

in the frame. However, the law of change in the magnetic flux in time is not 

specified. The magnetic flux Ф  may vary unevenly over time. Therefore, to calculate 

the EMF induction, we use the formula 

 

 
dt

tdФ
i  .                                      (7.2.3) 

 Induction current flows through the frame 

 

 
 

dt

tdФ

RR
tI i 1




.                           (7.2.4) 

 

 The electric charge that flows through the coil is 

 

 
2

1

t

t

dttIQ ,                                 (7.2.5) 

where 1t  and 2t  are the initial and final times, respectively. 

 Rewrite the previous equality 
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   
     Ф

R
tФtФ

R
dt

dt

tdФ

R
dt

dt

tdФ

R
Q

t

t

t

t









 

1111
12

2

1

2

1

.     (7.2.6) 

                          

 Thus, regardless of how the turn turns, the charge flowing through the closed 

loop is equal to 

 

R

Ф
Q


 .                                       (7.2.7) 

 

 The formula for the charge is obtained under the assumption that the 

inductance of the circuit is negligible. 

 Rewrite the formula for charge 

 

 
R

BS
Q

1cos 



,                           (7.2.8) 

then 

 

BS

QR
1cos ,                              (7.2.9) 

therefore  

 











BS

QR
1arccos .                           (7.2.10) 

 Numerically 
038 . 

 

Answer. The angle of rotation of the frame 
038 . 

 

Problem 7.3  

 

Problem description. The solenoid with a diameter of cmd 8  is in a uniform 

magnetic field with induction TB 6.0 . The solenoid has 80N  turns of copper 

wire with a cross-sectional area of 21mm . The solenoid is turned at an angle of 
0180  over time st 2.0  so that its axis remains directed along the field. 

Determine the average value of the EMF that occurs in the solenoid, as well as the 

induction charge. The resistivity of copper is m 8107.1 . 

 

Known quantities: cmd 8 , TB 6.0 , 80N , 21mm , 
0180 , st 2.0 , 

m 8107.1 . 

 

Quantities to be calculated: i , Q . 



 117 

 

Problem solution. The change in the magnetic flux Ф , which penetrates the 

solenoid, leads to the appearance of an EMF 

 

t

Ф
Ni




 ,                                            (7.3.1) 

 

where N  is the number of turns of the solenoid. 

 When the axis of the solenoid is rotated from angle 1  to angle 2 , the 

magnetic flux penetrating the solenoid changes by  

 

  12112 coscos  BSBSФФФ  ,                       (7.3.2) 

 

where S  is the cross section of the solenoid, 

           B  is magnetic field induction. 

 According to the condition of the problem, the axis of the coil in the initial 

position coincided with the direction of the field ( 01  ), and the angle of rotation is 
0

2 180 . The change in magnetic flux in this case will be equal to 

 

BSФ 2 .                                       (7.3.3) 

 

 The cross-sectional area of the solenoid is equal to 

 

4

2d
S


 ,                                         (7.3.4) 

where d  is the diameter of the solenoid.  

 In this case, the EMF is equal to 

 

t

NBd
i




2

2
 .                                     (7.3.5) 

 

 For the given numerical values we get: Vi 4.2 . 

A change in the magnetic flux in the solenoid leads to the appearance of a charge  

 

R

Ф
Q


 .                                   (7.3.6) 

 The coil resistance of the solenoid is equal to 

 



 dN
R  ,                                   (7.3.7) 

where   is the cross-sectional area of copper wire. 

 Finally, we get the expression for the charge 
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



2

Bd
Q  .                                              (7.3.8) 

 Numerically: CQ 4.1 . 

 

Answer. The average value of the EMF is Vi 4.2 . The induction charge is 

CQ 4.1 . 

Problems 
 

Problem A  

 

Problem description. Between the poles of the electromagnet is placed a coil 

connected to a ballistic galvanometer. The axis of the coil is parallel to the magnetic 

induction lines. The coil has a resistance of  41R  and a cross-sectional area of 
22 cmS  . The number of turns of the wire that is wound on the coil is 15N . The 

resistance of the galvanometer is  462R . When the current in the electromagnet 

winding was turned off, a quantity of electricity leaked along the galvanometer circuit 

equal to CQ 5109  . Calculate the magnetic induction generated by the 

electromagnet. 

 

Answer. TB 5.1 . 

 

Problem B  

 

Problem description. At a distance of ma 1  from the long straight wire with a 

current of kAI 1 , there is a ring with a radius of cmr 1 . The ring is located so 

that the flow penetrating it is maximum. Determine the amount of electricity Q  that 

will flow through the ring when the current in the conductor is turned off. The ring 

resistance is 10R . 

 

Answer. CQ 51028.6  . 

 

Problem C  

 

Problem description. The inductance of the coil is equal to mHL 2 . The current 

frequency of Hz50 , flowing through the coil, varies according to a sinusoidal 

law. Determine the average value of the self-induced EMF over a period of time 

during which the current in the coil varies from minimum to maximum. The 

amplitude value of the current is AI 100  . 

Answer. VE 4 . 
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Problem D  

 

Problem description. The inductance of a solenoid with a length of ma 1  wound in 

a single layer on a nonmagnetic frame is mHL 6.1 . The solenoid cross section is 
220 cmS  . Determine the number of turns on each centimeter of the length of the 

solenoid. 

Answer. 18  cmn .  

 

Problem E  

 

Problem description. The solenoid contains 1000N  turns. The current in its 

winding is AI 1 . The magnetic flux Ф  through the cross section of the solenoid is 

Wb4101  . Calculate the energy of the magnetic field. 

 

Answer. JW 2105  . 
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CHAPTER 8. MAXWELL’S EQUATIONS 
 

8.1. Vortex Electric Field 

 

 The theoretical analysis carried out by Scottish scientists James Clerk Maxwell 

(1831 – 1879) showed that a time-varying magnetic field generates an electric field 

BE


 whose circulation is 

  

L L

BlB
dt

dФ
dlEldE


 ,                               (8.1) 

where BlE


 is the projection of the vector BE


 on the direction ld


. Substituting 

expression 


S

SdBФ


                                              (8.2) 

into formula for the  electric field circulation, we obtain 

 

 

SL

B SdB
dt

d
ldE


.                                  (8.3) 

 

 If the surface and the contour are fixed, then the operations of differentiation 

and integration can be interchanged. Consequently 

 

 




SL

B Sd
t

B
ldE





,                                     (8.4) 

 

where the symbol of a partial derivative emphasizes the fact that the integral 
S

SdB


  

is a function only of time. It is known that the circulation of the vector of the intensity 

of the electrostatic field (we denote it QE


) along any closed circuit is equal to zero 

 

  

L L

QlQ dlEldE 0


.                                (8.5) 

 

Between these fields ( BE


 and QE


) there is a fundamental difference: the 

circulation of vector BE


, i.e. BE


 in contrast to the circulation of vector QE


 is not 

zero. Consequently, the electric field generated by the magnetic field, like the 

magnetic field itself, is vortex.  
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8.2. Displacement Current 

 

 Maxwell argued that if every variable magnetic field generates a vortex electric 

field in the surrounding space, then there must be another phenomenon: any change 

in the electric field should cause the appearance of a vortex magnetic field in the 

surrounding space. To establish the quantitative relationships between the changing 

electric field and the magnetic field caused by it, Maxwell introduced the so-called 

displacement current into consideration.  

 

 

 

 

 

 

 

 

 

 

 

 Consider an AC circuit containing a capacitor (Figure 8.1). Between the plates 

of the charging and discharging capacitor there is an alternating electric field, 

therefore, displacement currents flow through the capacitor, and in those areas where 

there are no conductors. Let us find a quantitative relationship between the varying 

electric and the magnetic fields that are caused by them. The alternating electric field 

in the capacitor at each instant of time produces such a magnetic field as if there was 

conduction current between the capacitor plates equal to the current in the lead wires. 

Then it can be argued that the conduction ( I ) and displacement ( dI ) currents are 

equal: IId  . The conduction current near the capacitor plates is  

 

   








S S S

dS
t

D
dS

t
dS

dt

d

dt

dQ
I


                           (8.6) 

 

(the surface charge density   on the plates is equal to the electric displacement D  in 

the capacitor). The integrand can be viewed as a special case of the scalar product 

Sd
t

D 














 when 

t

D






 and Sd


 are mutually parallel. Therefore, for the general case, we 

can write 

 




S

dS
t

D
I .                                               (8.7) 

 Comparing this expression with  



S

dd SdjII


,                                              (8.8)                    

 

~ 

Q  Q  

I  I  

 

Figure 8.1. AC circuit containing a capacitor. 
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we have  

t

D
jd








.                                                    (8.9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The expression for dj  is called the displacement current density. 

 Let us consider the direction of the density vectors of the conduction and 

displacement currents j


 and dj


. Charging the capacitor (Figure 8.2) through the 

conductor connecting the electrodes causes the current passing from the right side to 

the left. The field in the capacitor is amplified, the vector D


 grows with time, hence 

0




t

D


, i.e. vector 
t

D






 is directed in the same direction as D


. It can be seen from 

the figure that the directions of the vectors 
t

D






 and j


 coincide. When the capacitor 

is discharged (Figure 8.2) the current passes from the left to the right; the field in the 

capacitor is weakened, the vector D


 decreases with time; consequently, 0




t

D


, that 

is, the vector 
t

D






 is directed opposite to the vector D


. 

     However, the directions of vectors 
t

D






 and j


 coincide. From the analyzed 

examples it follows that the direction of the vector j


, and hence of the vector dj


, 

coincides with the direction of the vector 
t

D






.  

 Thus, the displacement current (in a vacuum or substance) creates a magnetic 

field in the surrounding space (lines of induction of the magnetic fields of 

Figure 8.2. Displacement current. 
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displacement currents when charging and discharging the capacitor are shown in 

Figure  8.2 by a dashed lines). 

The displacement current in dielectrics consists of two parts. Since  

 

,0 PED


                                          (8.10) 

 

 where E


 is the strength of the electrostatic field,  

           P


 is the polarization.  

The displacement current density is 

t

P

t

E
jсм














0 ,                                    (8.11) 

where 
t

E






0  is the displacement current density in vacuum,  

            
t

P






 is the polarization current density.  

The current due to the orderly motion of electrical charges in the dielectric (the 

displacement of charges in non polar molecules or the rotation of dipoles in polar 

molecules) is called the polarization current. The excitation of the magnetic field by 

the polarization currents is correct, since the polarization currents are by their nature 

no different from the conduction currents. However, the fact that the other part of the 

displacement current density (
t

E






0 ), which is not connected with charge motion, 

but is caused only by the change of the electric field in time, also excites the magnetic 

field, is a fundamentally new statement. Even in vacuum, any change in the time of 

the electric field leads to the appearance of a magnetic field in the surrounding space. 

It should be noted that the name "displacement current" is conditional, and more 

precisely historically developed, since the bias current in its essence is a changing 

electric field with time. The displacement current therefore exists not only in vacuum 

or dielectrics, but also inside conductors, over which an alternating current passes. 

However, in this case it is negligibly small in comparison with the conductivity 

current. 

 Maxwell introduced the concept of a total current equal to the sum of the 

conduction currents (and also the convection currents) and the displacement current. 

The density of the total current is 

t

D
jjt








.                                           (8.12) 

 

 Introducing the concepts of the displacement current and the total current, 

Maxwell explored the closed nature of AC circuits in a new way. The total current in 

AC circuits is always closed, that is, only the conduction current breaks off at the 

ends of the conductor, and in the dielectric (vacuum) between the ends of the 

conductor there is a displacement current that closes the conduction current. Maxwell 
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generalized the theorem of the vector H


 circulation by introducing into the right-

hand side of formula the total current 


S

tt SdjI


                                        (8.13) 

through the surface S  stretched over the closed contour L . Then the generalized 

theorem of the vector H


 circulation is written in the form 

 

Sd
t

D
jldH

L S






  













 .                            (8.14) 

8.3. Maxwell's Equations for the Electromagnetic Field 

 

 The concept of displacement current allowed Maxwell to complete the 

macroscopic theory of the electromagnetic field. This theory explained not only 

electrical and magnetic phenomena, but also predicted new phenomena, the existence 

of which was subsequently confirmed. 

 Maxwell's theory is based on the four equations considered above.  

1. The electric field can be both potential ( QE


) and vortex ( BE


), so the intensity 

of the total field is  

BQ EEE


 .                                     (8.15) 

 

Since the circulation of the vector QE


 is zero, the circulation of the vector of the 

intensity E


 of the total field is 

dS
t

B
ldE

L S

  







.                               (8.16) 

 

This equation shows that the sources of the electric field can be not only electric 

charges, but also changing magnetic fields in time.  

2. The generalized theorem of the vector H


 circulation has the form 

 

Sd
t

D
jldH

L S






  













 .                             (8.17) 

 

This equation shows that magnetic fields can be excited either by moving charges 

(electric currents) or alternating electric fields.  

3. The Gauss’s law for vector D


 has the form  

 

 

S

QSdD


.                                     (8.18) 
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If the charge is distributed within a closed surface continuously with a volume 

density , then formula 

 

S

QSdD


                                       (8.19) 

will be written as 

 
S V

dVSdD 


.                                  (8.20) 

 

4. The Gauss’s law for vector B


 has the form  

 

 

S

SdB 0


.                                      (8.21) 

Thus, the complete system of Maxwell’s equations in integral form includes 4 

equations: 

  




L S

Sd
t

B
ldE





,                               (8.22) 

 
S V

dVSdD 


;                                  (8.23) 

Sd
t

D
jldH

L S



  











 ,                            (8.24) 

 

S

SdB 0


.                                        (8.25) 

 

 The quantities appearing in the Maxwell's equations are not independent and 

there is a following relationship between them (for isotropic non ferroelectric and 

non-ferromagnetic substances) 

ED


0 , 

HB


0 , 

Ej


 ,                                                 (8.26) 

 

where 
0  and 0  are, respectively, electric and magnetic constants,  

             and   are, respectively, dielectric and magnetic permeability,  

             is the specific conductivity of the substance.  

 It follows from Maxwell's equations that an electric field can be created either 

by electric charges or by time-varying magnetic fields. Magnetic fields can be 

generated either by moving electric charges (electric currents) or by alternating 

electric fields. Maxwell’s equations are not symmetric with respect to the electric and 

magnetic fields. This is due to the fact that in nature there are electric charges, but 

there are no magnetic charges. 



 126 

 For stationary fields ( constE   and constB  ) Maxwell's equations assume 

the form 

 

L

ldE 0


, 

 

S

QSdD


, 

 

L

IldH


, 

 

S

SdB 0


,                                                (8.27) 

that is, the electric fields in this case are generated only by electric charges, and the 

magnetic fields are generated only by conduction currents. In this case, the electric 

and magnetic fields are independent of each other. This fact allows us to study 

separately the constant electric and magnetic fields.  

 Using the Stokes’ and Gauss’s theorems known from vector analysis, we can 

represent the complete system of Maxwell’s equations in differential form 

(characterizing the field at each point of space)  

 

t

B
Erot









, 

Ddiv


, 

t

D
jHrot









, 

0Bdiv


.                                               (8.28) 

 

Stokes’ theorem is named after Anglo-Irish physicist Sir George Gabriel Stokes, 

1st Baronet (1819 – 1903). If the charges and currents are continuously distributed in 

space, then both forms of the Maxwell’s equations (integral and differential) are 

equivalent. However, when the area under investigation contains discontinuity 

surfaces, i.e. such surfaces, on which the properties of the medium or fields change in 

an abrupt manner, then the integral form of the equations is more general. 

 Maxwell's equations in differentiated form assume that all the magnets in space 

and time change continuously. In order to achieve the mathematical equivalence of 

both forms of Maxwell’s equations, the differential form is supplemented by the 

boundary conditions that the electromagnetic field at the interface between the two 

media must satisfy. The integral form of the Maxwell’s equations contains these 

conditions  

nn DD 21  , 

 21 EE  , 

nn BB 21  , 

 21 HH                                                    (8.29) 
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(the first and last equations correspond to the cases when there are neither free 

charges nor conductivity currents at the interface). 

Maxwell's equations are the most general equations for electric and magnetic 

fields in stationary media. They play the same role in the doctrine of 

electromagnetism as Newton's laws in mechanics. English physicist Sir Isaak Newton 

(1642 – 1726) was one of the founders of classical physics. It follows from Maxwell's 

equations that an alternating magnetic field is always connected with the electric field 

generated by it, and an alternating electric field is always associated with the 

magnetic field generated by it, that is, the electric and magnetic fields are inextricably 

linked with each other. They form an electromagnetic field. Maxwell's theory, being a 

generalization of the basic laws of electrical and magnetic phenomena, was able to 

explain not only the already known experimental facts, which is also an important 

consequence of it, but also predicted new phenomena. 

One of the important conclusions of Maxwell's theory was the existence of a 

magnetic field of displacement currents, which allowed Maxwell to predict the 

existence of electromagnetic waves. Variable electromagnetic fields, which propagate 

in a space with a finite velocity, are called electromagnetic waves. The propagation 

velocity of a free electromagnetic field (not connected with charges and currents) in a 

vacuum is equal to the speed of light. This conclusion and theoretical study of the 

properties of electromagnetic waves led Maxwell to create the electromagnetic theory 

of light, according to which light is also electromagnetic waves.  

8.4. Electromagnetic Waves 

 

 The existence of electromagnetic waves is one of the most important 

consequences of Maxwell's equations. Consider a homogeneous and isotropic 

medium far from charges and currents that create an electromagnetic field. It follows 

from Maxwell's equations that in such a medium, the intensity vectors E


 and H


 of 

the alternating electro magnetic field satisfy the wave equation 
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,                                          (8.30) 
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where 
2

2

2

2

2

2

ZYX 












  is the Laplace operator (this operator is named after  

French physicist Pierre-Simon, marquis de Laplace (1749 – 1827));  

              is the phase velocity.  

Any function that satisfies the above equations describes a certain wave. 

Consequently, electro magnetic fields can exist in the form of electromagnetic waves. 

The phase velocity of electromagnetic waves is determined by the formula 




c


11

00

                                   (8.32) 
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where 00/1 c ;  

           0  and 0 , respectively, electric and magnetic constants; 

             and   are, respectively, the electrical and magnetic permeabilities of the 

medium.  

In a vacuum ( 1 , and 1 ), the propagation velocity of electromagnetic 

waves coincides with the velocity c . Since 1 , the propagation velocity of 

electromagnetic waves in matter is always less than in a vacuum.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vectors E


 and H


 of the electric and magnetic field intensity of the 

electromagnetic wave are mutually perpendicular (Figure 8.3) and lie in a plane 

perpendicular to the velocity vector 


 of the wave propagation. Vectors E


, H


 and 




 form a right-screw system. It follows also from the Maxwell’s equations that in the 

electromagnetic wave vectors E


 and H


 always oscillate in the same phases. 

Consequently, the modules of vectors E


 and H


 simultaneously reach a maximum 

and simultaneously turn to zero. The following equations are a consequence of the 

wave equations 
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.                                      (8.33)  

 

 Plane monochromatic electromagnetic waves (electromagnetic waves of one 

strictly defined frequency) are described by equations 

 

   kXtEEY cos0 ;  

   kXtHH Z cos0 ,                               (8.34) 

 

where 0E  and 0H  are, respectively, the amplitude of the intensity of the electric and 

magnetic fields of the wave; 
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Figure 8.3. Electromagnetic wave. 
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   is the circular frequency of the wave; 

 /k  is the wave number;  

  are the initial phases of the oscillations at points with the coordinate 0X .  

8.5. Electromagnetic Waves Energy 

 

 The possibility of detecting electromagnetic waves indicates that they transfer 

energy. The volume density   of the energy of the electromagnetic wave consists of 

the volume densities E  and М  of the electric and magnetic fields 

 

2/2/ 22
0

2
0 HEME   .                            (8.35) 

 

The energy density of the electric and magnetic fields at each moment of time 

is the same, that is, ME   .  

Therefore  

EHEE  00
2

02  .                          (8.36) 

 

Multiplying the energy density   by the velocity   of propagation of the wave 

in the medium, we obtain the energy flux density modulus 

 

EHS  . 

 

Since the vectors E


 and H


 are mutually perpendicular and form a right-

handed system the direction of the vector  HE


 coincides with the energy transfer 

direction, and the modulus of this vector is EH . The flux density vector of 

electromagnetic energy is called the Poynting vector  

 

 HES


 .                                          (8.37) 

 

Pointing vector is named after English physicist John Henry Poynting (1852 – 

1914). The vector S


  is directed towards the electromagnetic wave propagation, and 

its modulus is equal to the energy transferred by the electromagnetic wave per unit 

time through a single area perpendicular to the propagation direction of the wave.  

 Electromagnetic waves, according to Maxwell's theory, should exert pressure 

on bodies if these bodies absorb or reflect electromagnetic waves. The pressure of 

electromagnetic waves is explained by the fact that under the action of the electric 

field of the wave, the charged particles of matter begin to move in an orderly manner. 

The reason for this motion is the action of the Lorentz force on particles from the side 

of the magnetic field of the wave. However, the magnitude of this pressure is 

negligible. It can be estimated that with an average solar radiation power coming to 

Earth, the pressure for an absolutely absorbing surface is about 5 μPa.  
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The existence of pressure of electromagnetic waves leads to the conclusion that 

the mechanical impulse can be associated with a electromagnetic field. The impulse 

of the electromagnetic field is cWP / , where W  is the energy of the 

electromagnetic field. Expressing the momentum as mcP   (the field in the vacuum 

propagates at a speed of c ), we obtain cWmcP / , whence 
2mcW  . This 

relationship between the mass and energy of a free electromagnetic field is a 

universal law of nature.  

 

Test questions 

 

1. What physical field is generated by the time-varying magnetic field? 

2. Write the integral expression for the electric field intensity generated by an 

alternating magnetic field. 

3. Calculate the circulation of the electrostatic field intensity vector. 

4. What is the difference between the intensity of the electrostatic field and the 

intensity of the electric field generated by an alternating magnetic field? 

5. What is the reason for introducing the displacement current into consideration? 

6. Write down the differential formula for the displacement current density. 

7. What is the relationship between the displacement current density and the 

polarization current density? 

8. Describe the concept of total current proposed by Maxwell. 

9. What is the essence of the generalized theorem on the circulation of the 

magnetic field strength vector? 

10. Is it possible to say that the electric field is always potential? 

11. Is it possible to say that the source of the electric field can be only changing 

magnetic field in time? 

12. What physical field can generate alternating electric fields? 

13. Write down the Gauss’s theorem for the displacement vector. 

14. Calculate the flux of the displacement vector in a closed circuit. 

15. Write Maxwell's equations in integral form. 

16. Write Maxwell's equations in differential form. 

17. Are the quantities appearing in Maxwell's equations independent? 

18. Explain the reason for the asymmetry of Maxwell's equations. 

19. Write down the boundary conditions for Maxwell's equations. 

20. What is the significance of a Poynting vector? 

 

Problem-solving examples 

Problem 8.1  

 

Problem description. The oscillatory circuit consists of a solenoid and a 12.5 nF 

capacitor. The current in the solenoid changes by 1.5 A in 0.4 s. In this case, an EMF 

of 0.3 mV is induced in the solenoid. Calculate the radio wave length radiated by the 

oscillating circuit. 
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Known quantities: nFC 5.12 , AI 5.1 , st 4.0 , mV3.0 . 

 

Quantities to be calculated:  . 

 

Problem solution. The wavelength emitted by the generator 

 

LCc  2 ,                                               (8.1.1) 

 

where с  is the speed of propagation of electromagnetic waves in a vacuum;  

          L  is the inductance of the solenoid;  

          С  is the capacitance of the capacitor. 

EMF of self-induction arising in the solenoid is equal to 

 

t

I
L



 ,                                               (8.1.2) 

 

where I  is the change in current over time t . 

Hence the inductance of the solenoid is equal to 

 

I

t
L




  .                                                (8.1.3) 

Then for the wavelength we get 

 

m
I

t
Cc 24502 




  .                                   (8.1.4) 

 

Answer. The length of the radio waves that the generator emits is equal to 

m1884 .  

 

Problem 8.2  

 

Problem description. The area of the capacitor plates is equal to 70 cm2. The initial 

distance between the plates of the capacitor is 0.4 сm. The charge on each capacitor 

plate is 10–9 С. Condenser plates began to move apart with speed 3 mm/min. 

Determine the density of the displacement current in the capacitor 240 s after the 

beginning of the movement of the plates. Consider two cases: 1) plate charges remain 

constant; 2) the potential difference between the plates remains constant. 

 

Known quantities: 270cmS  , cmd 4.00  , Cq 910 , min/3mm , st 240 . 

 

Quantities to be calculated: dj . 
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Problem solution. Since the conduction current lines pass into the bias current lines, 

the bias current density is equal to 
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where S  is the area of the capacitor plates;  

           q  is an electric charge located on a plate;  

           С  is the capacitance of the capacitor;  

           U  is the potential difference between the capacitor plates;  

             is the relative dielectric constant of the substance between the capacitor 

plates;  

           0  is an electrical constant;  

             is the plate speed;  

            t  is the time for which the plates will move apart. 

  For the first case we get 

 

00  dj
dt

dq
constq .                                  (8.2.2) 

 

According to the condition of the problem, in the second case constU  , then 
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For the displacement current density, the ratio is 

 

 
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2
0
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tdS
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
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Answer. displacement current density is: 1) 0dj ; 2) 
210 /101.1 mAjd

 . 

 

Problem 8.3  

 

Problem description. A plane electromagnetic wave falls normally on the surface of a 

plane-parallel layer. The layer has a thickness of L  and is made of a non-magnetic 

material. The dielectric constant of this material falls exponentially from a value of 

1  on the front surface to 2  on the back. Determine the formula for the propagation 

time of this phase of the wave through this layer. 

 

Known quantities: L , 1 , 2 . 

 

Quantities to be calculated: t . 
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Problem solution. Instantaneous speed is 

dt

dx
 .                                               (8.3.1) 

 

 Dielectric constant changes exponentially 

 

 xk exp1 .                                     (8.3.2) 

 

Calculate the derivative of the dielectric constant per coordinate 
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then 
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 The speed of propagation of electromagnetic waves in the medium is 

 




c
                                                (8.3.5) 

or 
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Then  
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We integrate in the range from 1  to 2 : 
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Value k  we find from the condition  

 

 kL exp12  ,                                      (8.3.9) 

Consequently 
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For time t , we can write  
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Answer. the propagation time of the wave phase through this layer is equal to 

 
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Problems 
 

Problem A  

 

Problem description. The rectangular ring is made of a material with a conductivity 

of 17 )(106  m . The inner radius of the ring is cmR 31  , the outer radius of 

the ring is cmR 52  , and the height of the ring is cmh 1 . The ring is in a non-

stationary magnetic field, the induction vector of which is parallel to the axis of 

symmetry of the ring. The magnetic field varies according to law 

   RrRrkttB  ,0()0,( , where r  is the distance from the axis of the ring, 

and 2RR  . Determine the strength of the current that flows through the ring, if 

sTk /1.0 . 

 

Answer. AI 24 . 

 

Problem B  

 

Problem description. A plane-parallel diode is an evacuated vessel, in which the 

anode and cathode are located. As an anode and cathode, two plane-parallel plates 

can be imagined, the distance between them is d . Determine the potential 

distribution between the anode and cathode in such an instrument, assuming that 

electrons emitted by the cathode with a low initial velocity due to the phenomenon of 

thermionic emission, create a cloud around the cathode and only a fraction of the 

electrons moves toward the anode. The anode potential is 0U , and the cathode 

potential is zero. The distance between the anode and the cathode is small compared 

with the transverse dimensions of the plate. 

 

Answer.     3/4
0 / dxUx  . 

 

Problem C  

 

Problem description. Charged and disconnected from the source, a flat capacitor with 

round plates with a radius of R  is punched by an electric spark along its axis. 

Considering the discharge as a quasi-stationary and neglecting edge effects, calculate 
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the instantaneous value of the magnetic field strength H  inside the capacitor as a 

function of the distance r  from its axis if the current in the electric spark is I . 

 

Answer.    rRrIH 2//1 22 . 

 

Problem D  

 

Problem description. The plates of a flat capacitor are in the form of disks whose 

radius is cmR 10 . The space between the plates is filled with a uniform dielectric 

with a dielectric and magnetic permeability of   and  , respectively. The capacitor 

is connected to the AC circuit  tII cos0 . Neglecting the edge effects, calculate 

the ratio k  of maximum magnetic energy to maximum electric energy. When 

calculating, it should be assumed that 1  , and the frequency of the current is 

  Нz1002/   . 

 

Answer. 
15105 k . 

 

Problem E  

 

Problem description. Determine the displacement current density dj  in a flat 

capacitor, the plates of which are moved apart at a speed of  , while remaining 

parallel to each other. Consider the cases: 1) the charges on the plates of the capacitor 

remain constant, 2) the potential difference U  between the plates remains constant. 

The distance d  between the plates of the capacitor remains all the time small 

compared with the linear dimensions of the plates. 

 

Answer. 1) 0/  tDjd , 2) 2
0 / dUjd  . 
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CHAPTER 9. GEOMETRICAL OPTICS. PHOTOMETRY 
 

9.1. Laws of Geometrical Optics 

 

The following basic laws of optics are known: the law of rectilinear 

propagation of light in an optically homogeneous medium; the law of independence 

of light beams (valid only in linear optics); law of light reflection; law of refraction of 

light. 

 The law of rectilinear propagation of light: light rays propagate in straight-line 

paths as they travel in a homogeneous medium. The proof of this law is the presence 

of a shadow with sharp boundaries from opaque objects when illuminated by point 

sources of light (sources, whose dimensions are much smaller than the illuminated 

object). Careful experiments have shown, however, that this law is violated if light 

passes through very small holes, and the deviation from the straightness of the 

propagation is the greater, the smaller the aperture.  

 The law of independence of light rays: the effect produced by a separate ray 

does not depend on the presence of other rays. By breaking the light flux into 

separate light rays (for example, using diaphragms), it can be shown that the action of 

the extracted light rays is independent. If light falls on the interface between two 

media (two transparent substances), then the incident ray 1 (Figure 9.1) is divided 

into two – the reflected ray II and the refracted ray III. Directions of these rays are 

given by the laws of reflection and refraction. 

The law of reflection: the reflected ray lies in the same plane as the incident ray 

and the perpendicular drawn to the boundary between the two media at the point of 

incidence; the angle of reflection 


1i  is equal to the angle of incidence 1i :  

 

11 ii 


.                                               (9.1) 

 

Snell’s law describes the resulting deflection of the light ray: the ray incident, 

the ray refracted and perpendicular drawn to the interface at the point of incidence lie 

in the same plane; the ratio of the sine of the angle of incidence to the sine of the 

angle of refraction is a constant value for these media: 

21
2

1

sin

sin
n

i

i
 ,                                               (9.2) 

 where 21n  is the relative index of refraction of the second medium relative to the 

first one.  

This result was discovered experimentally in 1621 by Dutch scientist 

Willebrord Snell (1580–1626) and is known as Snell’s law or the law of refraction 

[3]. The indices in the notation of the angles 1i , '1i , 2i  indicate in which medium (first 

or second) the ray passes. The relative index of refraction of two media is equal to the 

ratio of their absolute refractive indices  

1

2
21

n

n
n  .                                                 (9.3) 
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 The absolute index of refraction n  is a quantity equal to the ratio of the speed 

c  of electromagnetic waves in a vacuum to their phase velocity   in a medium  



c
n  .                                                (9.4) 

On the other hand, the absolute refractive index is equal to  

 

n ,                                             (9.5) 

 

 where   and   are, respectively, the electrical and magnetic permeabilities of the 

medium.  

The law of refraction can be written in the form  

 

2211 sinsin inin  .                                   (9.6) 

 

The symmetry of the resulting expression implies the reversibility of light rays. 

If one turn ray III, causing it to fall to the interface at an angle of 2i , then the 

refracted ray in the first medium will propagate at an angle of 1i , i.e. pass in the 

opposite direction along the ray I . If the light propagates from a medium with a high 

refractive index 1n  (optically denser) to a medium with a smaller refractive index 2n  

(optically less dense) )( 21 nn  , for example glass to water, then, according to the 

refraction law,  

1
sin

sin

2

1

1

2 
n

n

i

i
                                          (9.7) 

and the refracted ray moves away from normal. In this case, the refraction angle 2i  is 

larger than the angle of incidence 1i . As the angle of incidence increases, the 

refraction angle increases until, at a certain angle of incidence ( laii 1 ), the angle of 

 

1i  
2i  

'1i  

I  II  

III  

1n  

2n  

 

Figure 9.1. Reflection and refraction of light. 
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refraction is 2/ . The angle lai  is called the critical angle. All incident light is 

completely reflected at the angles of incidence laii 1 . 

For the case when laii 1  the intensity of the refracted ray vanishes and the 

intensity of the reflected ray is equal to the intensity of the incident ray. Thus, for 

angles of incidence in the range from lai  to 2/ , the ray is not refracted, but 

completely reflected in the first medium, and the intensities of the incident and 

reflected rays are the same. This phenomenon is called total internal reflection.  

The critical angle lai  is determined from the refraction law upon substitution 

2/2 i  into it. Then  

21
1

2sin n
n

n
ila  .                                         (9.8) 

 

The phenomenon of total internal reflection occurs only when the light 

propagate in the direction of the optically less dense medium. The phenomenon of 

total internal reflection is used in prisms of total reflection. The glass refracting index 

is 5.1n , so the critical angle for the glass-air interface is 042
5.1

1
arcsin 








lai .  

Therefore, when the light falls on the glass-air boundary, if the condition 
042i  is satisfied, a complete internal reflection will always take place. Figures 9.2, 

CA   present the prisms of total reflection, allowing: A) to turn the ray by            90 

°; B) rotate the image; C) wrap the rays.  

Such prisms are used in optical devices (for example, in binoculars, 

periscopes), as well as in refractometers that allow one to determine the refractive 

indices of bodies. Using the law of refraction and measuring angle lai , we can 

determine the relative refractive index of two media, and also the absolute refractive 

index of one of the media, if the refractive index of the second medium is known.  

The phenomenon of total internal reflection is also used in optical fibres (light 

guides), which are thin, arbitrarily bent filaments (fibres) made of optically 

transparent material. In fibre parts, a glass fibre is used, the light-conducting core of 

Figure 9.2. Prisms of total reflection. 

 A  B  C 
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which is surrounded by a glass-shell of another glass with a smaller refractive index. 

The light incident on the end of the light guide at angles greater than the critical angle 

is completely reflected on the interface between the core and the shell and propagates 

only along the light-conducting core. Thus, with the help of light guide one can curl 

the light beam path in any way. The diameter of the light guide cores varies in the 

range from several micrometers to several millimetres. Light guides are used in 

electron-beam tubes, in electronic computers, for encoding information, in medicine, 

as well as for integrated optics.  

9.2. Thin Lenses 

 

The optics section, in which the laws of propagation of light are considered on 

the basis of the concept of light rays, is called geometrical optics. Lines normal to the 

wave surfaces along which the light energy flux propagates are called light rays. 

Geometrical optics, while remaining an approximate method of constructing images 

in optical systems, makes it possible to study the main phenomena associated with 

the light propagation through them, and is therefore the basis of the theory of optical 

instruments.  

Lenses are transparent bodies, bounded by two surfaces (one of them is usually 

spherical, sometimes cylindrical, and the second – spherical or flat). These surfaces 

can refract light rays and form optical images of objects. Glass, quartz, crystals, 

plastics are used to make lenses. According to the external form (Figure   9.3), the 

lenses are divided into: 1) biconvex; 2) plano-convex; 3) biconcave; 4) plano-

concave; 5) positive meniscus; 6) negative meniscus.  

Lenses are divided into collecting lenses and scattering lenses according to 

their optical properties. The thickness (the distance between the confining surfaces) 

of a thin lens is much smaller than the radii of the surfaces that bound the lens. A 

straight line passing through the centres of curvature of lens surfaces is called the 

main optical axis. For any lens there is a point called the optical centre of the lens. 

The optical centre is on the main optical axis. The rays passing through the optical 

centre are not refracted. For simplicity, the optical centre O of the lens will be 

considered to coincide with the geometric centre of the middle part of the lens (this is 

 

1 2  3  4  5  6  

 

Figure 9.3. Types of lenses. 
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true only for biconvex and biconcave lenses with the same radii of curvature of both 

surfaces). For plane-convex and flat-concave lenses, the optical centre O lies at the 

intersection of the main optical axis with a spherical surface.  

The ratio connecting the radii of the curvature 1R  and 2R  of the lens surfaces 

with the distances a  and b  from the lens to the object and its image is called the thin 

lens formula. To derive the formula of a thin lens, we use Fermat's principle. 

According to the Fermat’s principle, the path taken between two points by a ray of 

light is the path propagated in the minimum time.  

Let us consider two trajectories of a light ray (Figure 9.4): the straight line 

connecting points A  and B  (ray AOB ), and a trajectory passing through the edge of 

the lens (ray ACB ).  

We use the condition that the travel time of light along these trajectories is 

equal. The light passes along the path of the AOB  during the time  

 

 
c

bdeNa
t


1 ,                                     (9.9) 

where 
1n

n
N   is the relative index of refraction (n  and 1n  are, respectively, the 

absolute refractive indices of the lens and the surrounding medium). The light passes 

along the trajectory ACB  in time 

   
c

hdbhea
t

2222

2


 .                              (9.10) 

 

Since 21 tt  , then 

      2222
hdbheabdeNa  .            (9.11) 

1R  
2R  

C  

a  b  

e  

B  A  

h  

O  

d  
 

Figure 9.4. Trajectory of light rays in the lens. 
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Let us consider paraxial rays, that is, rays forming the small angles with the 

optical axis. Only the paraxial rays form a stigmatic image, that is, all the rays of the 

paraxial beam emanating from point A  intersect the optical axis at the same point B .  

Then 

 eah  ,  dbh                               (9.12) 

and  
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.                          (9.13) 

Similarly  

 
 db

h
dbhdb



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2
22

.                                  (9.14) 

Taking these expressions into account, we obtain  

   














dbea

h
deN

11

2
1

2

.                              (9.15) 

For a thin lens, conditions ae  and bd   can be written, so the last expression 

can be represented in the form  

   







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ba
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.                                  (9.16) 

 

 Taking into account that  

2

2
22

22
2

~
R

h
hRRe                                     (9.17) 

and, respectively, we obtain   
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Figure 9.5. Focal points of lens. 
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 
baRR

N
1111

1
21









 .                                  (9.18) 

 

This expression is the thin lens formula. The radius of curvature of the convex 

surface of the lens is considered as positive, and the radius of the concave lens is 

considered as negative.  

 

For the case a  rays fall on the lens with a parallel beam (see Figure 9.5, 

A ), then 

  









21

11
1

1

RR
N

b
.                                  (9.19) 

The distance  

fOFb                                                   (9.20) 

 

is called the focal length of the lens 

 

 

  







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

21

11
1

1

RR
N

f .                                        (9.21) 

 

This distance depends on the relative refractive index and the radii of 

curvature.  

For the case b  the image is in infinity and, consequently, the rays emerge 

from the lens in a parallel beam (see Figure 9.5, B), then fOFa  . Thus, the focal 

lengths of the lens surrounded on both sides by the same medium are equal. Points 

F , lying on both sides of the lens at a distance equal to the focal length, are called 

focal points. All the rays incident on the lens parallel to the main optical axis are 

collected at a single point after refraction. This point is called the focus. The value  

  Ф
fRR

N 









111
1

21

                                   (9.22) 

 

is called the optical power of the lens. The optical power of the lens is measured in 

dioptres. Lenses with positive optical power are convergence lenses. Lenses with 

negative optical power are diverging lenses. The planes passing through the focal 

points of the lens perpendicular to its main optical axis are called focal planes. Unlike 

the collecting lens, the diverging lens has imaginary foci. The imaginary extensions 

of the rays incident on the scattering lens parallel to the main optical axis converge 

after refraction at the imaginary focus.  

We rewrite the expression for the lens formula  

fba

111
 .                                             (9.23) 
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For a scattering lens, the distances f  and b  must be considered negative.  

The image of the object in the lenses is constructed using the following rays:  

1) a ray passing through the optical centre of the lens and not changing its 

direction; 

2) a ray passing parallel to the main optical axis; after refraction in the lens, this 

ray (or its continuation) passes through the second focus of the lens; 

3) a ray (or its continuation) passing through the first focus of the lens; after 

refraction in it, it leaves the lens parallel to its main optical axis. 

The ratio of the linear dimensions of the image and the object is called the linear 

magnification factor of the lens. Negative values of the linear magnification 

correspond to the actual image (it is inverted), the positive image of the linear 

magnification corresponds to the imaginary image (it is direct). Combinations of 

collecting and scattering lenses are used in optical instruments to solve various 

scientific and technical problems.  

9.3. Aberrations of Optical Systems 

 

 Considering the light propagation through thin lenses, we limited ourselves to 

the case of paraxial rays. The refractive index of the lens material was assumed to be 

independent of the wavelength of the incident light, and the incident light was 

monochromatic. Since in real optical systems these conditions are not satisfied, image 

distortions, called aberrations, arise in them.  

1. Spherical aberration. In the case of the divergent beam of light falls on the lens, the 

paraxial rays after refraction intersect at point S   (at a distance of SO   from the 

optical centre of the lens), and the rays farther from the optical axis intersect at point 

S  , closer to the lens (Figure 9.6). As a result, the image of the luminous point on the 

screen perpendicular to the optical axis will be in the form of a fuzzy spot. This type 

of error in the image associated with the sphere form of the refractive surfaces is 

called spherical aberration. The quantitative measure of spherical aberration is 

segment SOSO  .  

 

 

 

 

 

 

 

 

 

 

 

 

Spherical aberration can be reduced by using diaphragms (limited by paraxial 

rays). However, at the same time, the light-gathering power of the lens decreases. 

 

S  S   S   

  

O  

 

Figure 9.6. Spherical aberration. 
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Spherical aberration can be practically eliminated, making up systems from collecting 

( 0 ) and scattering ( 0 ) lenses. Spherical aberration is a particular case of 

astigmatism.  

2. Coma. If a wide beam from a luminous point located not on the optical axis passes 

through the optical system, the resulting image of this point will be in the form of an 

illuminated speck that resembles a comet tail. Such an image error is therefore called 

a coma. Elimination of coma is performed by the same methods as spherical 

aberration.  

3. Distortion. The error at which, at large angles of incidence of the rays on the lens, a 

linear increase for the points of the object, which are at different distances from the 

main optical axis, is different, is called distortion.  

 

 

 

 

 

 

 

 

 

 

 

As a result, the geometric similarity between the object (rectangular grid, 

Figure 9.7, A ) and its image (pillow-shaped distortion, Figure 9.7, B ; barrel 

distortion, Figure 9.7, C ) is broken. Distortion is especially dangerous in cases where 

optical systems are used in aerial photography and in microscopy. Distortion is 

corrected by the appropriate selection of the constituent parts of the optical system.  

4. Chromatic aberration. Earlier we assumed that the refractive indices of the optical 

system are constant. However, this statement is valid only for illuminating the optical 

system with monochromatic light ( const ). Non monochromatic light requires 

considering the dependence of the refractive index of the lens material (and the 

surrounding medium, if it is not air) on the wavelength (dispersion phenomenon). 

When a white light falls onto an optical system, the individual components of its 

monochromatic rays are focused at different points (red rays are the largest focal 

length, the smallest is the purple rays), so the image is blurred and coloured at the 

edges. This phenomenon is called chromatic aberration. Since different grades of 

glass have different dispersions, combining collecting and diffusing lenses from 

different glasses, it is possible to combine the foci of two (achromat) and three 

(apochromats) of different colours, thereby eliminating chromatic aberration.  

5. Astigmatism. The error in the image due to the unequal curvature of the optical 

surface in different planes of the section of the incident light beam is called 

astigmatism. In this case, the image of a point distant from the main optical axis is 

observed on the screen in the form of a blurry spot of elliptical shape. This spot, 

depending on the distance of the screen to the optical centre of the lens, turns into 

either a vertical or a horizontal line. Astigmatism is corrected by selecting the radii of 

A  Б  В  

 

Figure 9.7. Distortion. 

 A  B  C 
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curvature of the refractive surfaces and their focal distances. Systems in which 

spherical and chromatic aberration and astigmatism are eliminated are called 

anastigmatic.  

Elimination of aberrations is possible only by selecting specially designed 

complex optical systems. Simultaneous correction of all errors is a very difficult task, 

and sometimes even unsolvable. Therefore, it is usually completely eliminated only 

those errors, which in this or that case are especially harmful.  

9.4. Photometry 

 

The optics section dealing with the measurement of the intensity of light and its 

sources is called photometry. The following quantities are used in photometry. 

1. Energy values that characterize the energy parameters of optical radiation 

irrespective of its effect on radiation receivers. 

The quantity equal to the ratio of the radiation energy W  to the time t  over 

which radiation has occurred is called the radiant flux  

 

t

W
Фe  .                                                 (9.24) 

 

The unit of radiant flux is watts (W).  

The value of eR , equal to the ratio of the radiant flux eФ  emitted by the 

surface, to the cross-sectional area S  through which this stream passes  is called 

energy luminosity  

S

Ф
R e

e  .                                                (9.25) 

 

Energy luminosity is equal to the surface radiant flux density. The unit of 

energy luminosity is watt per square meter (W / m2). 

Energy intensity of light is determined by the concept of a point source of light 

source whose dimensions are negligible compared to the distance to the place of 

observation. The value equal to the ratio of the source radiant flux eФ  to the solid 

angle  , within which this radiation propagates  

 


e

e

Ф
I                                                  (9.26) 

 

is called the energy intensity of light eI .  

The unit of the energy intensity of light is watt per steradian (W /sr). The value 

of eB , equal to the ratio of the energy intensity of the light eI  of the element of the 

radiating surface to the area S  of the projection of this element on a plane 

perpendicular to the direction of observation  
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is called radiance. The unit of radiance is watt per steradian-meter in square (W / (cr 

 m2)). The magnitude of the radiation flux incident on a unit of the illuminated 

surface is called irradiance (W / m2).  

2. Light values that characterize the physiological effects of light and are estimated 

from the effect on the eye (come from the so-called average sensitivity of the eye) or 

other radiation receivers. Optical measurements use different radiation receivers (e.g., 

eyes, photocells, and photomultipliers) that do not have the same sensitivity to energy 

of different wavelengths, thus being selective. Each radiation receiver is 

characterized by its sensitivity curve to light of different wavelengths. Therefore, 

light measurements, being subjective, differ from objective, energy measurements. 

For light measurements, light units are introduced, used only for visible light. The 

main luminous unit in SI is the unit of intensity of light - candela (cd).  

The luminous flux Ф  is defined as the power of optical radiation by the light 

sensation caused by it (by its action on a selective light receiver with a given spectral 

sensitivity). The unit of luminous flux is lumen (lm). The luminous flux in 1 lm is 

emitted by a point source with a 1-cd light intensity with the radiation field uniformly 

inside the solid angle.  

Luminosity R  is determined by the relation 
S

Ф
R  . The unit of luminosity is 

lumen per square meter (lm / m2).  

The luminance B  of the luminous surface in a certain direction   is a 

quantity equal to the ratio of the light intensity I  in this direction to the area S  of the 

projection of the luminous surface on a plane perpendicular to this direction 
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B .                                            (9.28) 

 

The unit of luminance is candela per meter per square (cd / m2). 

The illuminance E  is a value equal to the ratio of the light flux Ф  incident on 

the surface S   

S

Ф
E  .                                               (9.29) 

A point source generates illuminance  

 
2/cos rIE  ,                                        (9.30) 

 where I  is intensity of light; 

             is angle of incidence;  

            r  is the distance between optical source and illuminated area.  

The unit of illuminance is lux: 1 lux is the illuminance of the surface, on the 

surface in 1 m2 of which the luminous flux in 1 lm falls (1 lx = 1 lm/ m2). 



 147 

 

Test questions 

 

1. List the basic laws of geometric optics. 

2. What property should the environment have in order for the light to propagate 

in it straightforwardly? 

3. What phenomena lead to the violation of the law on non-interaction of 

intersecting light rays? 

4. Formulate the law of reflection. 

5. Write down the law of refraction for the case when the vacuum is one of the 

media. 

6. Give a definition of the relative index of refraction. 

7. Specify the units for absolute index of refraction. 

8. How are the electrical and magnetic properties of the medium with an absolute 

refractive index interconnected? 

9. Formulate the phenomenon of mutual reversibility of light rays. 

10. What characteristics of the medium affect the value of the critical angle of total 

internal reflection? 

11. What optical devices can be used to determine the refractive index of bodies? 

12. Write down the thin lens formula. 

13. Define the focus as well as the focal length and provide the appropriate 

drawing for the converging and diverging lens. 

14. Formulate the rule for determining the signs of the optical power of the 

converging and diverging lenses. 

15. What rays are used to build the image in an optical lens? 

16. Determine the linear magnification factor of the lens. 

17. Explain the phenomenon of spherical aberration. 

18. Give an explanation of the phenomenon of spherical aberration. 

19. Is the optical coma phenomenon characteristic of thin or thick optical rays? 

20. Write the formula for the illumination generated by a point optical source. 

 

Problem-solving examples 
 

Problem 9.1  

 

Problem description. The two media are separated by a plane-parallel plate. The 

refractive indices of the first medium, the second medium and the plate are 

responsibly equal 36.11 n , 33.12 n , 51.1n  ( 1nn  ). A ray of light falls from 

the first medium onto the plate at an angle  351i . Determine the angle 2i , at which 

a ray of light comes out of the plate. 

 

Known quantities: 36.11 n , 33.12 n , 51.1n  ( 1nn  ),  351i . 

 

Quantities to be calculated: 2i . 
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Problem solution. Passing through the plate, the light beam is refracted twice on its 

faces. In the case of light falling on the boundary of the first medium with the plate, 

we have 
 

inin sinsin 11  ,                                             (9.1.1) 

 

and when light falls on the border of the plate with the second medium 
 

22 sinsin inin  .                                             (9.1.2) 

Here:  

n  is the refraction index of the plate;  

1n  is the refraction index of the first medium;  

2n  is the refractive index of the second medium;  

i  is the angle of refraction of light at the boundary of the first medium with the plate;  

1i  is the angle of incidence of light on the boundary of the first medium with the 

plate. 

Therefore, we can write 

 

2211 sinsin inin  .                                          (9.1.3) 

 

Thus, the angle at which the light comes out of the plate is determined by the 

expression 









 6.33

sin
arcsin

2

11

2
n

in
i .                                (9.1.4) 

 

For the case when 21 nn   it may turn out that the value calculated by the last 

formula exceeds unity.  This means that the beam will not reach the second medium, 

but will completely reflect from the plate boundary with the second medium. After 

reflection, the beam will again be in the first medium, leaving the plate at an angle 1i . 

The above equations can be used for the case when we remove the plate and 

place two media so that they contact. Consequently, the introduction of plastic does 

not change the direction of the beam in the second medium, but only in parallel 

displaces it. For a sufficiently small plate thickness, this displacement can be 

neglected. 

 

Answer. The angle at which the light comes out of the plate is  6.332i .  

 

Problem 9.2  
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Problem description. Calculate the illumination of the Earth, created by normally 

falling sunshine. The brightness of the Sun is equal to 29 /102.1 mcd . The distance 

from the Earth to the Sun is km8105.1  . The radius of the Sun is km5107 . 

 

Known quantities: 29 /102.1 mcdB  , kmr 8105.1  , kmR 5107 . 

 

Quantities to be calculated: E . 

 

Problem solution. Due to the large distance from the Earth to the Sun, we 

believe that the rays falling from the Sun to the Earth go in a parallel beam. 

Considering that the Sun can be viewed as a flat luminous disk, we find that its 

brightness is equal to 

                                                   
S

I
B

2
 ,                                             (9.2.1) 

where 2RS   is the area of the Sun’s disk;  

          R  is the radius of the Sun;  

          I  is the power of light.  

 A factor of  2 is introduced because the flat disk radiates in two directions. 

Then 

 

2

2

R

I
B


 ,                                             (9.2.2) 

from where  

2

2BR
I


 .                                             (9.2.3) 

 

 By the condition of the problem, 1cos  . Then the illumination of the Earth’s 

surface is 

2

2

2 2r

BR

r

I
E


 ,                                             (9.2.4) 

 

where r  is the distance from the Earth to the Sun. 

 Numerically 

lxE 41006.4  .                                             (9.2.5) 

 

Answer. Earth's illumination is equal to lxE 41006.4  . 

 

Problem 9.3  

 

Problem description. The lamp is used to print a photograph. Two cases are being 

studied: 1) The lamp with a light intensity of 55 cd is located at a distance of 1.6 m 
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from the image, and the exposure time is equal to 2.5 s; 2) lamp with a light intensity 

of 42 cd is located at a distance of 2.3 m from the image. Determine the exposure 

time in the second case. 

 

Known quantities: cdI 551  , mr 6.11  , st 5.21  , cdI 422  , mr 3.22  . 

 

Quantities to be calculated: 2t . 

 

Problem solution. The light energy received by the photo paper over time t  is 

equal to the product of the light flux Ф  by the exposure  

 

EStФtW  ,                                      (9.3.1) 

where E  illuminance;  

           S  is the area of photographic paper. 

 Therefore, for each case, we can write 

 

111 StEW  ,  222 StEW  ,                           (9.3.2) 

 

where indices "1" and "2" correspond to the first and second cases, which are 

indicated in the statement of the problem.  

 The quality of the photographs will be the same if in both cases the same light 

energy enters the photographic paper 21 WW   or taking into account the previous 

formulas 

 

2211 StEStE  .                                      (9.3.3) 

 Then  

2

11
2

E

tE
t  .                                            (9.3.4) 

According to the law of illumination for a point source, we can write 

2
1

1
1

r

I
E   and 

2
2

2
2

r

I
E  ,                                      (9.3.5) 

where 1r  and 2r  are the distances between the lamp and the photo paper in the first 

and second cases;  

          1I  and 2I  luminous intensity in the first and second cases. 

 Therefore, for the exposure time in the second case we get 

2
2

1

1
2

21
2

Ir

trI
t  .                                           (9.3.6) 

 

 Substitute numeric data: st 76.62  . 

 

Answer. The exposure time in the second case st 76.62  . 
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Problems 

Problem A  

 

Problem description. The refractive angle of a glass prism is equal to  30 . A ray 

of light falls on the face of the prism perpendicular to its surface and emerges into the 

air from the other face, deviating by an angle of  20  from the original direction. 

Determine the refractive index n  of the glass. 

 

Answer. 63.1n . 

 

Problem B  

 

Problem description. Determine the shortest distance L  between the subject and its 

actual image created by the collecting lens with a main focal length of cmF 12 . 

 

Answer. mL 48.0 . 

 

Problem C  

 

Problem description. The limits of accommodation of the eye of a myopic person 

without glasses lie between the values of cma 161   and cma 802  . In glasses, he 

sees distant objects well. At what minimum distance can he keep a book when 

reading glasses? 

 

Answer. md 2.0 . 

 

Problem D  

 

Problem description. What current I  will the galvanometer connected to the 

selenium photocell show if a light bulb is placed at a distance of cmr 75  from it, 

the total luminous flux of which is klmФ 2.10  ? The surface area of the photocell is 
210 cmS  , the sensitivity of the photocell is lmA /300  . 

Answer. AI 5101.5  . 

 

Problem E  

 

Problem description. Determine the illuminance E , luminosity R  and luminance В  

of a movie screen that uniformly scatters light in all directions, if the luminous flux 

falling on the screen from a camera lens (without a tape) is klmФ 75.1 . The screen 

size is m6.35 , the screen reflection coefficient is 75.0 . 

 

Answer. lxE 97 , lxM 73 , 2/23 mсdB  . 
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CHAPTER 10. INTERFERENCE OF LIGHT 
 

10.1. Huygens’ Principle 

 

 As a result of the development of ideas about light, two theories of light are 

used: corpuscular and wave. According to the corpuscular theory, light is a beam of 

particles (corpuscles) emitted by luminous bodies and propagate along rectilinear 

trajectories. Newton subjected the laws of mechanics to the motion of light 

corpuscles. Thus, the reflection of light was understood similarly to the reflection of 

an elastic ball when it struck a plane, where the law of equality of the angles of 

incidence and reflection is also observed. Newton explained the refraction of light by 

the attraction of corpuscles to a refractive medium, as a result of which the velocity 

of corpuscles changes during the transition from one medium to another. From 

Newton's theory followed the constancy of the ratio of the sine of the angle of 

incidence 1i  to the sine of the angle of refraction 2i :  

 

n
ci

i




2

1

sin

sin
,                                            (10.1) 

 

where c  is the speed of light in vacuum,  

            is the speed of light propagation in the medium.  

Since the value of n  in the medium is always greater than one, then, according 

to Newton's theory c . The propagation velocity of light in a medium must always 

be greater than the speed of light propagation in a vacuum.  

 According to the wave theory, developed on the basis of the analogy of optical 

and acoustic phenomena, light is an elastic wave propagating in a special medium-

ether. The ether fills all world space, permeates all bodies and possesses mechanical 

properties - elasticity and density.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to Dutch physicist Christiaan Huygens (1629–1695), the high speed 

of light propagation is due to the special properties of the ether. The wave theory is 
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10.1. Reflection of light waves 



 153 

based on the Huygens’ principle: every point of wave is the centre of the secondary 

waves, and the envelope of these secondary waves gives the position of the wave 

front at the next instant of time. Huygens’ principle allows us to analyze the 

propagation of light and derive the laws of reflection and refraction.  

 We shall deduce the laws of reflection and refraction of light, starting from the 

Huygens’ principle. Let a plane wave be incident on the interface between two media 

(the wave front is the plane AB). This wave propagates along the direction I  (Figure 

10.1). When the wave front reaches the reflecting surface at point A, this point will 

begin to emit a secondary wave. The wave will pass the distance ВС in time 



BC
t  .                                                      (10.2) 

 

During this time, the front of the secondary wave will reach the points of the 

hemisphere, the radius of which is  

 

BCt  .                                                  (10.3) 

 

The position of the front of the reflected wave is given by the plane DC, and 

the direction of propagation of this wave is given by the ray II . The equality of the 

triangles ABC and ADC implies the law of reflection: the reflection angle '1i  is equal 

to the angle of incidence 1i .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 To derive the refraction law, we assume that a plane wave (the wave front is 

the plane AB) propagates in a vacuum along the direction I  with the speed of light c . 

The wave falls on the interface with the medium, in which its propagation velocity is 

  (Figure 10.2). Let the wave pass the path ВС in time t , then we can 

write tcBC  .  During this time, the wave front in the medium with the speed of 

light  , reaches the points of the hemisphere, the radius of which is tAD  . The 
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10.2. Refraction of light waves 
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position of the front of the refracted wave at this time in accordance with the 

Huygens’ principle is given by the plane DC , and the direction of its propagation is 

given by the ray III . Then  

 

21 sinsin i

AD

i

BC
AC  ,                                        (10.4) 

 that is,  

21 sinsin i
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,                                          (10.5) 

whence  
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.                                         (10.6) 

 

Comparing similar expressions, we see that the wave theory leads to a 

conclusion different from the conclusion of Newton's theory. According to Huygens' 

theory c , that is, the speed of propagation of light in a medium must always be 

less than the speed of its propagation in a vacuum. 

 Thus, approaches to explaining the nature of light: Newton's corpuscular theory 

and Huygens' wave theory contradicted each other. Both these theories explained the 

rectilinear propagation of light, the laws of reflection and refraction. The Foucault 

(1819–1868) and Fizeau (1819–1896) experiments confirmed the validity of the wave 

theory of light.  

 Despite the recognition of the wave theory, this theory had a number of 

shortcomings. For example, the phenomena of interference, diffraction and 

polarization could be explained only if the light waves are assumed to be transverse. 

On the other hand, if light waves are transverse, then their carrier-ether must have the 

properties of solids. An attempt to consider ether as a substance with inherent 

properties of a solid body did not have success, since the ether does not have a 

noticeable effect on the bodies moving in it. It was found that the propagation speed 

of light in different media is different; therefore the ether must have different 

properties in different media. The Huygens’ theory could not explain the physical 

nature of the presence of different colours.  

The science of light accumulated experimental data, indicating the 

interconnection of light, electric and magnetic phenomena, which allowed Maxwell 

to create an electromagnetic theory of light. According to Maxwell's electromagnetic 

theory, 

 

n
c
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

,                                       (10.7) 

 

where c  and   are, respectively, the propagation speed of light in a vacuum and in a 

medium with a permittivity of   and a magnetic permeability of  . This relationship 

connects optical, electrical and magnetic constants. According to Maxwell,   and   
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are values that do not depend on the wavelength of light, so the electromagnetic 

theory could not explain the phenomenon of dispersion (the dependence of the 

refractive index on the wavelength). This difficulty was overcome in Lorentz, who 

proposed an electronic theory, according to which the dielectric constant   depends 

on the wavelength of the incident light. The theory of Lorentz introduced the idea of 

electrons that oscillate within an atom, and allowed to explain the phenomena of 

emission and absorption of light by matter.  

 Despite the tremendous successes of Maxwell's electromagnetic theory and the 

Lorentz electron theory, they were somewhat contradictory and a number of 

difficulties encountered in their application. Both theories were based on the ether 

hypothesis, only the "elastic ether" was replaced by "electromagnetic ether" 

(Maxwell's theory) or "fixed ether" (Lorentz theory). Maxwell's theory could not 

explain the processes of light emission and absorption, photoelectric effect, Compton 

scattering. The theory of Lorentz could not explain many phenomena associated with 

the interaction of light with matter, in particular the question of the distribution of 

energy over the wavelengths with the thermal radiation of a black body.  

 The above difficulties and contradictions were overcome thanks to the Planck 

postulate, according to which the emission and absorption of light is not continuous, 

but discrete, i.e., certain portions (quanta) whose energy is determined by the 

frequency  :  

 

 h0 ,                                            (10.8) 

 

where h  is the Planck constant.  

 Planck postulate does not require the introduction of the concept of ether. This 

theory explained the thermal radiation of a black body. Einstein created a quantum 

theory of light, according to which not only the emission of light, but also its 

propagation occurs in the form of a flux of light quanta – photons whose energy is  

 

 h0 ,                                            (10.9) 

and the mass is  
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0 .                            (10.10) 

 

Quantum concepts of light are in good agreement with the laws of radiation 

and absorption of light, the laws of interaction of light with matter. The phenomena 

of interference, diffraction, and polarization of light are easily explained on the basis 

of wave representations. All the variety of properties studied and the laws of light 

propagation, its interaction with matter, shows that light has a complex nature. It 

represents the unity of opposing types of motion – corpuscular (quantum) and wave 

(electromagnetic). A long way of development led to modern ideas about the dual 

corpuscular-wave nature of light.  
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10.2. Coherence of Light Waves 

 

 The interference of light can be explained by considering the interference of 

waves. A necessary condition for wave interference is their coherence, that is, the 

consistent flow of several oscillatory or wave processes in time and space. 

Monochromatic waves satisfy the condition of coherence. Unbounded waves in space 

of one definite and strictly constant frequency are called monochromatic waves. 

Since no real source produces strictly monochromatic light, the waves emitted by any 

independent light sources are always incoherent. Therefore, experiment does not 

observe interference of light from independent sources, for example, from two 

electric bulbs. To understand the physical cause of nonmonochromaticity, and 

consequently, incoherence, of waves emitted by two independent light sources, one 

can proceed from the mechanism of the emission of light by atoms. Atoms in two 

independent light sources emit independently of each other. The radiation process is 

finite and lasts a very short time ( s810 ). During this time, the excited atom 

returns to its normal state and ceases to emit light. After a while, the atom is again 

excited and begins to emit light waves, but with a new initial phase. Since the phase 

difference between the emissions of two such independent atoms varies with each 

new emission event, the waves spontaneously emitted by the atoms of any light 

source are incoherent. Thus, the waves emitted by the atoms only have a constant 

amplitude and phase of oscillations during the time interval 10–8 s, whereas in a 

longer time interval both the amplitude and the phase change. The intermittent 

emission of light by atoms in the form of individual short pulses is called a wave 

train.  

 The described model of light emission is also valid for any macroscopic 

source, since the atoms of the luminous body emit light also independently of each 

other. This means that the initial phases of the wave trains corresponding to them are 

not connected with each other. In addition, even for the same atom, the initial phases 

of different trains differ for the two subsequent radiation events. Consequently, the 

light emitted by the macroscopic source is incoherent.  

 Any nonmonochromatic light can be represented as a set of successive 

independent harmonic trains. The average duration of one train is called the 

coherence time coh . Coherence exists only within a single train, and the coherence 

time can not exceed the radiation time, that is,  coh . The device will detect a clear 

interference pattern only when the resolution time of the device is much shorter than 

the coherence time of the applied light waves.  

 If the wave propagates in a homogeneous medium, then the oscillation phase at 

a certain point in space is retained only during the coherence time coh .  During this 

time, the wave propagates in a vacuum to a distance of  

 

cohcoh сl  ,                                      (10.11) 

 

called the coherence length. Two or more waves lose coherence when they pass a 

distance equal to the coherence distance. Hence it follows that observation of light 



 157 

interference is possible only with optical path differences that are shorter than the 

coherence length for the light source used. 

 The wave becomes more monochromatic if the width of the spectrum of its 

frequencies   decreases. In this case, the coherence time coh  and coherence length 

cohl  increase. The coherence of oscillations that occur at the same point in space, 

determined by the degree of monochromaticity of the waves, is called temporal 

coherence.  

 In order to describe the coherent properties of waves in a plane perpendicular 

to the direction of their propagation, the notion of not only temporal coherence but 

also spatial coherence is introduced. Two sources, whose dimensions and relative 

positioning allow observing interference (with the necessary degree of light 

monochromaticity), are called spatially coherent. The maximum distance that is 

directed transversely to the propagation of a wave and at which interference is 

possible is called the coherence radius (or the length of spatial coherence. Thus, 

spatial coherence is determined by the coherence radius. 

 The coherence radius is 



cohr , where   is the length of the light waves,   

is the angular size of the source. Thus, the minimum possible coherence radius for 

solar beams (with the angular size of the Sun on Earth 210   rad and   0.5 m) is 

 0.05 mm. With such a small coherence radius, it is impossible to directly observe 

the interference of the sun's rays, since the resolving power of the human eye at a 

distance of the best view is only 0.1 mm.  

 

10.3. Interference of Light 

 

 Suppose that two monochromatic light waves, superimposed on each other, 

excite at a certain point in space the oscillations of the same direction:  

 

 111 cos   tAX                                       (10.12) 

 and  

 222 cos   tAX .                                      (10.13) 

 

The electric E  or magnetic H  fields are indicated as X in the last equation. 

The vectors E


 and H


 oscillate in mutually perpendicular planes. The principle of 

superposition is applicable to the electric and magnetic fields intensity. The 

amplitude of the resulting oscillation at a given point is  

 

 1221
2

2
2

1
2 cos2   AAAAA .                           (10.14) 

Since the waves are coherent,  2cos  does not change with time, so the 

intensity of the resultant wave is 
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 12121 cos2   IIIII , ( 2~ AI ) .                       (10.15) 

 

For the resulting intensity, the following inequalities can be written: 

 

21 III  ,                                          (10.16) 

 

for the case   0cos 12   and 21 III  , we get   0cos 12  . 

 Consequently, when two (or several) coherent light waves are superimposed, a 

spatial redistribution of the light flux occurs, as a result of which maxima appear in 

some places, while in others, intensity minima are observed. This phenomenon is 

called interference of light. The phase shift 12    continuously varies for incoherent 

waves, so the time average  12cos    is zero, and the intensity of the resulting 

wave is everywhere the same and at 21 II   is 12I . The intensity maxima for coherent 

waves are 14II  , and for minima 0I  are valid. The separation method is used to 

obtain coherent light waves. In this case, a wave emitted from one source is divided 

into two parts, which, after passing through different optical paths, are superimposed 

on each other and an interference pattern is observed.  

 Let the separation into two coherent waves occur at point O . Suppose that one 

wave spreads over a distance 1S  to a point M  in a medium with a refractive index of 

1n . The second wave passed the path 2S  in a medium with a refractive index of 2n . 

The phase of the oscillations is t  at the point O . In this case, the oscillation of the 

first wave 

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tA  will be observed at the same point. The phase velocities 

of the first and second waves are  
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respectively.  

The phase difference of the oscillations excited by the waves at point M  is 
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 The relations  
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( 0  is the wavelength in vacuum) were taken into account in the derivation of the last 

equation. 
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 The product of the geometric length S  of the path of a light wave in a medium 

by the refractive index n  of this medium is called the optical path length L . The 

value equal to the difference of the optical path lengths  

 

12 LL                                        (10.20) 

is called the optical path difference. 

 Let us consider the case when the optical path difference is equal to an integer 

number of waves in a vacuum  

 

0Am  ( ...,2,1,0m ).                                      (10.21) 

 

Then the oscillations excited at point M  by both waves will occur in the same 

phase. Consequently, equation  

 

0Am                                       (10.22) 

 

is the condition of the interference maximum. If the optical path difference is 

 

   ...,2,1,0,
2

12 0  mm


,                                      (10.23) 

then  

  12  m                                       (10.24) 

 

and the oscillations excited at point M  by both waves will occur in anti phase. 

Consequently, equation  

 

 
2

12 0 m                                       (10.25) 

is the condition of the interference minimum.  

 British physician Thomas Young (1773–1829) experimentally proved that light 

is a wave, contrary to that most other scientists then thought [4]. The interference 

pattern can be calculated using two narrow parallel slits located close enough to each 

other (Figure 10.3).  

Slits 1S  and 2S  are at a distance of d  from each other and can be considered as 

coherent light sources. The interference is observed at point A  of the screen. The 

screen is located parallel to both slits and removed from them by a distance of l  

( dl  ).  The intensity at point A  of the screen, lying at a distance X  from point O , 

is determined by the optical path difference 12 SS  . 

Geometric construction of the figure leads to the following equations:  
2
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and  
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from where  
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 The approximate equality  

lSS 221                                        (10.30) 

 

follows from condition dl  , so 

l

Xd
 .                                      (10.31) 

 

An analysis of the expression for  , shows that the intensity maxima will be 

observed when condition  

 

 ...,2,1,00max  m
d

l
mX                                        (10.32) 

 

 is satisfied. The condition for the intensity minima takes the form 

 

 ...,2,1,0
2

1
0min 








 m

d

l
mX  .                            (10.33) 

 The distance  

0
d

l
X                                           (10.34) 
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10.3. Young’s interference experiment 
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between two adjacent maxima (or minima) is called the width of the interference 

fringe.  

 The value of Х  does not depend on the order of the interference (the value of 

m ) and is constant for fixed values of 0,, dl . The value of Х  is inversely 

proportional to d , therefore, for a large distance between sources, for example at 

ld  , individual bands become indistinguishable. For visible light, m7

0 10   is 

valid, so a clear interference pattern is observed under condition dl  . The length 

of the light wave can be determined using the measured values of the quantities 

Хdl ,, . It follows from the earlier obtained expressions that the interference pattern 

produced on the screen by two coherent light sources is an alternation of light and 

dark bands parallel to each other. The main maximum corresponding to 0m  passes 

through point O . Up and down from it at equal distances from each other are the 

maxima (minima) of the first ( 1m ), second ( 2m ) orders, and so on. 

 The described picture, however, is valid only for monochromatic light 

( const0 ). Let's consider the use of white light for interference. White light is a 

continuous set of wavelengths from 0.39 μm (violet border of the spectrum) to 0.75 

μm (red border of the spectrum). In this case, the interference maxima for each 

wavelength will be shifted relative to each other and have the appearance of 

iridescent bands.  

 

Test questions 

 

21. Formulate the Huygens’ principle.  
22. Explain the relationship between the speeds of light in the medium and in 

vacuum according to the Huygens’ principle. 

23. Can Maxwell's electromagnetic theory of light explain the phenomenon of 

dispersion? 

24. List the phenomena of optics that the Lorentz electron theory could not 

explain. 

25. Formulate Planck postulate. 

26. State the postulates of Einstein's quantum theory of light. 

27. What properties of light rays are necessary for observing the phenomenon of 

wave interference? 

28. Specify the time interval during which the waves emitted by an atom can be 

considered coherent. 

29. Give the definition of coherence time and coherence length. 

30. Calculate the coherence radius of the sun's rays. 

31. What practical methods are used to produce coherent light waves? 

32. Write down the formula for the resulting intensity of the two light waves. 

33. Describe the interference phenomenon. 

34. Estimate the difference in optical path lengths for air and for vacuum. 

35. Formulate the condition of interference maxima. 

36. What parameters affect the width of the interference fringe? 
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37. Does the the width of the interference fringe depend on the order of 

interference? 

38. What conditions correspond to the observation of a clear interference pattern 

for visible light? 

39. Give the definition of the order of the interference pattern.  

40. Consider the use of white light for interference. 

 

 

Problem-solving examples 
 

Problem 10.1  

 

Problem description. A normally parallel beam of light with a wavelength of 510 nm 

is incident on a thin glass wedge. The distance between adjacent dark interference 

fringes in reflected light is 0.45 mm. Determine the angle between the wedge 

surfaces. The refractive index of the glass that makes up the wedge is 1.56. 

 

Known quantities: nm510 ; mL 45.0 ; 56.1n . 

 

Quantities to be calculated:  . 

 

Problem solution. The optical path difference for light fringes is  

 

k ,                                         (10.1.1) 

where k  is the interference order; 

            is the wavelength.  

The difference in the course of 2 rays is equal to 

 




kndk 
2

2 ,                                         (10.1.2) 

where n  is the wedge refractive index;  

         kd  is the thickness of the wedge in place of the light band with the number k.  

We have  

 
n

k
dk

4

12 
                                          (10.1.3) 

and, similarly, 

  
n

kN
d kN

4

12 
 .                                         (10.1.4) 

 

 For a small wedge angle, we can write  

nL

N

L

dd
tg kkN

2


 


  ,                                         (10.1.5) 

 

where L  is the distance between adjacent fringes (and, therefore, 1N ). We have 
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nL2


  .                                         (10.1.6) 

 

Substitute numeric data rad41063.3  . 

 

Answer. The angle between the wedge surfaces is rad41063.3  . 

 

Problem 10.2  

 

Problem description. There is a liquid between the glass plate and the flat convex 

lens lying on it. Find the refractive index of the liquid, if the radius of the third dark 

Newtonian ring when observed in reflected light with a wavelength of m 62.0  is 

equal to mm86.0 . The radius of curvature of the lens is 0.54 m. 

 

Known quantities: m 62.0 ; 3m ; mR 54.0 ; mmr 86.03  . 

 

Quantities to be calculated: n . 

 

Problem solution. We will find first of all the optical path difference  . Upon 

reflection from the boundary, the liquid-glass phase changes to   (loss of the half-

wave). The phase does not change for the case when the reflection occurs from the 

glass-liquid interface. Therefore, the optical path difference is  

 

2/2   mn ,                                    (10.2.1) 

 

where n  is the refractive index of the liquid;  

          m  is the distance between the lens and the plane for the ring with the number 

m .  

In order for the ring to be dark, it is necessary that 

 

 
2

12 


m
,                                    (10.2.2) 

i.e. at thickness 

n

m
m

2


  .                                    (10.2.3) 

Ring radius with the number m  is 

 
n

m
RRRRr mmm

2
22

222 
  .                                    (10.2.4) 

 

Here R  is the lens radius. As a result, we get 
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n

Rm
rm


 ,                                    (10.2.5) 

consequently  

36.1
2


mr

Rm
n


.                                    (10.2.6) 

 

Answer. The refractive index of the liquid is 36.1n . 

 

Problem 10.3  

 

Problem description. Monochromatic light with a wavelength of 520 nm is incident 

on a thin film in the direction normal to its surface. Light reflected from the film is 

maximized due to interference. Calculate the minimum film thickness if the refractive 

index of the film material is 1.44. 

 

Known quantities: 44.1n ;  90 ; nm520 . 

 

Quantities to be calculated: d . 

 

Problem solution. The optical path difference of the light rays reflected from 

two surfaces of a thin film, on both sides of which there is air, is equal to  

 

2
sin2 22 

  nd ,                            (10.3.1) 

 

where n  is the refractive index; d  is the film thickness;   is the wavelength;   is 

the angle of incidence. For the maximum interference condition, we can write  

 




 knd 
2

sin2 22
,                            (10.3.2) 

 

where k  is the interference order.  

The minimum d  value will be when 1k , i.e. 

 




 
2

sin2 22nd .                            (10.3.3) 

 

We obtain the formula for the thickness of the film 

 




22 sin4 


n

d .                                (10.3.4) 
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According to the problem 090 , Consequently  

 

14 2 


n
d


.                                    (10.3.5) 

 

Substitute numerical values in the formula md 71025.1  . 

 

Answer. The minimum film thickness is md 71025.1  . 

 

Problems 
 

Problem A  

 

Problem description. The distance between two coherent light sources with a 

wavelength m 5.0  is mmd 1.0 . The distance between the interference fringes 

on the screen in the middle part of the interference pattern is cmb 1 . Determine the 

distance L  from the sources to the screen. 

 

Answer. mL 2 . 

 

Problem B  

 

Problem description. Find all wavelengths of visible light (from 76.0  to m38.0 ) 

that will be: 1) maximally amplified, 2) maximally attenuated at an optical path 

difference of interfering waves equal to m8.1 . 

 

Answer. 1) m 6.01  , m 45.02  ; 2) m 72.01  , m 51.02  , and 

m 4.03  . 

 

Problem C  

 

Problem description. Monochromatic light falls at an angle of 2/  on a thin glass 

( 55.1n ) wedge. The dihedral angle between the surfaces is equal to 2 . 

Determine the length   of the light wave if the distance between adjacent 

interference peaks in reflected light is mmb 3.0 . 

 

Answer. m71041.5  . 

 

Problem D  
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Problem description. A flat-convex lens with optical power dptD 2  lies on a glass 

plate with a convex side. The radius of the fourth dark ring of Newton in transmitted 

light is mmr 7.04  . Determine the length of the light wave. 

 

Answer. m7109.4  . 

 

Problem E  

 

Problem description. Determine the movement of the mirror in the Michelson 

interferometer, if the interference pattern has shifted to 100m  bands. The 

experiment was conducted with light with a wavelength of nm546 . 

 

Answer. m51073.2  . 
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CHAPTER 11. DIFFRACTION OF LIGHT 
 

11.1 Huygens-Fresnel Principle 

 

 The diffraction of light is the phenomenon of the deviation of light from the 

straight direction of propagation when passing near obstacles. Thanks to diffraction, 

waves can fall into the region of geometric shadow, bend around obstacles, penetrate 

through small holes in screens, etc. For example, sound can be heard around the 

corner of the house, i.e. the sound wave bends around it. 

 The diffraction phenomenon is explained with the help of the Huygen’s 

principle. According to Huygen’s principle each point of wave front serves as the 

centre of the secondary waves, and the envelope of 

these waves gives the position of the wave front at 

the next instant of time.  

 Let the plane wave normally fall on the hole 

in the opaque screen (Figure 11.1). Each point of 

the wave front that passes through the hole serves 

as a source of secondary waves (in a homogeneous 

isotropic medium they are spherical). The result of 

constructing the envelope of the secondary waves 

indicates that the wave front propagates into the 

region of the geometric shadow, that is, the wave 

bends around the edges of the hole. The 

phenomenon of diffraction is characteristic of 

wave processes. 

 Huygen’s principle solves only the problem 

of the direction of propagation of the new front, 

but does not touch upon the problem of the 

amplitude, and consequently, of the intensity of 

waves propagating in different directions. French physicist Augustin-Jean Fresnel 

(1788–1827) supplemented the Huygens principle with physical meaning, namely, 

the idea of interference of secondary waves.  

 According to the Huygens–Fresnel principle, a light wave excited by any 

source can be represented as a result of a superposition of coherent secondary waves 

"emitted" by fictitious sources. Infinitely small elements of any closed surface 

enclosing the source S  can be considered as such sources. Usually one of the wave 

surfaces is chosen as this surface, therefore all fictitious sources act in phase. Thus, 

waves propagating from a source are the result of interference of all coherent 

secondary waves.  

 Fresnel ruled out the possibility of inverse secondary waves and suggested that 

if an opaque screen with an aperture is located between the source and the 

observation point, then the amplitude of the secondary waves is equal to zero on the 

screen surface.  

 The values of the amplitudes and phases of the secondary waves make it 

possible in each concrete case to find the amplitude (intensity) of the resultant wave 

 
 

Figure 11.1. Secondary waves 
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at any point of space, that is, to determine the patterns of light propagation. In the 

general case, the calculation of the interference of the secondary waves is rather 

complicated, however, as will be shown below, for some cases the amplitude of the 

resulting oscillation is found by algebraic summation. 

 

11.2. Fresnel Zones 

 

 The Huygens–Fresnel principle within the framework of the wave theory is to 

answer the question of the rectilinear propagation of light. Fresnel solved this 

problem by considering the mutual interference of the secondary waves and applying 

a technique called the Fresnel zone method.  

 Let us find at an arbitrary point M  the amplitude of the light wave, which 

propagates in a homogeneous medium from a point source S  (Figure 11.2). 

According to the Huygens-Fresnel principle, we replace the action of the source S  by 

the action of imaginary sources located on the auxiliary surface Ф , which is the front 

of a wave coming from S  (the surface of a sphere with centre S ).  
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ular 
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es of such size that the distances from the edges of the zone to M  differ by 2/ , that 

is, 2/...231201  MPMPMPMPMPMP . Such a partition of the wave 

front into zones can be performed by drawing spheres with radii 

 

2/,...,2/3,2/2,2/  mbbbb                    (11.1) 

centred on M . 

 Since the oscillations from neighboring zones pass to point M  of the distance, 

differing by 2/ , they arrive at point M  in the opposite phase and, when 

superimposed, these oscillations mutually weaken each other. Therefore, the 

amplitude of the resulting light vibration at point M  is 

  

mAAAAAA  ...4321 ,                  (11.2) 
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Figure 11.2.  Fresnel zones 
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where mAAA ...,,, 21  is the amplitude of the oscillations excited by the 1 st, 2 nd, ..., n-

th zones. 

 To estimate the oscillation amplitudes, we find the areas of the Fresnel zones. 

The outer boundary of the zone with the number m  identifies a spherical height 

segment on the wave surface. The outer boundary of the zone with the number m  

singles out on the wave surface a spherical segment whose height is equal to mh  

(Figure 11.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We denote the area of this segment by m . Then the area of the Fresnel zone 

with number m  is equal to  

1 mmm  ,                                           (11.3)    

               

where 1m  is the area of the spherical segment of the outer boundary of zone 

 1m . 

It follows from the figure that 

   2
2

222

2
mmm hb

m
bhaar 











.                  (11.4) 

 

After elementary transformations, taking into account that a  and b , we 

obtain  

 ba

bm
hm




2


.                                                  (11.5) 

The area of the spherical segment is  

ba

mab
hn mm





 2 ,                                         (11.6) 
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Figure 11.3. Parameters of Fresnel zones. 
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and the area of Fresnel  zone  with number m  is 

 

ba

ab
mmm


 


 1 .                                  (11.7) 

 

 The resulting expression does not depend on m . Thus, the construction of 

Fresnel zones splits the wave surface of a spherical wave into equal bands. 

 According to Fresnel's assumption, the effect of individual zones at point M  

decreases with an increase in the angle m  between the normal to the surface of the 

zone and the direction towards point M , i.e. the action of the zones gradually 

decreases from the central zone ( 0P ) to the peripheral ones (to zero). In addition, the 

radiation intensity in the direction of point M  decreases with increasing m  and the 

distance from the zone to point M . Taking both of these factors into account, we can 

write ...321  AAA  The total number of Fresnel zones that fit on the hemisphere 

is very large; for example, at 10ba cm and   = 0.5 μm we have  

 

 
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2





baab
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N




.                                 (11.8) 

 

Therefore, as an allowable approximation, we can assume that the amplitude of 

oscillation mA  from a certain Fresnel zone m  is equal to the arithmetic mean of the 

amplitudes of the adjacent bands, i.e. 

 

2

1
 mm

m

AA
A .                                        (11.9) 

 

Then the expression for the amplitude can be written in the form 
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 Suppose that the height of segment ahm   (for not too large m ), then 

 

mm ahr 2
2
 .                                         (11.11) 

 

In this case, we can write  

ba

abm
rm





                                         (11.12) 

 

for the radius of the outer boundary of the Fresnel zone.  

 

 



 171 

11.3. Fresnel Diffraction from Simple Barriers 

 

 Let us consider the diffraction of spherical waves, or the Fresnel diffraction, 

which occurs when the diffraction pattern is observed at a finite distance from the 

obstacle that caused the diffraction. A spherical wave propagating from a point 

source S  meets on its way a screen with a circular aperture. The diffraction pattern is 

observed on the screen at a point B  lying on the line connecting source S  with the 

centre of the hole (Figure 11.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 We divide the open part of the wave surface into Fresnel zones. The form of 

the diffraction pattern depends on the number of Fresnel zones that fit into the hole. 

The amplitude of the resulting oscillation excited at point B  by all bands is  

 

22

1 mAA
A  ,                                           (11.13) 

 

where the plus sign corresponds to the odd m  and the minus sign corresponds to even 

m . When the hole opens an odd number of Fresnel zones, the amplitude (intensity) at 

point B  will be greater than when the wave propagates freely. If the hole opens an 

even number of Fresnel zones, then the amplitude (intensity) will be zero. If one 

Fresnel zone is placed in the hole, then at point B  the amplitude is 1AA  , that is, 

twice as large as in the absence of an opaque screen with an aperture. 

 The Bavarian physicist Joseph Ritter von Fraunhofer (1787–1826) made 

optical glass and developed diffraction grating. Fraunhofer diffraction, which is of 

great practical importance, is observed when the light source and the observation 

point are infinitely removed from the obstacle that caused the diffraction. To realize 

this type of diffraction, it is sufficient to place a point source of light in the focus of 
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Figure 11.4. Circular-aperture diffraction. 
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the collecting lens, and to study the diffraction pattern in the focal plane of the second 

converging lens installed behind the obstacle.  

 Let us consider the Fraunhofer diffraction on an infinitely long slit (for this it is 

practically sufficient that the length of the slit is much larger than its width).  

Let a plane monochromatic light wave fall normally to the plane of a narrow slit of 

width a   (Figure 11.5). The optical path difference between the rays MC  and ND  

from the slit in an arbitrary direction   is sin aNF , where F  is the base of 

the 

perpendicular dropped from point M  to beam ND . 

We divide the open part of the wave surface in the plane of the slit MN  into 

Fresnel zones, having the form of bands parallel to the edge M  of the slit. The width 

of each zone is chosen so that the path difference from the edges of these zones is 

equal to 2/ , that is, a total of 2/:  zones will fit on the width of the slit.  

 If the number of Fresnel zones is even then a diffraction minimum 

2/2sin  ma  ,  ...,3,2,1m , is observed at point B  (total darkness). If the 

number of Fresnel zones is odd  
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Figure 11.5. Single-slit diffraction. 
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  2/12sin   ma ,  ...,3,2,1m ,                  (11.14) 

 

then a diffraction maximum is observed at point B . In the forward direction ( 0 ), 

the slit acts as one Fresnel zone, and in this direction the light propagates with the 

greatest intensity, i.e. at the point 0B  the central diffraction maximum is observed. 

Calculations show that the intensities of the central and subsequent maxima are 

treated as 1: 0.047: 0.017: 0.0083: ..., i.e. the bulk of the light energy is concentrated 

at the central maximum.  

 The position of the diffraction maxima depends on the wavelength  , 

therefore, the diffraction pattern considered here has only the case for monochromatic 

light. The maximums 1m , 2m … are vague, so it is impossible to obtain a distinct 

separation of different wavelengths by diffraction on a single slit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Diffraction observed when light passes through a one-dimensional diffraction 

grating is of great practical importance. The diffraction grating is a system of parallel 

slits of equal width, lying in the same plane and separated by equal widths with 

opaque gaps. The diffraction pattern on the grating is determined as the result of 

mutual interference of waves coming from all the slots, i.e. in the diffraction grating, 

multi-beam interference of coherent diffracted light beams originating from all the 

slits is realized.  

 

11.4. Diffraction Grating 

 

 Let us consider a diffraction grating. Figure 11.6 presents only two adjacent 

slits MN  and CD .  
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Figure 11.6. Diffraction grating. 
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If the width of each slit is a , and the width of the opaque sections between the 

slits is b , then bad   is called the period of the diffraction grating.  

Let a plane monochromatic wave fall normally to the plane of the lattice. Since 

the slits are at the same distances from each other, the path differences of the rays 

coming from two adjacent slits will be the same for the given direction   within the 

entire diffraction grating 

 

   sinsin dbaCF  .                        (11.15) 

 

The main intensity minima will be observed in directions determined by 

condition  

 

 ma  sin   ...,3,2,1m .                     (11.16) 

 

The effect of one slit will amplify the action of the other, if 

 

 mmd  2/2sin ,  ...,2,1,0m ,                    (11.17) 

 

that is, the resulting expression specifies the condition of the principal maxima. 

 Thus, the total diffraction pattern for two gaps is determined from the 

condition:  

 

principal minima  

 

,...3,2,sin  a ;                             (11.18) 

additional minima  

 

...2/5,2/3,2/sin  d ;                      (11.19) 

principal maxima 

 

...,3,2,,0sin  d                           (11.20) 
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 If the diffraction grating consists of N  slits, then the condition of the principal 

minima is  

 

 ma  sin ,                                                (11.21) 

 

the condition of the principal maxima is  

 

 md sin ,                                                 (11.22) 

 

and the condition of additional minima is  

  

Nmd /'sin   ,                                               (11.23) 

 

                              ,...12,12,...,1,1...,,2,1'  NNNNm  

 

where 'm  can take all integer values except ,...2,,0 NN  under which condition                     

Nmd /'sin    becomes  md sin .  

Consequently, in the case of N  slits there are 1N  additional minima 

separated by secondary maxima. These minima create a very weak background 

(Figure 11.7). 

 The position of the main maxima depends on the wavelength. Therefore, when 

the white-light passing through grating, all the maxima, except the central ( 0m ), 

will expand into the spectrum. The violet region of the spectrum will face the centre 

 

sin  

8N  

 

Figure 11.7. Secondary maxima background. 
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of the diffraction pattern, and the red one is outward. The value  mN/  gives the 

theoretical resolution on the grating [8]. 

 Diffraction gratings used in different spectral regions differ in size, shape, 

material of the surface, the profile of the slits and their frequency (from 6000 to 0.25 

slits / mm, which allows to cover the spectral range from the ultraviolet to infrared 

part). For example, the stepped profile of the grating makes it possible to concentrate 

the main part of the incident energy in the direction of one certain nonzero order. 

 

Test questions 

 

1. Describe the phenomenon of diffraction. 

2. Specify the geometric shape of the secondary wave that each wavefront point 

generates. 

3. Formulate the law of geometric optics, which is violated in the phenomena of 

diffraction. 

4. Give a detailed description of the Huygens–Fresnel principle. 

5. Is it true to say that the distance between the edges of the Fresnel zones is  ? 

6. Why do the amplitudes of the neighbouring Fresnel zones have opposite signs? 

7. Write down the formula for the area of the Fresnel zone. 

8. Are the effects of the Fresnel zones decreasing, increasing, or unchanged with 

an increase in their sequence number? 

9. Calculate the number of Fresnel zones for the case when the distance between 

the source and the point of observation is 30 cm. 

10. Identify the factors that influence the numerical value of the Fresnel radius. 

11. Describe the Fresnel diffraction, which occurs when the diffraction pattern is 

observed at a finite distance from the obstacle that caused the diffraction. 

12. Explain the nature of the influence of the number of obstructed Fresnel zones 

on the resulting amplitude of the light waves. 

13. Give the definition of the Fraunhofer diffraction. 

14. What is the shape of the Fresnel zone for the case of Fraunhofer diffraction on 

an infinitely long slit? 

15. Write down the condition under which the number of Fresnel zones during 

Fraunhofer diffraction on an infinitely long slit will be odd. 

16. Make a comparison of the amplitudes of the central and subsequent diffraction 

maxima in relative units. 

17. What physical factors determine the position of the diffraction maximum? 

18. State the reasons that the distance between parallel slits in the diffraction 

grating should not change. 

19. Write the formula for the condition of the principal maxima. 

20. Give examples of practical application of diffraction gratings. 
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Problem-solving examples 

Problem 11.1  

 

Problem description. The intensity created on the screen by a certain monochromatic 

light wave in the absence of obstacles is equal to 0I . Calculate the intensity in the 

centre of the diffraction pattern, if there is an obstacle with a circular opening in the 

path of the wave:     а) the first Fresnel zone; b) half of the first Fresnel zone; c) 

Fresnel zone and a half; d) third of the first Fresnel zone. 

 

Known quantities: 
0I . 

 

Quantities to be calculated: I . 

 

Problem solution. The resulting amplitude of the diffraction pattern for a round hole 

 

22

1 mAA
A  ,                                               (11.1.1) 

where the sign “+” corresponds to odd m , and the sign “–” corresponds to even m . 

The amplitudes of the neighboring zones are about the same. The absence of a barrier 

corresponds to the ratio 

2

1A
A                                                      (11.1.2) 

or in intensities  

4

1
0

I
IIa  ,                                                 (11.1.3) 

i.e. 

01 4II  .                                                 (11.1.4) 

 

Half of the open first Fresnel zone corresponds to 

 

2

1A
A                                                    (11.1.5) 

or in intensities 

 

0
01

4

4

4
I

II
Ib  .                                        (11.1.6) 

 

One and a half open Fresnel zones corresponds to the amplitude 

 

422

1

222

1

2

11121 AAAAA
A                                 (11.1.7) 

or in intensities 
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4

0I
Ic  .                                                (11.1.8) 

 

One third of the open first Fresnel zone corresponds to the amplitude 

 

1
3

1
AA                                                  (11.1.9) 

or in intensities 

 

9

4

9

01 II
Id  .                                          (11.1.10) 

 

Answer. Intensities in the cases mentioned in the problem are equal: 0III ba  , 

4

0I
Ic  , 

9

4 0I
Id  . 

 

Problem 11.2  

 

Problem description. Calculate the smallest number of strokes of the diffraction 

grating, if the spectrum of the second order can be distinguished separately two 

yellow sodium lines with wavelengths of 590 nm and 591 nm. Determine the length 

of such a grating, if the grating constant is 5.3 μm. 

 

Known quantities: md 3.5 ; nm5901  ; nm5912  ; 2m . 

 

Quantities to be calculated: N , L . 

 

Problem solution. The position of the main maxima of the diffraction grating is 

determined by the ratio  

 

   md  0sinsin ,                            (11.2.1) 

 

where 0  is the angle of incidence; 

             is the wavelength;  

           m  is an integer (diffraction order).  

The position of the diffraction minima is determined by the ratio 

 

   









N

p
md 0sinsin ,                            (11.2.2) 

where N   is the number of strokes;  

          1...,2,1  Np .  
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Spectral lines are considered resolved if the main maximum for one 

wavelength 2  coincides in position with the first diffraction minimum, in the same 

order for another wave 1 , therefore  

12

1
 









N
mm .                            (11.2.3) 

Then 

       
Nm





 12 .                            (11.2.4) 

Therefore, for the resolution we can write  

 

NmR 








.                            (11.2.5) 

 

Then the number of strokes of the diffraction grating is  

 

m
N








 ,                            (11.2.6) 

where 
2

21 



  is the average wavelength.  

Finally,  

295
2

21 





m
N




.                            (11.2.7) 

Then the length of the lattice is equal to 

 

mNdL 31056.1  .                            (11.2.8) 

 

Answer. The number of strokes of the diffraction grating is equal to 295N . The 

length of the diffraction grating is equal to mL 31056.1  . 

 

Problem 11.3 

 

Problem description. White light propagates in the direction perpendicular to the 

plane of the diffraction grating. The diffraction grating contains 610 strokes per 

millimetre. The lens is placed near the diffraction grating and projects light coming 

out of the grating onto the screen. Determine the length of the spectrum of the first 

order on the screen, if the distance from the lens to the screen is 1.3 m. The 

boundaries of the visible spectrum correspond to the wavelengths mnr 780 , 

mnV 400 . 

 

Known quantities: 610N ; mml 1 ; mL 3.1 ; mnV 400 ; mnr 780 . 

 

Quantities to be calculated: x . 
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Problem solution. The condition of the main maxima in the diffraction of light 

on the diffraction grating 

 

 kd sin ,                                         (11.3.1) 

 

where d  is the diffraction grating constant;  

             is the wavelength;  

           k  is the diffraction maximum order;  

            is the diffraction angle.  

According to the condition of the problem 1k , i.e.  

 

                                                  sind .                                         (11.3.2) 

 

The number of strokes on the length of l  is equal to  

 

                                                       
d

N
1

 ,                                               (11.3.3) 

then 

              
n

d
1

  and  sin
1

N
.                                   (11.3.4) 

 

The length of the spectrum is equal to 

 

 Ltgtgx Vr   ,                              (11.3.5) 

 

where the indices "r" and "V" refer to the red and violet spectral regions, respectively.  

For angles V  and r  we can write:  

24,0sin 
l

N V
V


 , hence 01,14V .                      (11.3.6) 

468,0sin 
l

N r
r


 , hence 04,28r .                   (11.3.7) 

Then numerically 

  mtgtgx 38,02,19,139,27 00  .                  (11.3.8) 

 

Answer. The length of the spectrum of the first order on the screen is equal 

to mx 38,0 . 

Problems 

Problem A  

 

Problem description. Calculate the radius of the fifth Fresnel zone for a plane wave 

front ( m 5.0 ), if the construction is done for the observation point located at a 

distance of mb 1  from the wave front. 
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Answer. m3
5 1058.1  . 

 

Problem B  

 

Problem description. A flat light wave ( m 7.0 ) normally falls on a diaphragm 

with a circular aperture of radius mmr 4.1 . Determine the distances 1b , 2b , and 3b  

from the diaphragm to the three points farthest from it, where intensity minima are 

observed. 

 

Answer. mb 4.11  , mb 7.02  , mb 47.03  . 

 

Problem C  

 

Problem description. A monochromatic light falls at an angle of 2/  onto a 

diffraction grating containing 100n  strokes per length mm1 . The telescope of the 

spectrometer is aimed at a maximum of the third order. To bring the pipe to another 

maximum of the same order, it must be rotated at an angle of  20 . Determine 

the wavelength   of the light. 

 

Answer. m7108.5  . 

 

Problem D  

 

Problem description. The diffraction pattern was obtained using a diffraction grating 

with a length of cmL 5.1  and a period of md 5 . Determine the value of the 

smallest order mink  of the spectrum of the diffraction pattern at which separate 

images of two spectral lines with a wavelength difference of nm1.0  are 

obtained. These lines are in the extreme red part of the spectrum ( nm760 ). 

 

Answer. 3min k . 

 

Problem E  

 

Problem description. A parallel X-ray beam ( pm147 ) falls on the brink of a rock 

salt crystal. Determine the distance d  between the atomic planes of the crystal, if the 

diffraction maximum of the second order is observed when the radiation falls at an 

angle of 0331   to the surface of the crystal. 

 

Answer. md 8108.2  . 
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CHAPTER 12. POLARIZATION OF LIGHT 

 

12.1. Natural and Polarized Light 

 

A consequence of Maxwell's theory is the transverse nature of light waves: the 

vectors of the intensities of the electric E


 and magnetic H


 fields of the wave are 

mutually perpendicular and oscillate perpendicularly to the velocity vector 


 of the 

wave propagation (perpendicular to the ray). Therefore, in order to describe the laws 

of light polarization, it is sufficient to know the behaviour of only one of the vectors 

E


 and H


. Usually all the arguments are conducted relative to the light vector – the 

vector of electric field intensity E


.  

Light is the total electromagnetic radiation of a set of atoms.  Atoms emit light 

waves independently of each other, so the light wave emitted by the body as a whole 

is characterized by all possible equiprobable oscillations of the light vector (Figure 

12.1, A; the ray is perpendicular to the plane of the figure).  

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case, the uniform distribution of the vectors E


 is explained by the large 

number of atomic radiators. Light with all possible equiprobable orientations of the 

vector E


 (and, therefore, H


) is called a natural light. The light, in which the 

directions of the oscillations of the light vector are somehow ordered, is called 

polarized light. So, if as a result of some external influences a predominant the fixed 

direction of vector oscillations (Figure 12.1, B), then we are dealing with partially 

polarized light. The light in which the vector E


 (and therefore H


) oscillates only in 

one direction perpendicular to the ray (Figure12.1, C), is called plane polarized light 

(linearly polarized).  

The plane passing through the direction of the light vector of a plane-polarized 

wave and the direction of propagation of this wave is called the plane of polarization. 

Plane-polarized light is the limiting case of elliptically polarized light, i.e. light, for 

which the vector E


 (and vector H


) varies with time so that its end describes an 

ellipse lying in a plane perpendicular to the ray. 

The degree of polarization is the value equals 

 

А  Б  В  

 

C  B  

Figure 12.1. Light wave orientations. 
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minmax

minmax

II

II
P




 ,                                             (12.1) 

 

where maxI  and minI  are the maximum and minimum light intensities corresponding 

to two mutually perpendicular components of vector E


.  

For natural light minmax II   and 0P , for plane-polarized 0min I  and 

1P . 

 

12.2. Polarisers. Malus’s Law 

 

Natural light can be converted to a plane-polarized light, using so-called 

polarisers, which transmit oscillations of only a certain direction (for example, 

transmitting oscillations parallel to the plane of the polarizer and completely retarding 

oscillations perpendicular to this plane). A natural crystal tourmaline has long been 

used as a polariser. 

Let's consider classical experiments with 

tourmaline (Figure 12.2). We direct the natural 

light perpendicular to the tourmaline plate 1T  cut 

in parallel with the so-called optical axis OO . 

No changes in the intensity of the light passing 

through the tourmaline are observed when the 

tourmaline crystal 1T  rotates around the direction 

of the beam. For the case when a second plate of 

tourmaline 2T  is placed in the path of the beam 

and rotated around the direction of the beam, the 

intensity of light transmitted through the plates 

varies depending on the angle   between the 

optical axes of the crystals according to the 

Malus’ law: 

 

2
0 cosII  ,                     (12.2) 

 

where 0I  and I  are, respectively, the intensity of light falling on the second crystal 

and emerging from it.  

Consequently, the intensity that passes through the light plates varies from a 

minimum at 2/   (the optical axis of the plates are perpendicular) to a maximum 

at 0  (the optical axes of the plates are parallel). However, as it follows from the 

figure, the amplitude E


 of the light oscillations transmitted through the plate 2T  will 

be less than the amplitude of the light oscillations 0E


 that fall on the plate 2T :  

 

cos0EE


 .                                       (12.3) 

 

 

'O  

'O  

O  

O  

1T  

2T  

E


 
0E


 
  

 

Figure 12.2. Plane-polarized 

light. 



 184 

The results of experiments with crystals of tourmaline can be explained quite 

simply, if we proceed from the above conditions for the transmission of light by a 

polarizer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first plate of tourmaline passes vibrations only of a certain direction (in the 

figure this direction is indicated by an arrow AB), i.e. converts natural light into 

plane-polarized light. The second plate of tourmaline, depending on its orientation 

from the polarized light, passes a greater or lesser part of it, which corresponds to the 

component E


 parallel to the axis of the second tourmaline. In the figure, both plates 

are arranged so that the directions of the oscillations AB  and ''BA  passed by them 

are perpendicular to each other. In this case, 1T  passes the oscillations directed at AB , 

and 2T  completely extinguishes them, that is, for the second plate of tourmaline, the 

light does not pass. 

A plate that converts natural light into plane-polarized light is a polariser. A 

plate serving to analyze the degree of polarization of light is called an analyzer. Both 

plates are exactly the same (they can be interchanged).  

 

12.3 Polarization in Reflection and Refraction 

 

 Let’s consider the case then natural light falls on the interface between two 

dielectrics (for example, air and glass), then part of it is reflected, and the part is 

refracted. Experiments have shown that oscillations perpendicular to the plane of 

incidence prevail in the reflected ray (they are indicated by dots in the figure), and 

oscillations parallel to the plane of incidence (shown by arrows) prevail in the 

refracted ray (Figure 12.4).  

The degree of polarization (the degree of emission of light waves with a certain 

orientation of the electric (and magnetic) vector) depends on the angle of incidence of 

the rays and the refractive index. 

At an angle of incidence Bi  (the Brewster’s angle), determined by the relation  

21ntgiB  ,                                              (12.4) 

 

'O  

O  
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        свет 

Плоскополяризован
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        свет 
A  

'A  
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1T  
2T  

O  

'O  
B  

 

Natural light Polarized light 

Figure 12.3. Verification of Malus's law. 
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where 21n  is the refractive index of the second medium relative to the first, the 

reflected ray is plane-polarized (contains only the oscillations perpendicular to the 

plane of incidence) (Figure 12.5).   

 

The refracted beam at the angle of incidence Bi  is polarized as much as 

possible, but not completely. For the case then light falls on the interface at the 

Brewster’s angle the reflected and refracted rays are mutually perpendicular.  

Indeed:  

 

BBB iitgi cos/sin ,                                        (12.5) 

then  

 

221 sin/sin iin B ,                                       (12.6) 

 

where 2i  is the angle of refraction, whence  

 

2sincos iiB  .                                       (12.7) 

Consequently,  

2/2  iiB ,                                       (12.8) 

 

but BB ii '  (the law of reflection), so  

 

2/' 2 iiB .                                       (12.9) 

 

 
 

 

Вi  

2i  

2

  
1n  

2n  

 

Figure 12.4. Reflection, refraction 

and polarization. 

Figure 12.5. Brewster’s angle. 



 186 

The degree of polarization of reflected and refracted light at various angles of 

incidence can be calculated from Maxwell's equations if we take into account the 

boundary conditions for the electromagnetic field at the interface of two isotropic 

dielectrics (the so-called Fresnel formulas).  

 The degree of polarization of the refracted light can be greatly increased (by 

repeated refraction if the light falls every time at the Brewster’s angle). The degree of 

polarization of the refracted beam for glass ( 53,1n ) is 15%. After refraction of 8 to 

10 superimposed glass plates, the light released from such a system will be almost 

completely polarized.  

 All transparent crystals (except crystals 

of the cubic system that are optically 

isotropic) have the ability of birefringence, 

that is, bifurcation of each light beam incident 

on them. This phenomenon, observed for 

Iceland spar (a kind of calcite CaCO3), is 

explained by the features of the propagation of 

light in anisotropic media and follows directly 

from Maxwell's equations. Some materials, 

such as glass and plastic, become birefringent when stressed. Engineers often use 

technique, called optical stress analysis, in designing structures ranging from bridges 

to small tools [5].  

A narrow beam of light after passing through a thick crystal of Iceland spar is 

divided into two rays parallel to each other and the incident ray (Figure 12.6). Even in 

the case when the primary beam falls on the crystal normally, the refracted beam is 

divided into two, one of which is an extension of the primary beam and the other is 

deflected (Figure 12.7).  The second of these rays is called the extraordinary ray (e), 

and the first is called the ordinary ray (o).  

In the crystal of Iceland spar, there is a 

single direction along which birefringence is 

not observed. The direction in an optically 

anisotropic crystal, along which a light beam 

propagates without experiencing birefringence, 

is called the optical axis of the crystal. In this 

case, we are talking about the direction, rather 

than the straight line, passing through some 

point of the crystal. Any straight line that runs 

parallel to this direction is the optical axis of 

the crystal. Crystals, depending on the type of 

their symmetry, are uniaxial and biaxial, that 

is, they have one or two optical axes (the 

Iceland spar belongs to the first type). The 

plane passing through the direction of the light ray and the optical axis of the crystal 

is called the principal plane (or the principal section) of the crystal.  

 

 

 
 

Figure 12.6. Birefringence. 

 

e  

o  

 

Figure 12.7. Extraordinary and 

ordinary rays. 
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12.4. Polarization in Double Refraction 

 

Analysis of polarized light (for example, using tourmaline or a glass mirror) 

shows that the rays emerging from the crystal are plane polarized in mutually 

perpendicular planes. The plane of the light vector oscillations (the electric field 

intensity vector) in an ordinary ray is perpendicular to the principal plane. The 

oscillations of the light vector in an extraordinary ray are in the principal plane 

(Figure 12.7). 

 The unequal refraction of the ordinary and extraordinary rays indicates the 

difference in their refractive indices. Obviously, for any direction of the ordinary ray, 

the oscillations of the light vector are perpendicular to the optical axis of the crystal, 

so the ordinary ray propagates in all directions at the same speed and, consequently, 

the refractive index for it is constant. For an extraordinary beam, the angle between 

the direction of the oscillations of the light vector and the optical axis is different 

from the direct one and depends on the direction of the beam, so the extraordinary 

rays propagate in different directions at different speeds. Consequently, the refractive 

index en  of an extraordinary ray is a variable quantity, depending on the direction of 

the ray. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Ordinary rays propagate in the crystal in all directions at the same velocity 

00 / nc ,                                        (12.10) 

while the extraordinary rays propagate at different velocities 

 

ee nc /                                          (12.11) 
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Figure 12.8. Extraordinary wave refractive index. 
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(depending on the angle between the vector E


 and the optical axis). 

 Let us assume that a point light source is located inside the uniaxial crystal at 

point S . Figure 12.8 presents the propagation of ordinary and extraordinary rays in a 

crystal. The main plane coincides with the plane of the drawing, the direction of the 

optical axis is denoted by 'OO . The wave surface of an ordinary ray (it propagates at 

a velocity of const0 ) is a sphere. The wave surface of an extraordinary ray 

( const ) is an ellipsoid. The ellipsoid and the sphere touch each other at the points 

of their intersection with the optical axis 'OO . For the case when 0 e , 0nne  , 

the ellipsoid of an extraordinary ray is inscribed in the sphere of an ordinary ray (the 

ellipsoid of velocities is stretched relative to the optical axis) and the uniaxial crystal 

is called positive (Figure 12.8, A). Consider the inverse relation 0 e , 0nne  . In 

this case, the ellipsoid is described around the sphere (the ellipsoid of velocities is 

stretched in a direction perpendicular to the optical axis) and the uniaxial crystal is 

called negative (Figure 12.8, B). 

 As an example of the construction of ordinary and extraordinary rays, we 

consider the refraction of a plane wave at the boundary anisotropic medium.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let the light fall normally to the refracting face of the crystal, and the optical 

axis 'OO  makes with this face some angle different from zero (Figure 12.9). At 

points A  and B , we construct spherical wave surfaces corresponding to an ordinary 

ray, and ellipsoidal surfaces corresponding to an extraordinary ray. At a point lying 

on line 'OO , these surfaces are in contact. According to the Huygens’ principle, the 

surface tangent to the spheres is the front ( aa  ) of the ordinary wave, and the surface 

tangent to the ellipsoids will be the ( bb ) front of the extraordinary wave.  

Drawing straight lines to the points of tangency, we obtain the directions of 

propagation of ordinary ( o ) and extraordinary (e ) rays. Thus, in this case the 

ordinary ray will go along the original direction, the extraordinary one will deviate 

from the original direction.  

 

A В  

О  О  

'О  'О  

b  b  

a  a  
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Figure 12.9. Light propagation in uniaxial crystals. 
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 The phenomenon of birefringence is based on the work of polarization devices 

used to produce polarized light. Prisms and polaroids are used for this purpose. 

Prisms are divided into two classes: 1) prisms, at the output of which only plane-

polarized beam is observed (polarization prisms); 2) prisms that produce two beams 

polarized in mutually perpendicular planes (birefringent prisms). 

 

 

 

 

 

 

 

 

 

 

 

 

 Polarization prisms are constructed by the principle of full reflection of one of 

the rays (for example, ordinary) from the interface, while another beam with a 

different refractive index passes through this boundary.  A typical representative of 

polarization prisms is the prism, often called Nichol prism. This prism is consists of a 

rhombohedral crystal of Iceland spar that has been cut as shown in Figure 12.10 and 

then glued along the AB line by a Canadian 

balm with a refractive index of 55.1n . The 

optical axis 'OO  of the prism makes an angle 

of 48° with the input face. On the front face of 

the prism a natural ray parallel to the edge CB  

divides into two rays: ordinary ( 66.10 n ) and 

extraordinary ( 51.1en ).With an appropriate 

selection of the angle of incidence equal to or 

greater than the limiting angle, the ordinary ray 

undergoes complete reflection (the Canadian 

balm for it is an optically less dense medium), 

and then absorbed by the blackened lateral 

surface CB . The extraordinary beam emerges 

from the crystal parallel to the incident ray, 

slightly shifted relative to it (due to refraction 

on the inclined faces AC  and BD ).  

 Let a plane-polarized light normally fall on a crystal plate cut out parallel to the 

optical axis (Figure 12.11). Inside the plate, it is divided into ordinary (o) and 

extraordinary (e) rays, which in the crystal are not spatially separated (but move with 

different velocities). The electrical intensity vector E


 of these waves (and, 

consequently, the vector H


) varies with time so that its end describes an ellipse 

oriented arbitrarily with respect to the coordinate axes.  
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Figure 12.10. Nichol prism. 
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Figure 12.11. Waveplate. 
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 The equation of this ellipse is:  

 

 2

2

2

2

2

sincos
2



eE

Y

eEE

XY

E

X

OO

,                        (12.12) 

 

where OE  and eE  are, respectively, the components of the electric field intensity of 

the wave in the ordinary and extraordinary rays,  

    is the phase difference of the oscillations.  

Thus, as a result the plane-polarized light becomes elliptically polarized.  

 Between the ordinary and extraordinary rays in the plate there is an optical path 

difference or phase difference 

 

  dennO  0/2  ,                                      (12.13)       

                              

where d  is the thickness of the plate,  

           0  is the wavelength in vacuum. 

 Let’s consider the plate cut out parallel to the optical axis, for which the optical 

path difference is  

   ,...2,1,0,
4

1
0 








 mmdennO  .                (12.14) 

 

This plate is called a quarter-wave plate. The plane-polarized light, passing the 

quarter-wave plate, transforms at the output into elliptically polarized light.  

A plate for which 

 

   ,...2,1,0,
2

1
0 








 mmdennO                                (12.15) 

 

is called a half-wave plate.  

 

Test questions 

 

1. Specify the component of the electromagnetic field, which is usually used to 

describe the phenomenon of polarization. 

2. Are the processes of radiation of electromagnetic waves atoms dependent? 

3. Give the definition of natural light. 

4. Is it possible to say that the direction of the oscillations of the electric field 

intensity vector is equally probable for polarized light? 

5. Specify the angle between the electric field strength vector of the 

electromagnetic wave and the light beam for linearly polarized light. 

6. Calculate the degree of polarization for natural light. 

7. Can polarisers be used to analyze the polarized light? 
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8. Formulate the Malus’s law. 

9. Calculate the intensity of light at the exit of two tourmaline crystals, the optical 

axes of which are perpendicular. 

10. Indicate the direction of polarization that is predominant in the refracted rays. 

11. Under what conditions the reflected light is completely polarized? 

12. Specify the angle between the reflected and refracted rays for the case when 

light falls on the interface between two dielectrics at the Brewster’s angle. 

13. Describe the method by which you can significantly increase the degree of 

polarization of the same light beam. 

14. Define the birefringence property. 

15. Is there a separation for the light beam into two beams in the case of movement 

along the optical axis? 

16. Specify the difference between uniaxial and biaxial crystals. 

17. Is it true to say that a beam incident on a uniaxial crystal is perpendicular to the 

principal plane of the crystal? 

18. Explain the inequality of the refractive indices of ordinary and extraordinary 

rays. 

19. Describe the Nichol prism. 

20. Write the expression for the optical path length in the quarter-wave plate. 

 

 

Problem-solving examples 
 

Problem 12.1  

 

Problem description. A parallel beam of light passes from glycerol to glass so that the 

beam reflected from the interface between these media is as polarized as possible. 

Determine the angle between the incident and refracted beams. 

 

Known quantities: 47.11 n ; 5.12 n ; Bi . 

 

Quantities to be calculated:  . 

 

Problem solution. From the law of refraction of light we get 

 

1

2

sin

sin

n

n





,                                       (12.1.1) 

where   is the angle of incidence;  

            is the angle of refraction;  

           1n , 2n  are absolute refractive indices in which the incident (glycerin) and 

refracted (glass) rays passed, respectively.  

Therefore, we get 
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2

1 sin
sin

n

n 
  .                                       (12.1.2) 

 

Reflected light is completely polarized in the event of a Brewster falling:  

 

Bi ,                                              (12.1.3) 

where Бi  is the Brewster’s angle.  

According to Brewster's law 

 

1

2
21

n

n
ntgiБ  ,                                       (12.1.4) 

 

where 
21n  is a relative refractive index. Numerically: 

 

0

1

2 57.45
n

n
arctg .                                       (12.1.5) 

 Then 

 

0

2

1 42.44
sin

arcsin 









n

n 
 .                                       (12.1.6) 

We can write for the angles  

 
00 85.178180   .                                       (12.1.7) 

 

Answer. The angle between the incident and refracted rays is 085.178 . 

 

Problem 12.2  

 

Problem description. A beam of light passes successively through two nicols, whose 

transmission planes form an angle of 400 between them. Assuming that the absorption 

coefficient of each nicole is 0.15, calculate how many times the beam of light coming 

out of the second nicole is weakened compared to the beam incident on the first 

nicole. 

 

Known quantities: 
040 ; 15.0k . 

 

Quantities to be calculated: 20 / II . 

 

Problem solution. For the case of the passage of light through the first nicole (in the 

case of natural light), we obtain 
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 kII  1
2

1
01 ,                                          (12.2.1) 

 

where 0I  is the intensity of natural light; k  is the absorption coefficient. Then 

 

35.2
1

2

1

0 



kI

I
.                                 (12.2.2) 

 

After the light has passed through the second nicole, the light intensity is equal 

to 

 
 

2

1cos
1cos

22
02

12

kI
kII





 .                       (12.2.3) 

Then 

 
72.4

1cos

2
22

2

0 



kI

I


.                             (12.2.4) 

 

Answer. The relative attenuation of the beam is  72.4
2

0 
I

I
. 

 

Problem 12.3  

 

Problem description. The angle of refraction of the beam in the liquid is 350. 

Determine the refractive index of the fluid, if it is known that the reflected light beam 

is as polarized as possible. 

 

Known quantities: 0
2 35i . 

 

Quantities to be calculated: n . 

 

Problem solution. A beam of light reflected from a dielectric is maximally 

polarized if the tangent of the angle of incidence is numerically equal to the relative 

refractive index 

 

ntgi 1 .                                             (12.3.1) 

 

The law of refraction can be written in the form 

 

n
i

i


2

1

sin

sin
,                                             (12.3.2) 

 

where 21 ,ii  are angles of incidence and refraction;  

           n  is a relative refractive index.  



 194 

Equate the left parts of the equations 

 

2

1

1

1

sin

sin

cos

sin

i

i

i

i
 .                                             (12.3.3) 

Substitute numeric data 

 

57.0cossin 12  ii .                                             (12.3.4) 

Since  

ntgi 1 ,                                             (12.3.5) 

then 

n
i

i




1

1
2

cos

cos1
,                                             (12.3.6) 

i.e. 44.1n . 

 

Answer. The refractive index of the liquid is 44.1n  

 

Problems 
 

Problem A  

 

Problem description. The Brewster angle when light falls from the air onto a rock salt 

crystal is  57Bi . Determine the speed of light in this crystal. 

 

Answer. sm /1094.1 8 . 

 

Problem B  

 

Problem description. The analyzer reduces the intensity of the light coming to it from 

the polarizer by 2 times. Determine the angle between the transmittance planes of the 

polarizer and the analyzer. The loss of light intensity in the analyzer is neglected. 

 

Answer.  45 . 

 

Problem C  

 

Problem description. Determine the relative attenuation of the intensity of light 

passing through two nicols whose transmission planes form an angle of  30 . The 

incident light loses 10% of the intensity as each of the nicols passes. 

 

Answer. 3.3N  . 

 

Problem D  
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Problem description. The analyzer is placed on the path of partially polarized light. 

The degree of polarization of light is 6.0Р . The intensity of the light passing 

through the analyzer is maximum. How many times will the light intensity decrease if 

the analyzer transmittance plane is rotated through an angle of  30 ? 

 

Answer. 1.23N  . 

 

Problem E  

 

Problem description. Plate of quartz with a thickness of mmd 2 , cut perpendicular 

to the optical axis. The plate is placed between parallel nikole crystals. As a result, 

the plane of polarization of light turned at an angle of  53 . Determine the 

thickness of the plate at which this monochromatic light does not pass through the 

analyzer. 

 

Answer. mh 3104.3  . 
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CHAPTER 13. DISPERSION OF LIGHT 
 

13.1. Dispersive Prism 

 

 A dispersion of light is the dependence of the refractive index n  of a substance 

on the frequency   (wavelength  ) of light or the dependence of the phase velocity 

of light waves on its frequency  . Dispersion of light is represented as a relationship 

 fn  . A consequence of the dispersion is 

the expansion into the spectrum of a beam of 

white light when passing through a prism.  

 Consider the light dispersion in the 

prism. Let a monochromatic beam of light 

fall on a prism with a refractive index n  

(Figure 13.1) at an angle of 1 . After double 

refraction (on the left and right sides of the 

prism), the beam is deflected from the 

original direction by an angle of  .  

It follows from the figure that  

 

    A 212211  .                      (13.1) 

 

 Suppose that the angles A  and 1  are small, then the angles 212 ,   will 

also be small, and instead of the sinus of these angles, one can use their values. 

Therefore, 

 

 n11 /  , n/1/ 22                                    (13.2) 

and since  

 

A 21  ,                                            (13.3) 

then  

nA 21  .                                           (13.4) 

Consequently,  

 1 nA ,                                            (13.5) 

 

that is, the angle of deflection of the rays by the prism is greater the larger the 

refracting angle of the prism. 

The angle of deflection of the rays by the prism depends on the value of 1n , 

and n  is a function of the wavelength, so the rays of different wavelengths after 

passing through the prism will be rejected at different angles, i.e. the beam of white 

light behind the prism splits into a spectrum. Thus, with the help of a prism, as well 

as with the aid of a diffraction grating, it is possible to determine its spectral 

composition of light by expanding it into a spectrum.  

Consider the differences in the diffraction and prismatic spectra.  
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Figure 13.1. Dispersive prism. 
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1. The diffraction grating decomposes the incident light directly over the 

wavelengths, therefore, using the values of the measured angles (along the 

directions of the corresponding maxima), one can calculate the wavelength. 

Decomposition of light into the spectrum in the prism occurs according to the 

values of the refractive index. 

2. Compound colours in the diffraction and prismatic spectra are arranged in 

different ways. The sine of the deflection angle in the diffraction grating is 

proportional to the wavelength. Consequently, the red rays, having a longer 

wavelength than the violet ones, are deflected more strongly by the diffraction 

grating. The prism also decomposes the rays into the spectrum according to the 

values of the refractive index, which decreases monotonically for all 

transparent substances with wavelength increasing. Consequently, the red rays, 

which have a smaller refractive index than the violet ones, are deflected less 

by the prism.  

 

13.2. Normal and Anomalous Dispersion 

 

The quantity 
d

dn
D   is called the dispersion of matter. Dispersion of the 

substance shows how quickly the refractive index changes with the wavelength. It 

follows from the figure that the refractive index for transparent substances decreases 

monotonically with decreasing wavelength; consequently, the value ddn /  modulo 

also increases with decreasing .  

Such dispersion is called normal. The shape 

of the curve  n , called the dispersion 

curve, near the lines and absorption bands 

will be different: the value of n  decreases 

with decreasing  . This type of dependence 

n  on   is called anomalous dispersion. 

The effect of prism spectrographs is 

based on the phenomenon of normal 

dispersion. Despite their certain 

shortcomings (for example, the need for 

calibration, different dispersion in different 

parts of the spectrum) in determining the 

spectral composition of light, prism 

spectrographs find wide application in spectral analysis. This is because the 

manufacture of good prisms is much simpler than the production of good diffraction 

gratings. Prism spectrographs, moreover, have a greater light-gathering power. 

It follows from Maxwell's macroscopic electromagnetic theory that the absolute 

refractive index of the medium is n , where   is the dielectric constant of the 

medium,   is the magnetic permeability. 

In the optical region of the spectrum, for all substances 1 , therefore, n . 

These formulas contain some contradictions with experience: the quantity n , being a 

 

n  

нм,  200  800  

 

Figure 13.2. Normal dispersion. 
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variable, remains at the same time equal to a certain constant  . In addition, the 

values of n  obtained from this expression do not agree with the experimental values.  

 

13.3. Electron Theory of Dispersion 

 

The difficulties of explaining the dispersion of light from the point of view of 

Maxwell's electromagnetic theory are eliminated by the electron Lorentz theory. The 

dispersion of light is regarded in Lorentz theory as the result of the interaction of 

electromagnetic waves with charged particles that make up the substance and perform 

forced oscillations in the alternating electromagnetic field of the wave.  

We apply the electronic theory of the dispersion of light for a homogeneous 

dielectric, assuming formally that the dispersion of light is a consequence of the 

dependence of   on the frequency   of light waves. The permittivity of a substance 

is, by definition,  

 

 EP 0/11   ,                             (13.6) 

 

where   is the dielectric susceptibility of the medium,  

           0  is the electric constant,  

           P  is the instantaneous value of polarization. 

Consequently,  

 

 EPn 0
2 /1  ,                                  (13.7) 

 

that is, the refractive index depends on P . In this case, the main significance is due to 

electron polarization that is forced oscillations of electrons under the influence of the 

electric component of the wave field. For orientation polarization of molecules, the 

frequency of oscillations in the light wave is very high Hz1510 .  

In the first approximation, we can assume that the forced oscillations are 

performed only by the outer electrons, which are the weakest in the nucleus, namely 

the optical electrons. For simplicity, let us consider the oscillations of only one 

optical electron. The induced dipole moment of an electron making forced 

oscillations is  

 

eXp  ,                                                  (13.8) 

 

where e  is the charge of an electron,  

          X  this is the displacement of an electron under the action of the electric field 

of a light wave.  

For the case when the concentration of atoms in the dielectric is 0n , the 

instantaneous value of the polarization is  

 

eXnpnP 00  .                                           (13.9) 



 199 

Then we can obtain  

 

 EeXnn 00
2 /1  .                                      (13.10) 

 

Consequently, the problem reduces to determining the displacement X  of an 

electron under the action of an external field E . The field of a light wave will be 

considered a function of frequency  , that is, varying in harmonic order:  

 

tEE cos0 .                                    (13.11) 

 

The equation of forced oscillations of an electron for the simplest case (without 

taking into account the resistance force, which determines the absorption of the 

energy of the incident wave) will be written in the form  

 

tE
m

e
t

m

F
XX  coscos 0

02
0  ,                    (13.12) 

 

where 00 EF   is the amplitude value of the force acting on the electron from the 

side of the wave field,  

           
m

k
0  is the eigenfrequency of the electron's oscillations,  

           m  is the mass of the electron.  

Solving the equation, we find the solution 2n  as a function of the atom 

constants  0,, me  and the frequency   of the external field, that is, we solve the 

dispersion problem. 

The solution of the equation can be written in the form  

 

tAX cos ,                                        (13.13) 

where 

 22
0

0

 



m

eE
A .  

Substituting the solution into the expression for 2n , we obtain  

 

 22
00

2
02 1

1
 


m

en
n .                                 (13.14) 

If there are different charges ie  in the substance that perform forced oscillations 

with different natural frequencies i0 , then 

  


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

i i

i men
n

22
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2

0

02 /
1


,                          (13.15) 

where im  is the mass of the charge ie . 
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From these expressions it follows that the refractive index n  depends on the 

frequency   of the external field, that is, the functional dependences do confirm the 

phenomenon of light dispersion, although under the assumptions indicated above, 

which in the future must be eliminated. 

In the range from 0  to 0  , the value of 2n  is greater than unity and 

increases with increasing   (normal dispersion); at 0   we have 2n ; in the 

range from 0   to  , the value of 2n  is less than unity and increases from 

  to 1 (normal dispersion).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.3 presents the dependence of refractive index n  on the value of  . 

Similar behaviour of n  near the eigenfrequency 0  was obtained as a result of the 

assumption that there are no resistance forces for electron oscillations. If this 

circumstance is taken into account, then the graph of the function  n  near 0  is 

given by the dashed line AB . Region AB  describes to the anomalous dispersion (n  

decreases with increasing  ), the remaining sections of the dependence n  of   

describe the normal dispersion (n  increases with increasing  ). 

 

13.4. Absorption of Light 

 

Absorption of light is the phenomenon of energy loss by a light wave passing 

through a substance, due to the conversion of wave energy into other forms (internal 

energy of matter and secondary energy of other directions and spectral composition). 

As a result of absorption, the intensity of light when passing through matter 

decreases.  

The absorption of light in matter is described by Bouguer’s law (the law was 

discovered by French geophysicist Pierre Bouguer (1698–1758)):  

 
XeII  0 ,                                     (13.16) 

 

 

n  

  
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Figure 13.3. Anomalous dispersion. 
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where 0I  and I  are the intensities of a plane monochromatic light wave at the 

entrance and exit of a layer of an absorbing substance of thickness X ,  

              is the absorption coefficient, depending on the wavelength of light, 

chemical nature and state of matter and not which depends on the intensity of 

light. At /1X , the intensity I  of light decreases by a factor of e  

compared with 0I . 

The absorption coefficient depends on the wavelength   (or frequency  ) and 

depends on the nature of the substance. For example, monatomic gases and metal 

vapours (that is, substances in which the atoms are located at considerable distances 

from each other and can be considered isolated) have a near-zero absorption 

coefficient and only for very narrow spectral regions (approximately  10–12 – 10–11 m) 

there are sharp maxima (so-called line absorption spectrum). These lines correspond 

to the frequencies of the natural oscillations of the electrons in atoms. The absorption 

spectrum of molecules, determined by the oscillations of atoms in molecules, is 

characterized by absorption bands (about 10–10 –                 10–7  m). 

The absorption coefficient for dielectrics is small (about 10–3 – 10–5 cm–1), 

however, selective absorption of light is observed in certain intervals of wavelengths, 

when   sharply increases, and relatively wide absorption bands are observed, i.e. 

dielectrics have a continuous absorption spectrum. This is due to the fact that there 

are no free electrons in dielectrics and the absorption of light is due to the 

phenomenon of resonance under forced oscillations of electrons in atoms and atoms 

in dielectric molecules.  

The absorption coefficient for metals has large values (about 103 – 105 cm–1) 

and therefore metals are opaque to light. There are free electrons in metals. These 

electrons move under the action of the electric field of the light wave, which leads to 

the appearance of rapidly varying currents. The presence of currents in metals is 

accompanied by the release of Joule heat. Therefore, the energy of the light wave 

decreases rapidly, turning into the internal energy of the metal.  

The typical dependence of the absorption coefficient   on the wavelength   

of light and the dependence of the refractive index n  on   in the region of the 

absorption band is shown in Figure 13.4. Anomalous dispersion is observed inside 

the absorption band ( n  decreases with decreasing  ). However, the absorption of 

matter must be significant in order to influence the refractive index.  

 The coloring of absorbing bodies can 

be explained by the dependence of the 

absorption coefficient on the wavelength. For 

example, glass, slightly absorbing red and 

orange rays and strongly absorbing green and 

blue, when illuminated with white light, will 

appear red. If you send green and blue light to 

such a glass, then because of the strong 

absorption of light of these wavelengths, the 

glass will appear black.  

n,  
  

n  

  
 

Figure 13.4. Absorption band. 



 202 

The absorption phenomenon is widely used in the absorption spectral analysis 

of a gas mixture based on measurements of the frequency spectra and intensities of 

absorption lines (bands).  

The structure of the absorption spectra is determined by the composition and 

structure of the molecules, and therefore the study of absorption spectra is one of the 

main methods of quantitative and qualitative study of substances. 

 

Test questions 

 

1. Does the phase velocity of light waves depend on their frequency? 

2. Can we talk about the implementation of the law of refraction for white light as 

it passes through the prism? 

3. What physical factors affect the angle of deflection of rays when passing 

through a prism? 

4. Consider the case of rays passing through a prism for the case when the 

refractive index of the prism is less than the refractive index of the 

environment. 

5. Describe the differences in the diffraction and prismatic spectra. 

6. Is it true that the red rays deviate less when passing through the prism and 

diffraction grating? 

7. Write a formula to determine the dispersion of matter. 

8. Draw a graph of the refractive index versus wavelength when passing through 

transparent media. 

9. Define the normal dispersion. 

10. Consider the behaviour of the dispersion curve near the absorption bands. 

11. What type of dispersion is called anomalous dispersion? 

12. What physical phenomenon is used when working with spectrographic prisms? 

13. Specify the shortcomings in determining the spectral composition of light by 

spectrographic prisms. 

14. Indicate the reason that in the optical region of the spectrum it is sufficient to 

use the dielectric constant to determine the refractive index of the medium. 

15. Point out the theory that eliminates the difficulties of explaining the dispersion 

of light from the point of view of Maxwell's electromagnetic theory. 

16. Write a formula for the relationship of the refractive index and the polarization 

value. 

17. Indicate the effect of electron displacement due to external force on refractive 

index. 

18. Write a formula that determines the eigenfrequency of the electron's 

oscillations according to the Lorentz theory. 

19. Describe the functional dependence of the refractive index on the frequency of 

the external field. 

20. Write down the Bouguer's law. 
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Problem-solving examples 
 

Problem 13.1  

 

Problem description. Determine the refractive index of carbon dioxide under normal 

conditions. The polarizability of the 2CO  molecule is 329103.3 m . 

 

Known quantities: 329103.3 m . 

 

Quantities to be calculated:n . 

 

Problem solution. The refractive index n  and the dielectric constant   are 

related by  

 

n .                                               (13.1.1) 

 

For the dielectric constant, we can write the formula 

 

 1 ,                                               (13.1.2) 

 

where   is dielectric susceptibility. 

 The dielectric susceptibility is proportional to the concentration of gas 

molecules 

 

 N ,                                               (13.1.3) 

 

where N  is the number of gas molecules, 

           is the polarizability of a single molecule. 

 In this way 

 

Nn  1 .                                               (13.1.4) 

 

 Under normal conditions, the concentration of 2CO  molecules is 
32510687.2  mN .  

Substitute the numeric values in the last formula 

 

00044.1n .                                               (13.1.5) 

 

Answer. The refractive index of carbon dioxide is 00044.1n . 

 

Problem 13.2  
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Problem description. The study of the passage of an electromagnetic wave with a 

frequency of MHz8  through a flat homogeneous plasma layer with a free-

electron concentration of 31210  mN  showed that with an increase in the layer 

thickness  2d  times, the energy transmission coefficient   changes 10  

times. Neglecting the reflection of the wave at the boundaries, find the thickness d  of 

the plasma layer. 

 

Known quantities: MHz8 , 31210  mN , 2d , 10 . 

 

Quantities to be calculated: d . 

 

Problem solution. According to Bouguer's law, the intensity of a wave in a medium is  

 

   dIdI  exp0 , 

   dIdI dd   exp0                                    (13.2.1) 

 

where 0I  is the intensity of the wave outside the medium,  

           d  is the thickness of the layer, 

          n
c




 2  is the absorption coefficient, 

            is the frequency of the electromagnetic wave, 

          с  это скорость света в вакууме, 

          n   is an indicator of absorption, 

          d  is the multiplicity of change in the energy transmittance. 

 According to the problem 

  

 
  



dI

dI

d

.                                   (13.2.2) 

 

 The concentration of free electrons is 31210  mN . Then the plasma frequency 

is  

 

16

0

107.56  sN
m

e
p


 ,                                   (13.2.3) 

 

where 0  is an electrical constant;  

           e  is an electron charge, 

           m  is the electron mass. 

 The cyclic frequency of the wave is 

 
16103.502  s ,                                   (13.2.4) 
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where   is the linear frequency of the wave. 

 Consequently, the dielectric constant of the plasma corresponding to this 

frequency is equal to 

0272.01
2

2







p
.                                   (13.2.5) 

 

 Thus, for the indices of refraction and absorption, we obtain, respectively 

0n , n . 

 Finally 

 

5.13

2

10lnln






n
c

d
d



 .                                   (13.2.6) 

 

Answer. The thickness of the plasma layer is equal to 5.13d . 

 

Problem 13.3  

 

Problem description. The refractive index of a transparent medium near the 

frequency *  varies according to the law  
0

0






A

nn , where 5.10 n , 

114
0 104  s , constA , 0  . A short light pulse passes through a layer of 

matter whose thickness is cml 3 . The spectral composition 






 





2
*,

2
*





  

of this light pulse is rather narrow 0*   . Estimate the time   it takes for a 

pulse to pass through a layer if  
112

0 10*  s  and   01.0* 0  nn  . 

 

Known quantities: 5.10 n , 114
0 104  s , constA , cml 3 , 

112
0 10*  s ,   01.0* 0  nn  . 

 

Quantities to be calculated:  . 

 

Problem solution. The time it takes for a pulse to pass through a layer 

 

u

l
 ,                                                    (13.3.1) 

where l  is the thickness of the layer, 

           u  is the group velocity of light in the medium. 

 The group velocity of light in the environment is represented by the formula 
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


d

dn
n

c
u

*

 .                                      (13.3.2) 

where *  is a fixed frequency, 

           с  is the speed of light in a vacuum, 

           n  is the refractive index, 

             is the frequency of the electromagnetic wave, which is not much different 

from the frequency * . 

 Using numerical data from the problem statement, we get 

 

s
nn

d

dn 14

0

0 10
*

* 






, 

114
0 104*  s .                                  (13.3.3) 

 

 In this approximation, the group velocity is smu /545.0 . The time it takes 

for a pulse to pass through a layer is equal to s10105.5  . 

 

Answer. The time it takes for a pulse to pass through a layer is s10105.5  . 

 

Problems 
 

Problem A  

 

Problem description. Determine the refractive index of carbon dioxide under normal 

conditions. The polarizability of the molecule 2CO  is 329103.3 m . 

 

 

Answer. 00044.1n . 

 

Problem B  

 

Problem description. The concentration of electrons in the Sun at a distance of 

Rr 06.0  from the border of the photosphere ( mR 81095.6   is the radius of the 

Sun) is approximately equal to 314102  mN . Find the maximum wavelength 

that can reach the Earth from this region of the Sun. 

 

Answer. m3.2max  . 

 

Problem C  
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Problem description. A plane electromagnetic wave with a frequency of MHz8  

passes through a flat homogeneous plasma layer with a free electron concentration of 
31210  mN . An increase in the plasma layer thickness by 2 times leads to a change 

in the transmittance by 10 times. Find the thickness d  of the plasma layer. The 

reflection of the wave at the boundaries of the plasma layer can be neglected. 

 

Answer. md 5.13 . 

 

Problem D  

 

Problem description. Pulsed radiation from one of the pulsars at frequency 

MHz801   reaches Earth at time st 7  later than the pulse at frequency 

MHz20002  . Determine the distance to the pulsar if the average concentration of 

electrons in interstellar space is 205.0  cmN . 

 

Answer. mL 18107 . 

 

Problem E  

 

Problem description. The light beam propagates parallel to the surface of the earth. 

Considering the air still, calculate the deviation h  of the beam on the path kmL 1 , 

if the air pressure is atP 10  , the temperature is KT 300 , and the refractive 

index of air is 41031 n . 

 

Answer. mh 2107.1  . 
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CHAPTER 14. QUANTUM NATURE OF RADIATION 
 

14.1. Thermal Radiation. Kirchhoff's Law 

 

 Heating the bodies to sufficiently high temperatures leads to their 

luminescence. The glow of bodies due to heating is called thermal radiation is the 

radiation of electromagnetic waves generated by the thermal motion of particles in 

matter. Thermal radiation, being the most widespread in nature, is accomplished at 

the expense of the energy of thermal motion of atoms and molecules of matter (i.e., 

due to its internal energy) and is characteristic of all bodies at temperatures above 0 

K. Thermal radiation is characterized by a continuous spectrum, the position of the 

maximum of which depends on the temperature. At high temperatures, short (visible 

and ultraviolet) electromagnetic waves are emitted, at low temperatures, long 

(infrared) radiation is emitted.  

 Thermal radiation is practically the only type of radiation that can be in 

equilibrium. Suppose that a heated (radiating) body is placed in a cavity bounded by 

an ideally reflecting shell. As a result of the continuous exchange of energy between 

the body and the radiation, there will be equilibrium, that is, the body per unit time 

will absorb as much energy as it radiate. Let us assume that the equilibrium between 

the body and the radiation is broken for some reason and the body emits more energy 

than absorbs. If the body radiates more per unit of time than absorbs (or vice versa), 

then the body temperature will begin to drop (or increase). As a result, the amount of 

energy emitted by the body will be weakened (or increase) until finally equilibrium is 

established. All other types of radiation are non equilibrium.  

 The quantitative characteristic of thermal radiation is the spectral density of the 

energy luminosity (emissivity) of the body, i.e. the radiation power per unit surface 

area of the body in the frequency interval of unit width 

 






d

dW
R

d
T




,
, ,                                        (14.1) 

 

where  ddW ,  is the energy of electromagnetic radiation emitted per unit of time 

(radiation power) per unit surface area of the body in the frequency range from   to 

 d . 

 The recorded formula can be represented as a function of the wavelength  

 

 dRRdW TT
em

d ,,,  .                                (14.2) 

Since  /с , then 

 

ccdd /// 22   ,                                 (14.3) 

where the minus sign indicates that with increasing one of the values (  or  ) 

another value decreases. Therefore, in the sequel the minus sign will be omitted. In 

this way,  
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 cRR TT /2
,,   .                                        (14.4) 

 

Using this formula, you can go from TR ,  to TR , , and vice versa. 

 Using the value of the spectral density of the energy luminosity, it is possible 

to calculate the integral energy luminosity (integral radiation) (it is simply called the 

energy luminosity of the body), summing over all frequencies 

 






0

,  dRR TT .                                        (14.5) 

 The ability of bodies to absorb the radiation incident on them is characterized 

by the spectral absorption capacity  

 






d

ab
d

dW

dW
TA






,

,
, ,                                        (14.6) 

 

which shows how much of the energy delivered per unit time per unit area of the 

body by electromagnetic waves incident on it with frequencies from   to  d  is 

absorbed by the body. The spectral absorption capacity is a dimensionless quantity. 

The values TR ,  and TA ,  depend on the nature of the body, its thermodynamic 

temperature, and at the same time depend on the frequency of radiation. Therefore, 

these values are attributed to certain T  and   (or rather, to a fairly narrow frequency 

range from   to  d ).  

 The body, capable of absorbing completely all the radiation incident on it at 

any temperature of any frequency, is called black body.  

Consequently, the spectral absorption 

capacity of a black body for all frequencies and 

temperatures is identically equal to unity 

( 1, 
b

TA ). Absolutely black bodies are not 

found in nature, however, such bodies as soot, 

platinum black, black velvet and some others, in 

a certain frequency range, are similar in 

properties to them.  

 The ideal model of the black body is a 

closed cavity with a small aperture O , the inner 

surface of which is blackened (Figure 14.1). A 

beam of light trapped inside such a cavity 

undergoes multiple reflections from the walls, as 

a result of which the intensity of the outgoing radiation is practically zero. Experience 

shows that when the size of the hole is smaller 0.1 of the cavity diameter, the incident 

radiation of all frequencies is "completely absorbed". Because of this, the open 

 

Figure 14.1. Black body model.  
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windows of the houses from the street side seem to be black, although inside the 

rooms it is light enough because of the reflection of light from the walls.  

 In addition to the concept of a black body, the concept of a gray body is also 

used. Body, the absorption capacity of which is less than one, but is the same for all 

frequencies and depends only on the temperature, material and state of the surface of 

the body is called gray body. Thus, for a gray body  

 

1,  constAA T
c

T .                                 (14.7) 

 

The study of thermal radiation played an important role in the creation of the 

quantum theory of light. German physicist Gustav Robert Kirchhoff (1824–1887), 

using the second law of thermodynamics and analyzing the conditions of equilibrium 

radiation in an isolated system of bodies, established a quantitative relationship 

between the spectral density of energy luminosity and the spectral absorptive capacity 

of bodies. The ratio of the spectral density of the energy luminosity to the spectral 

absorption capacity does not depend on the nature of the body; it is for all bodies a 

universal function of frequency (wavelength) and temperature (Kirchhoff's law) 

 

TTT rAR ,,, /   .                                  (14.8) 

For the black body  

 

1, 
b

TA ,                                        (14.9) 

 

therefore, it follows from Kirchhoff's law that the value of TR ,  for a black body is 

Tr , . Thus, the universal Kirchhoff function is nothing else than the spectral density 

of the energy luminosity of a black body. Consequently, according to Kirchhoff's 

law, the ratio of the spectral density of the energy luminosity to the spectral 

absorption capacity for all bodies is equal to the spectral density of the energy 

luminosity of the black body at the same temperature and frequency.  

 It follows from Kirchhoff's law that the spectral density of the energy 

luminosity of any body in any region of the spectrum is always less than the spectral 

density of the energy luminosity of the black body (for the same values of T  and  ), 

since 1, TA  and therefore  

 

TT rR ,,   .                                        (14.10) 

 

In addition, if the body does not absorb electromagnetic waves of any 

frequency, then it does not emit them, since at 0, TA  we get 0, TR . 

 Using the Kirchhoff law, the expression for the energy luminosity of a body 

can be given in the form  
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




0

,,  drAR TTT .                                   (14.11) 

For a gray body  

 

eTTT
c

T RAdrAR  


0

,  ,                               (14.12) 

where  






0

,  drR Te                                         (14.13) 

 

is the energy luminosity of a black body (depends only on temperature). 

Kirchhoff's law describes only thermal radiation. Radiation that is not 

described by Kirchhoff's law is not thermal radiation. 

 

14.2. Stefan-Boltzmann Law and Wien’s Displacement Law 

 

 From Kirchhoff's law it follows that the spectral density of the energy 

luminosity of a black body is a universal function, so the finding of its explicit 

dependence on frequency and temperature is an important task of the theory of 

thermal radiation.  

 According to the Stefan-Boltzmann law, the dependence of the energy 

luminosity eR  on temperature T  is as follows  

 
4TRe  ,                                          (14.14) 

 

i.e. the energy luminosity of a black body is proportional to the fourth power of its 

thermodynamic temperature; and   is the Stefan-Boltzmann constant. 

 The Stefan-Boltzmann law, determining the temperature dependence of eR , 

does not give a reply regarding the spectral composition of the blackbody radiation.  
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Figure 14.2. Dependence of  Tr ,  on the wavelength  . 
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From the experimental curves of the dependence of the function Tr ,  

(   TT rcr ,
2

, /   ) on the wavelength   at different temperatures (Figure 14.2) it 

follows that the energy distribution in the spectrum of the black body is non uniform. 

All curves have an explicit maximum, which, with increasing temperature, shifts 

toward shorter wavelengths. The area bounded by the curve of the dependence of 

Tr , on   and the abscissa axis is proportional to the energy luminosity eR  of the 

black body and, consequently, according to the Stefan-Boltzmann law, the fourth 

power of temperature.  

 According to the Wien’s displacement law, the dependence of the wavelength 

max  corresponding to the maximum of the function Tr ,  on the temperature T  has 

the form 

Tb /max  ,                                          (14.15) 

 

that is, the wavelength max  corresponding to the maximum value of the spectral 

density Tr ,  of the energy luminosity of a black body is inversely proportional to its 

thermodynamic temperature, where b  is the Wien’s displacement constant. The 

expression is therefore called the Wien’s displacement law, that it shows the 

displacement of the position of the maximum of the function Tr ,  as the temperature 

increases to a region of short wavelengths. Wien’s displacement law explains why, 

when the temperature of heated bodies decreases, long wave radiation predominates 

(for example, the transition of white heat into red during the cooling of the metal).  

 

14.3. Planck’s Formula 

 

 Despite the fact that the Stefan-Boltzmann law and Wien’s displacement law 

play an important role in the theory of thermal radiation, they are particular laws, 

since they do not give a general picture of the energy distribution with respect to 

frequencies at different temperatures. 

 German physicist Max Karl Ernst Ludwig Planck (1858–1947) gave the correct 

expression consistent with the experimental data for the spectral density of the energy 

luminosity of a black body. Planck abandoned the established position of classical 

physics, according to which the energy of any system can change continuously, i.e. it 

can take any arbitrarily close values. According to the quantum hypothesis put 

forward by Planck, atomic oscillators emit energy not continuously, but in certain 

portions, quanta, and the quantum energy is proportional to the oscillation frequency 

 

 /0 hch  ,                                        (14.16) 

 

where h  is Planck's constant.  
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Since the radiation is emitted by quanta, the oscillator energy can only take 

certain discrete values, which are a multiple of the whole number of elementary 

portions of energy  

 

 nh .                                        (14.17) 

 

 In this case, the average energy  e  of the oscillator can not be taken equal to 

kT . The probability that the oscillator is in a state with an energy of 0  is 

proportional to  kTne / , but in calculating the average values (for discrete energy 

values) the integrals are replaced by sums. Under this condition, the average energy 

of the oscillator is  

 

  1/ 


kThехр

h




 ,                                        (14.18) 

 

and the spectral density of the energy luminosity of the blackbody is 

 

  1/

2
2

3

,



kThехрc

h
r T




 .                                        (14.19) 

 

 Thus, Planck derived a formula for the universal Kirchhoff’s function, which 

brilliantly agrees with the experimental data on the energy distribution in the 

blackbody radiation spectra in the entire frequency and temperature range.  

 In the low-frequency region, i.e. when kTh   (the quantum energy is very 

small in comparison with the thermal motion energy kT ), Planck's formula coincides 

with the Rayleigh-Jeans formula. From Planck's formula one can obtain the Stefan-

Boltzmann law and the Wien’s displacement law. 

 Thus, the Planck formula not only agrees well with the experimental data, but 

also contains the particular laws of thermal radiation, and also makes it possible to 

calculate constants in the laws of thermal radiation. Consequently, the Planck’s 

formula is a complete solution of the main problem of thermal radiation, set by 

Kirchhoff.  

 The laws of thermal radiation are used to measure the temperature of 

incandescent and self-luminous bodies (for example, stars). Methods for measuring 

high temperatures using the dependence of the spectral density of the energy 

luminosity or the integral energy luminosity of bodies on temperature are called 

optical pyrometry. 

 

14.4. Optical Pyrometry 

 

 Instruments for measuring the temperature of heated bodies by the intensity of 

their thermal radiation in the optical range of the spectrum are called pyrometers. 
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Depending on the law of thermal radiation used to measure the temperature of bodies, 

distinguish radiation, colour and brightness temperatures.  

 Radiation temperature is the temperature of a black body, at which its energy 

luminosity eR  is equal to the energy luminosity of the TR . In this case, the energy 

luminosity of  body is recorded and, according to the Stefan-Boltzmann law, its 

radiation temperature is calculated 

 

4 /Tr RT  .                                        (14.20) 

 

 The radiation temperature rT  of a body is always less than its true temperature 

T . Let’s consider the gray body. Then we can write 

 
4TARAR TeT

c
T  .                                    (14.21) 

On the other hand,  

 
4

r
c

T TR  .                                          (14.22) 

 

From a comparison of these expressions it follows that 

 

TAT Tr
4 .                                        (14.23) 

Since 1TA , then  

 

TTr  ,                                           (14.24) 

 

i.e. the true temperature of the body is always higher than the radiation temperature. 

 The spectral density of energy luminosity for gray bodies (or bodies close to 

them in terms of properties) is  

 

TTT RAR ,,   ,                                  (14.25) 

 

where 1 constAT . Consequently, the energy distribution in the emission spectrum 

of a gray body is the same as in the spectrum of a black body having the same 

temperature. Therefore, the Wien’s displacement law applies to gray bodies, that is, 

knowing the wavelength max corresponding to the maximum spectral density of the 

energy luminosity R,T of the body, one can determine its temperature  

 

max/bTC  .                                        (14.26) 

 

This temperature is called the colour temperature. For gray bodies, the colour 

temperature coincides with the true one. For bodies that are very different from gray 

(for example, having selective absorption), the concept of colour temperature loses its 
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meaning. In this way, the temperature at the surface of the sun ( KTC 6500 ) and the 

stars is determined.  

 The brightness temperature bT  is the temperature of a blackbody, at which, for 

a certain wavelength, its spectral density of energy luminosity is equal to the spectral 

density of the energy luminosity of the body: TT Rr
b ,,   , where T  is the true 

temperature of the body. According to Kirchhoff's law we get 

 

TTT rAR ,,, /    or TTT rrA
b ,,, /   .                             (14.27) 

 

Since for non-black bodies 1A , then TT rr
b ,,    and, therefore,  

 

TTb  ,                                             (14.28) 

 

i.e. the true temperature of the body is always higher than the brightness temperature. 

 

14.5. Photoelectric Effect 

 

 Planck's hypothesis, which solved the problem of the thermal radiation of a 

black body, was confirmed and further developed in explaining the photoelectric 

effect. The discovery and study of the photoelectric effect played an important role in 

the development of quantum theory.  

 An external photoelectric effect (photoelectric effect) is the emission of 

electrons by matter under the action of electromagnetic radiation. The external 

photoelectric effect is observed in solids (metals, semiconductors, dielectrics), as well 

as in gases on individual atoms and molecules (photoionization).  

 The first fundamental studies of the photoelectric effect were performed by 

Russian physicist Alexander Stoletov (1839–1896). The basic scheme for 

investigating the photoelectric effect is shown in Figure 14.3.  
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Figure 14.3. Photoelectric effect experiment. 
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Two electrodes (metal cathode K  and a metal mesh anode A ) are connected to 

the battery in a vacuum tube so that not only the value, but also the sign of the 

voltage applied to them can be changed with the help of the potentiometer R . The 

current that occurs when the cathode is illuminated by monochromatic light (through 

a quartz window) is measured by an ammeter.  

 By irradiating the cathode with light of different wavelengths, Stoletov 

established the following regularities: 1) ultraviolet radiation has the most effective 

effect; 2) under the influence of light the substance loses only negative charges; 3) 

the intensity of the current produced by the action of light is directly proportional to 

light intensity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The internal photoelectric effect is the electron-induced transitions of electrons 

inside a semiconductor or dielectric from bound states to free ones without outward 

emission. As a result, the concentration of carriers in the body increases, which leads 

to the appearance of photoconductivity (an increase in the electrical conductivity of 

the semiconductor or dielectric in its illumination) or to the formation of EMF. 

 A barrier-layer photoelectric effect is the emergence of EMF (photo-EMF) 

under illumination of a contact between two different semiconductors or a 

semiconductor and a metal (in the absence of an external electric field). The barrier-

layer photoelectric effect thus opens the way for direct conversion of solar energy 

into electrical energy.  

The current-voltage characteristic is the dependence of the photocurrent I  

(formed by the flux of electrons emitted by the cathode under the action of light) on 

the voltage between the electrodes. The maximum current value, i.e. the saturation 

photocurrent is determined by a value of SI  at which all the electrons emitted by the 

cathode reach the anode 

 

enI S  ,                                                   (14.29) 
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Figure 14.4. The photocurrent current-voltage characteristic. 
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where n  is the number of electrons emitted by the cathode in 1 s. In order for the 

photocurrent to become equal to zero, it is necessary to apply a holding voltage of 0U  

(Figure 14.4). 

 Einstein showed that the phenomenon of the photoelectric effect and its 

regularities can be explained on the basis of the quantum theory of the photoelectric 

effect proposed by him. According to Einstein, light with frequency   is not only 

emitted, as Planck suggested, but also spreads in space and is absorbed by matter in 

separate portions (quanta), whose energy is  

 

 h0 .                                                  (14.30) 

 

These quanta of electromagnetic radiation are called photons.  

 The energy of the incident photon is expended on the work A  of the electron to 

work out of the metal and to transfer kinetic energy 2/max
2m  to the photoelectron. 

According to the law of conservation of energy 

 

2/max
2 mAh  .                                        (14.31) 

 

This equation is called the Einstein equation for the external photoelectric 

effect. The Einstein equation allows us to explain the experimental laws of the 

photoelectric effect.  

  

Test questions 

 

21. Point out the differences between thermal radiation and luminescence. 

22. Describe the change in the spectrum of radiation during the transition to higher 

temperatures. 

23. Can we talk about the equilibrium states with luminescent radiation? 

24. Give the definition of the spectral density of the body's energy luminosity 

(emissivity). 

25. Write the expression for the spectral density of the body's energy luminosity as 

a function of wavelength and as a function of frequency. 

26. Calculate the integral energy luminosity (integral radiation). 

27. What physical quantity expresses the body's ability to absorb radiation incident 

on it? 

28. Specify the units of the spectral absorption capacity. 

29. What parameters affect the integral energy luminosity and spectral absorption 

capacity? 

30. Give the definition of the black body. 

31. Consider the ideal model of a black body. 

32. Does the spectral absorption capacity of a gray body depend on the frequency 

of the incident radiation? 

33. Formulate the Kirchhoff's law. 
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34. Does the body emit the electromagnetic waves in the case then spectral 

absorption capacity is zero? 

35. Formulate the Stefan-Boltzmann law. 

36. Indicate the characteristic features of the distribution of energy in the black 

body emission spectrum. 

37. Formulate the Wien’s displacement law. 

38. Describe Planck’s quantum hypothesis. 

39. Write down the Planck’s formula for the spectral density of the energy 

luminosity of the blackbody. 

40. Analyze the Einstein equation for the external photoelectric effect in terms of 

energy balance. 

 

Problem-solving examples 
 

Problem 14.1  

 

Problem description. Determine the maximum spectral density of the energy 

luminosity, calculated at 1 nm in the emission spectrum of an absolutely black body. 

Body temperature is 1 K. 

 

Known quantities: KT 1 ; nmm 1 . 

 

Quantities to be calculated: Tmr , . 

 

Problem solution. According to the Wien’s displacement law 

 

bTm  ,                                               (14.1.1) 

 

where m  is the wavelength corresponding to the maximum spectral density of the 

absolutely black body radiant exitance;  

           T  is an absolutely black body temperature;  

           b  is the Wien’s displacement constant.  

Taking into account the numerical data of the problem, for the temperature we 

obtain 

 

K
b

T
m

6109.2 


.                                   (14.1.2) 

According to Kirchhoff's law 

 

 Tf
a

r

T

T
,

,

,





 ,                                       (14.1.3) 

 

where T,r  is the spectral density of the energy luminosity; 
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          T,a  is the absorption capacity of an absolutely black body ( 1, Ta ); 

           Tf ,  is the Kirchhoff’s function.  

Consequently  

 

   Tfr mT ,
max,   .                                      (14.1.4) 

 

The Planck formula we can write in the form 

 

 

1
2

exp

14
,

5

22











m

m

kT

c

c
Tf











,                                 (14.1.5) 

where   is Planck's constant with the dash;  

           c  is the speed of light in a vacuum;  

           k  is the Boltzmann constant.  

 Substituting the numerical data of the problem, we get  

 

  327

max, /1026.3 mWr T  .                                (14.1.6) 

 

Answer. The maximum spectral density of the energy luminosity calculated for 1 nm 

in the emission spectrum of an absolutely black body is 

  327

max, /1026.3 mWr T  . 

 

Problem 14.2  

 

Problem description. Determine the temperature and energy luminosity (radiance) of 

an absolutely black body, if the maximum radiation energy falls at a wavelength of 

600 nm. 

 

Known quantities: nm600 . 

 

Quantities to be calculated: T , TR . 

 

Problem solution. The radiation intensity is 

 

S

P
RT  ,                                               (14.2.1) 

 

where P  is power, i.e. the radiation energy for 1 s; 

           S  is the surface through which energy passes.  

The energy emitted in 1 second per unit of the surface of an absolutely black 

body is determined by the Stefan-Boltzmann formula 
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4TRT  ,                                               (14.2.2) 

 

where T  is thermodynamic temperature;  

            is the Stephen – Boltzmann constant.  

Thermodynamic temperature can be found from the Wien’s displacement law 

 

T

C1 ,                                               (14.2.3) 

 

where 1C  is the first Wien’s displacement constant.  

Then  

 


1C

T  .                                               (14.2.4) 

In this case, we can write 

 
4

14










T

C
TRT  .                                               (14.2.5) 

 

Substitute the numerical data  

 

КT 4833 ;  27 /101.3 mWRT  .                            (14.2.6) 

 

Answer. The temperature and energy luminosity of an absolutely black body are 

equal, respectively КT 4833  and 27 /101.3 mWRT  . 

 

Problem 14.3  

 

Problem description. Monochromatic light with a wavelength of 0.12 μm is incident 

on the metal surface. The red border of the photoelectric effect is 0.34 μm. What 

fraction of photon energy is expended to impart kinetic energy to an electron? 

 

Known quantities: m 34.00  ; m 12.0 . 

 

Quantities to be calculated: /mT . 

 

Problem solution. Einstein's equation for the external photoelectric effect has the 

form 

 

2

2

m
m

m
ATAh


  ,                           (14.3.1) 
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where 



hc

h   is photon energy; 

             is the photon frequency;  

             is the photon wavelength; 

           c   is the speed of light in a vacuum; 

          A   is the photoelectron work function; 

           m  is the electron mass; 

           m is the electron maximum velocity.  

The maximum kinetic energy of an electron is 

 

ATm   .                                    (14.3.2) 

For the case of 0 , we get 

 

Ah 0 ,                                        (14.3.3) 

 

where 0  is the red border of the photoelectric effect.  

The red border of the photoelectric effect is 

 

0

0



c

 ,                                        (14.3.4) 

then 

0

hc
A  .                                                  (14.3.5) 

Finally 

0

0 111





































hc

hc

AATm .                  (14.3.6) 

Substitute numeric data  

 

647.0

mT

.                                        (14.3.7) 

 

Answer. The fraction of photon energy is expended to impart kinetic energy to an 

electron is 647.0

mT

. 

Problems 
 

Problem A  

Problem description. A muffle furnace consumes a power equal to kWP 1 . The 

temperature of its inner surface with an open hole is kKТ 2.2 . The hole area is 
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215 cmS  . Assuming that the furnace hole radiates as a completely black body, 

determine what part   of the power is dissipated by the walls. 

 

Answer. 71.0 . 

 

Problem B  

 

Problem description. The thermodynamic temperature of the black body has doubled. 

In this case, the wavelength decreased by nm400 . This length corresponds to 

the maximum of the spectral density of the radiance. Calculate the initial temperature 

1Т  and the final temperature 2Т . 

 

Answer. KT 3
1 1062.3  , KT 3

2 1024.7  . 

 

Problem C  

 

Problem description. The photo effect caused by irradiation with the ultraviolet 

spectrum of the platinum plate stops at a retarding potential difference of VU 7.31  . 

For the case when the platinum plate is replaced with another plate, the retarding 

potential difference will have to be increased to VU 62  . Calculate the work output 

from the surface of this plate. 

 

Answer. JA 19104.6  . 

 

Problem D  

 

Problem description. The energy flow emitted by an electric lamp is WФЕ 600 . At 

a distance of mr 1  from the lamp, a round flat mirror with a diameter of cmd 2  

is located perpendicular to the incident beams. Assuming that the lamp's radiation is 

the same in all directions and that the mirror fully reflects the light incident on it, 

determine the force F  of light pressure on the mirror. 

 

Answer. NF 8101  . 

 

Problem E  

 

Problem description. A photon with a wavelength of pm1  scattered on a free 

electron at an angle of 90 . Calculate what percentage   of its energy the photon 

transferred to the electron? 

 

Answer. %70 . 
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CHAPTER 15. QUANTUM MECHANICS 
 

15.1. de Broglie’s Hypothesis 

 

 French physicist Louis Victor Pierre Raymond de Broglie (1892–1987), 

realizing the symmetry existing in nature and developing ideas about the dual 

corpuscular-wave nature of light, put forward the hypothesis of the universality of 

corpuscular-wave dualism. de Broglie argued that not only photons, but also 

electrons and any other particles of matter have wave properties.  

 Each micro object can be correlated with corpuscular characteristics: energy E  

and momentum P , and wave characteristics: frequency   and wavelength  . The 

quantitative relationships connecting the particle and wave properties of particles are 

the same as for photons (de Broglie equations):  

 

hE  , 

/hP  .                                                  (15.1) 

 

Thus, a particle with momentum is associated with a wavelength determined by 

the de Broglie formula:  

 

Ph / .                                                  (15.2) 

 

This relation is valid for any particle with momentum P . 

 Let us consider a particle of mass m  moving freely with velocity  . We 

calculate the phase and group velocities for this particle. The phase velocity is  

 






22 c

m

mc

P

E

kk
ph 




 ( hE   and khP  ),         (15.3)    

                                            

 where  /2k  is the wave number.  

Since c , the phase velocity of de Broglie waves is greater than the speed of 

light in vacuum (the phase velocity of the waves can be either smaller or larger than 

с , in contrast to the group velocity of the waves). The group velocity is  

 

 
  dP

dE

kd

d

dk

d
u 




.                                 (15.4) 

 For free particle  

 

2242 cPcmE                                             (15.5) 

 

 and  








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22

2242
0

2
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E
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cPcm

Pc

dP

dE
.                           (15.6) 
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 Consequently, the group velocity of the de Broglie waves is equal to the 

velocity of the particle. 

The group velocity of the photon is cu  , that is, it is equal to the speed of the 

photon itself. 

 According to the dual corpuscular-wave nature of the particles of matter, for 

the description of micro particles, wave and corpuscular representations are used. 

Therefore, it is impossible to ascribe to them all the properties of particles and all the 

properties of waves. Naturally, it is necessary to introduce some restrictions in the 

application to the objects of the micro world of the concepts of classical mechanics. 

 

15.2. Uncertainty Principle 

 

 According to the postulates of classical mechanics every particle moves along 

a definite trajectory, so that its coordinate and impulse are accurately fixed at any 

time. However, all micro particles, because of their wave properties, differ 

significantly from classical particles. One of the main differences is that one can not 

talk about the movement of a micro particle along a certain trajectory and it is wrong 

to speak of simultaneous exact values of its coordinate and momentum. This follows 

from the corpuscular-wave dualism. Thus, the concept of "wavelength at a given 

point" is devoid of physical meaning, and since the pulse is expressed in terms of the 

wavelength, it follows that the micro particle with a certain momentum has a 

completely undefined coordinate. Conversely, if the micro particle is in a state with 

the exact value of the coordinate, then its momentum is completely undefined.  

 German physicist Werner Karl Heisenberg (1901–1976), taking into account 

the wave properties of micro particles and the constraints related to wave properties 

in their behaviour, came to the conclusion that the object of the micro world can not 

be characterized simultaneously with any pre-determined accuracy by both the 

coordinate and the momentum. According to the Heisenberg uncertainty relations, a 

micro particle (micro object) can not have both a definite coordinate ( ZYX ,, ), and a 

certain corresponding projection of the momentum ( ZYX PPP ,, ), and the uncertainties 

of these quantities satisfy the conditions  

 

hPХ Х  , 

hPY Y  ,   

hPZ Z  ;                                                (15.7) 

 

that is, the product of the uncertainties of the coordinate and the corresponding 

momentum projection can not be less than a quantity of the order of h . 

 It follows from the uncertainty relations that, for example, if the micro particle 

is in a state with the exact value of the coordinate ( 0Х ), then in this state the 

corresponding projection of its momentum is completely indeterminate (  ХP ), 

and vice versa. Thus, for a micro particle, there are no states in which its coordinates 

and momentum have simultaneously exact values. This implies the fact that it is 
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impossible at the same time to measure the coordinate and momentum of the micro 

object simultaneously with any given accuracy.  

 In quantum theory, the uncertainty relation for energy E  and time t  is also 

considered, that is, the uncertainties of these quantities satisfy condition htE  . 

The value E  is the uncertainty of the energy of the system at the time of its 

measurement, and the value t  is the uncertainty of the duration of the measurement 

process. Consequently, a system having an average lifetime t  can not be 

characterized by a certain value of energy; the energy spread thE  /  increases 

with decreasing average life time. From the last expression it follows that the 

frequency  of the emitted photon must also have an uncertainty hE / , i.e. the 

spectral lines should be characterized by a frequency equal to hE / . The 

experience does show that all the spectral lines are blurred. Measuring the width of 

the spectral line, we can estimate the order of the time of existence of the atom in the 

excited state.  

 Theories based on de Broglie's idea led to a new stage in the development of 

quantum theory - the creation of quantum mechanics, describing the laws of motion 

and interaction of micro particles with regard to their wave properties.  

 At this stage of development, new fundamental problems arose, in particular 

the problem of the physical nature of the de Broglie waves. To clarify this problem, 

let us compare the diffraction of light waves and micro particles. The diffraction 

pattern observed for light waves is characterized by the fact that as a result of 

superposition of diffracting waves on each other at different points of space, 

amplification or weakening of the amplitude of oscillations occurs. According to the 

wave concept of the nature of light, the intensity of the diffraction pattern is 

proportional to the square of the light wave amplitud. According to the concepts of 

the photon theory, the intensity is determined by the number of photons falling at a 

given point of the diffraction pattern. Consequently, the number of photons at a given 

point in the diffraction pattern is given by the square of the amplitude of the light 

wave, while for one photon the square of the amplitude determines the probability of 

the photon falling into one or another point.  

 The diffraction pattern observed for micro particles is also characterized by a 

non-uniform distribution of the fluxes of micro particles scattered or reflected in 

different directions, in some directions a larger number of particles is observed than 

in others. The presence of maxima in the diffraction pattern from the point of view of 

the wave theory means that these directions correspond to the highest intensity of de 

Broglie waves. On the other hand, the de Broglie wave intensity is greater where 

there is a larger number of particles, that is, the de Broglie wave intensity at a given 

point in space determines the number of particles trapped at that point. Thus, the 

diffraction pattern for micro particles is a manifestation of a statistical (probabilistic) 

regularity, according to which particles fall into those places where the intensity of de 

Broglie waves is greatest.  
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15.3. Wave Function 

 

 The necessity of a probabilistic approach to the description of micro particles is 

the most important distinguishing feature of quantum theory. Can de Broglie waves 

be interpreted as the probability waves, that is, to consider that the probability of 

detecting a micro particle at different points in space varies according to the wave 

law? This interpretation of de Broglie waves is already incorrect. To eliminate these 

difficulties, German physicist Max Born (1882–1970) suggested that the wave law 

does not change the probability itself, but a quantity called the amplitude of the 

probability and denoted by  tZYХ ,,, . This quantity is also called the wave 

function (or   - function). The probability amplitude can be complex, and the 

probability W  is proportional to the square of its modulus: 

 

 2
,,,~ tZYХW   ( *

2
  ) ,                         (15.8) 

 

where *  is a function complex conjugate to  .  

Thus, the description of the state of a micro object with the help of a wave 

function has a statistical, probabilistic character: the square of the modulus of the 

wave function (the square of the modulus of the de Broglie wave amplitude) 

determines the probability of finding the particle at a time t  in the region with 

coordinates Х  and dХХ  , Y  and dYY  , Z  and dZZ  . So the state of micro 

particles is described in a fundamentally new way, namely, using the wave function, 

which is the main carrier of information about particle and wave properties. The 

probability of finding a particle in an element of volume dV  is  

 

dVdW
2

 .                                                  (15.9) 

The value of  

 

dVdW /
2
                                                   (15.10) 

 

(the square of the  -function modulus) has the meaning of the probability density, 

that is, it determines the probability of finding a particle in a unit volume in a 

neighbourhood of a point with coordinates ZYХ ,, . Thus, the physical meaning is not 

the  -function itself, but the square of its modulus 
2

 , which determines the 

intensity of the de Broglie waves.  

 The probability of finding a particle at a time t  in a finite volume V  is   

 

dVdWW

VV

2

   .                                       (15.11) 

 Since dV
2

  is defined as probability, it is necessary to normalize the wave 

function   so that the probability of a reliable event is converted to 1 if the volume 
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of  V  assumes an infinite volume of the whole space. This means that under this 

condition the particle must be somewhere in space. Consequently, the condition for 

the normalization of probabilities is  

 






1
2
dV ,                                                  (15.12) 

 

where the integral is computed over the entire infinite space, that is, in coordinates 

ZYХ ,,  from   to  .  

 

15.4. Schrodinger Equation 

 

 The statistical interpretation of de Broglie waves and the Heisenberg 

uncertainty relations led to the conclusion that the equation of motion in quantum 

mechanics describing the motion of micro particles in different force fields should be 

an equation from which the observed wave properties of the particles would follow. 

The basic equation should be an equation for the wave function  tZYХ ,,,  or more 

precisely, for the value of 
2

 , that determines the probability of finding a particle at 

time t  in a volume of dV , that is, in the region with coordinates Х  and dХХ  , Y  

and dYY  , Z  and dZZ  . Since the desired equation must take into account the 

wave properties of the particles, it must be a wave equation, similar to the equation 

describing electromagnetic waves. The basic equation of non relativistic quantum 

mechanics is formulated by Austrian physicist Erwin Rudolf Josef Schrödinger 

(1887–1961). 

The Schrodinger equation, like all the basic equations of physics (for example, 

Newton's equations in classical mechanics and Maxwell's equations for the 

electromagnetic field), is not deduced, but postulated. The correctness of this 

equation is confirmed by agreement with the experience of the results obtained with 

its help, which, in turn, gives it the character of the law of nature.  

The Schrodinger equation has the form 

 

 
t

itZYХU
m 





 


,,,

2

2

,                        (15.13) 

 

where  2/h  is reduced Planck’s constant,   

           m  is a particle mass,  

            is Laplace operator ( 222222 /// ZYХ   ), 

          i  is imaginary unit,  

           tZYХU ,,,  is the particle potential function,  

           tZYХ ,,,  is the particle wave function.  

The above equation is valid for any particle (with a spin equal to 0) moving 

with a small velocity (in comparison with the speed of light), i.e. with a velocity  
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c . It is supplemented by the conditions imposed on the wave function: 1) the 

wave function must be finite, single-valued and continuous; 2) the derivatives 

Х / , Y / , Z / , t /  must be continuous; 3) the function 
2

  must be 

integrable; in the simplest cases this condition reduces to the condition of 

normalization of probabilities.  

Equation  

 
t

itZYХU
m 





 


,,,

2

2

                             (15.14) 

 

is a general Schrödinger equation. It is also called time-dependent Schrödinger 

equation. For many physical phenomena occurring in the micro world, the 

Schrödinger equation can be simplified by eliminating the dependence of y  on time, 

in other words, to find the Schrödinger equation for stationary states, i.e. states with 

fixed values of energy. This is possible if the force field in which the particle moves 

is stationary, that is, the function  ZYХUU ,,  does not depend explicitly on time 

and has the meaning of potential energy. In this case, the solution of the Schrödinger 

equation can be represented as a product of two functions, one of which is a function 

of coordinates only and the other only of time, and the time dependence is expressed 

by a factor  

 
 hEtiti ee /  ,                                          (15.15) 

so that  

 

     hEtieZYХtZYХ /,,,,,  ,                        (15.16) 

 

where E  is the total particle energy, constant in the case of stationary field. 

Substituting the expression for  tZYХ ,,,  into the general Schrodinger 

expression, we can obtain equation  

 

  0
2

2
  UE

m


.                                (15.17) 

 

The last equation is called the time-independent Schrödinger equation. 

In this equation, the total energy E  of the particle enters as a parameter. In the 

theory of differential equations, it is proved that such equations have an infinite 

number of solutions. These solutions, having a physical meaning, are selected by 

imposing boundary conditions. The Schrödinger equation use the conditions for the 

regularity of the wave functions: the wave functions must be finite, single-valued and 

continuous along with their first derivatives. Thus, only those solutions that are 

expressed by regular functions   have real physical meaning. But regular solutions 

do not occur for any values of the parameter, but only for a certain set of them, 

characteristic of the given problem. These energy values are called energy 
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eigenvalues. Solutions, which correspond to the energy eigenvalues, are called 

eigenfunctions. The energy eigenvalues E  can form both a continuous and a discrete 

series. In the first case we speak of a continuous spectrum, in the second as a discrete 

spectrum. 

 

Test questions 

 

1. What corpuscular and wave characteristics can be correlated with each micro-

object? 

2. Write down the de Broglie equations. 

3. Specify the nature of the change in wavelength, which can be compared with 

the micro particle, for the case when the impulse of the micro particle 

increases. 

4. Specify the relationship between the phase velocity and the wave number. 

5. Is it possible that the value of the phase velocity will be greater than the 

velocity of light in a vacuum? 

6. Write down the differential ratio for group velocity. 

7. What is the value of the group velocity for a photon? 

8. Formulate the dual corpuscular-wave nature of the particles of matter. 

9. Is it true that both particles and micro particles move along a certain trajectory? 

10. Formulate the uncertainty relations. 

11.  Is it possible to simultaneously measure the coordinate and momentum of a 

particle with not very high accuracy? 

12. Write down the uncertainty relations for energy and time. 

13. Calculate the frequency uncertainty magnitude of a particle for the case of 

known value of the energy spread. 

14. Compare the results of diffraction of waves and micro particles. 

15. Formulate the Born hypothesis. 

16. Write down the relationship that determines the wave function. 

17. Formulate the physical meaning of the wave function. 

18. Is the statement true that the normalization condition holds for any part of the 

system volume? 

19. Write down the general Schrödinger equation. 

20. Give a definition of energy eigenvalues. 

 

Problem-solving examples 
 

Problem 15.1  

 

Problem description. Calculate the potential difference that an electron must pass in 

order for its de Broglie wavelength to be equal to its Compton wavelength. 

 

Known quantities: BC   . 

 

Quantities to be calculated: U . 
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Problem solution. The work performed by the electric field is numerically equal to 

the kinetic energy that the electron received after it passed the accelerating potential 

difference 

 

KEeU  ,                                         (15.1.1) 

where  e  is an electron charge, 

           U  is the potential difference, 

           KE  is the kinetic energy of an electron. 

 The kinetic energy of a relativistic electron can be found from the equation 

 

42222 cmcpEmc K  ,                        (15.1.2) 

 

where p  is relativistic momentum of the electron, 

           с  is speed of light in a vacuum, 

           m  is an electron mass. 

 Let us transform the previous equation and find the solution of the resulting 

quadratic equation 

 

02 2222
 cpEmcE KK , 

2242 44 cpcmD  , 

 mcpcmc
pcmcmc

EK 
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 222
2222

2

22
.    (15.1.3) 

                                      

 The Compton wavelength of an electron is 

 

mc
C




2
 ,                                       (15.1.4) 

where   is reduced Planck’s constant. 

 The de Broglie electron wavelength is 

 

p

h
B  .                                       (15.1.5) 

 Considering that 

 

p

h

mc


2
,                                       (15.1.6) 

 

we calculate the momentum of such an electron 

 

mcp  .                                         (15.1.7) 
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 Then 

 

     122 2222  mcmcmccmcpcmcEK .     (15.1.8)                                     

 

 Consequently, 

 

 
e

mc

e

E
U K 122 

 .                                       (15.1.9) 

 Substitute numeric data 

 

VU 5101.2  .                                       (15.1.10) 

 

Answer. The potential difference is equal to VU 5101.2  . 

 

Problem 15.2  

 

Problem description. The electron has a kinetic energy eVEK 4  and is localized in 

a region of size ml 1 . Calculate the relative uncertainty of electron velocity using 

the uncertainty relation. 

 

Known quantities: eVEK 4 , ml 1 . 

 

Quantities to be calculated: 
x

x




. 

 

Problem solution. Let us write the uncertainty relation 

 

 xpx                                            (15.2.1) 

 

or 

 xmx  ,                                           (15.2.2) 

where x  is the x-coordinate uncertainty, 

          xp  is the uncertainty of the projection of the momentum on the x-axis, 

          x  is the uncertainty of the velocity projection on the x-axis, 

           m  is an electron mass, 

             is reduced Planck’s constant. 

 We take into account that 

 

lx  ,                                           (15.2.3) 

where l  is the size of the area. 

 Then  
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~xlm  ,                                           (15.2.4) 

and 
 

lm
x


~ .                                           (15.2.5) 

 

 The velocity of an electron with a kinetic energy of KE  is equal to  

 

m

EK
x

2
 .                                           (15.2.6) 

 Hence 

 

KKx

x

mElE

m

lm 22
~









.                         (15.2.7) 

 Substitute numeric data 

 

0001.0~
x

x


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.                                           (15.2.8) 

Answer. The relative uncertainty of the electron velocity is 0001.0~
x

x




. 

Problem 15.3  

 

Problem description. Calculate the possible energy values of particle of mass m , 

which is in a spherically symmetric potential well   0rU  at 0rr   and   rU , 

for the case when the particle motion is described by a wave function  r  

depending only on r . 

 

Known quantities:   0rU  at 0rr  . 

 

Quantities to be calculated: E . 

 

Problem solution. Let us write time-independent Schrödinger equation for the region 

0rr   (   0rU ): 

0
2

2
  E

m


,                                         (15.3.1) 

 

where E  is the total energy of the system, 

            is the wave function, 

            is reduced Planck’s constant, 

          m  is a particle mass. 
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 Since the particle is in a spherically symmetric potential well, we will use the 

Laplace operator in spherical coordinates 
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rrrrr
,     (15.3.2)  

                          

where r  is the radial distance, 

           is the polar angle, 

           is the azimuthal angle. 

 According to the condition of the problem, the wave function depends only on 

the radius r and does not depend on the angular coordinates   and  . Therefore, we 

will use only the radial component of the Laplace operator 

 

rrr 







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2
2

.                                         (15.3.3) 

 

 Schrödinger equation takes the form 

 

0
22

22

2
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










E

m

rrr 
.                                         (15.3.4) 

 

 We introduce the notation 

 

2

2 2



mE
k  ,                                         (15.3.5) 

then 
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.                                         (15.3.6) 

 

 We use the substitution 

 

 
 
r

r
r


  ,                                         (15.3.7) 

then 

 


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                                         (15.3.8) 

and 
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Therefore, the Schrödinger equation takes the form 

 

0
112221 2

2322
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 Simplify the expression 

 

02

2

2








k

r
.                                (15.3.11) 

 

 We write the characteristic equation 022  k  and calculate its roots 
22 k , then ik1 ; ik2 . 

The solution of the equation is 

 

       kxiBAkxBABeAe
rr

sincos21 
 .     (15.3.12)    

                                      

 We use boundary conditions:     000  r , then     000   r  and 

    000  rrr  . 

 In this case, we can write that BA   and   0 iBA , hence 0sin 0 rk ,  

 

nrk 0  and 
22

0

22
2 2



mE

r

n
k 


.                         (15.3.13) 

This implies 

2
0

222

2mr

n
E


 .                               (15.3.14) 

 

Answer. The values of the particle energy are equal
2

0

222

2mr

n
E


 . 

 

Problems 
 

Problem A  

 

Problem description. Estimate how many times the de Broglie wavelength   of a 

particle is less than the uncertainty x  of its coordinate, which corresponds to the 

relative uncertainty of a pulse of 1%. 
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Answer. 160N . 

 

Problem B  

 

Problem description. Estimate the relative width  /  of the spectral line if the 

lifetime of an atom in the excited state ( s810 ) and the wavelength of the emitted 

photon ( m 6.0 ) are known. 

 

Answer. 8103/   . 

 

Problem C  

 

Problem description. An electron with a kinetic energy of eVEk 15  is in a metal 

particle with a diameter of md 1 . Assess the relative inaccuracy   with which 

the electron velocity can be determined. 

 

Answer. 410/   .  

 

Problem D  

 

Problem description. The electron is in an infinitely deep one-dimensional 

rectangular potential box of width L . Calculate the probability that an electron in an 

excited state ( 2n ) will be detected in the middle third of the box. 

 

Answer. 195.0P . 

 

Problem E  

 

Problem description. The monoenergetic flow of electrons ( eVE 100 ) falls on a 

low rectangular potential barrier of infinite width. Determine the height U  of the 

potential barrier if it is known that 4% of the electrons falling on the barrier are 

reflected. 

 

Answer. JU 1810896.8  . 
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CHAPTER 16. ATOMIC AND NUCLEAR PHYSICS 
 

16.1. Hydrogen Spectral Series 
 

 Investigations of the emission spectra of rarefied gases (that is, the emission 

spectra of individual atoms) have shown that each gas has a well-defined line 

spectrum consisting of separate spectral lines or groups of closely distributed lines. 

The most studied is the spectrum of the hydrogen atom. 

 Swiss physicist Johann Jacob Balmer (1825–1898) derived an empirical 

formula describing all the known spectral lines of the hydrogen atom in the visible 

region of the spectrum:  
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1
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
,  ...,4,3n ,                           (16.1) 

 

where 17101,1'  mR is the Rydberg constant.  

Since  /c , the Balmer formula can be written for the frequencies: 
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n
R , ...,4,3n  ,                           (16.2) 

 

where 1151029,3'  scRR  is also the Rydberg constant.  

 It follows from the above expressions that the spectral lines differing by 

different values of n  form a group or series of lines, called the Balmer series. As the 

n  increases, the lines of the series converge; the value n  determines the 

boundary of the series, to which a continuous spectrum adjoins the high-frequency 

side. Later on, several more series were found in the spectrum of the hydrogen atom. 

In the ultraviolet region of the spectrum is the Lyman series: 
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n
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 The series named after its discoverer U.S. physicist Theodore Lyman IV 

(1874–1954). German physicist Louis Carl Heinrich Friederich Paschen (1865–1947) 

derived an empirical formula describing spectrum in the infrared region of (Paschen 

series):  
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1

n
R ,    ...,6,5,4n ;                           (16.4) 

 

American physicist Frederick Summer  Brackett (1896–1988) derived an 

empirical formula describing spectrum in Brackett series  
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
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American physicist August Herman Pfund (1879–1949) derived an empirical 

formula describing spectrum in Pfund series  
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American physicist Curtis Judson Humphreys (1898–1986) derived an 

empirical formula describing spectrum in Humphreys series 
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 All the above series in the spectrum of the hydrogen atom can be described by 

a single formula, called the generalized Balmer formula:  

 






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


22

11

nm
R ,                                      (16.8) 

 

where m  has a constant value ( ...,3,2,1m ) in each given series, (defines a series), 

n  takes integer values starting at 1m  (determines the individual lines of this 

series). 

 The study of more complex spectra, namely the spectra of alkali metal vapors 

(for example, Li, Na, K) showed that they are represented by a set of irregularly 

arranged lines. Swedish physicist (Janne) Robert Rydberg (1854–1919) managed to 

divide them into three series, each of which is similar to the lines of the Balmer 

series. 

 The above serial formulas were chosen empirically and for a long time had no 

theoretical basis, although they were confirmed experimentally with very high 

accuracy.  

 

16.2. Bohr Atomic Model  

 

 The first attempt to build a qualitatively new, quantum theory of the atom was 

undertaken by Bohr. He set himself the goal of linking the empirical regularities of 

line spectra, the nuclear model of the Rutherford (derived by Ernest Rutherford, 1st 

Baron Rurherford of Nelson (1871–1937)) atom and the quantum character of 

radiation. Based on his theory, Bohr put two postulates (Bohr’s postulates).  

 The first postulate (the postulate of stationary states):  there are stationary (not 

changing with time) atom states without radiate. Stationary states of atom correspond 
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to stationary orbits along which electrons move. The motion of electrons along 

stationary orbits is not accompanied by the emission of electromagnetic waves. In the 

stationary state of an atom, an electron moving in a circular orbit should have discrete 

quantized values of the angular momentum satisfying condition  

 

nrm ne  ,  ...,3,2,1n ,                              (16.9) 

 

where em  is the electron mass,  

             is its velocity along the  orbit with number n  and radius тr ,  2/h . 

 The second postulate (frequency rule): in the transition of an electron from one 

stationary orbit to the other, one photon with an energy 

 

mn EEh                                        (16.10) 

 

equal to the energy difference of the corresponding stationary states ( nE  and mE , 

respectively, the energy of the stationary states of the atom before and after the 

radiation (absorption)) is emitted (absorbed)). A photon is emitted at nm EE   (the 

transition of an atom from a state with a higher energy to a state with a lower energy, 

i.e. the transition of an electron from a more distant orbit to a nearer one). The photon 

is absorbed at nm EE   (the transition of the atom to a state with higher energy, i.e. 

the transition of an electron to a more distant orbit from the nucleus). The set of 

possible discrete frequencies  

 

  hEE mn /                                  (16.11) 

 

of quantum transitions determines the line spectrum of the atom. 

 The postulates advanced by Bohr made it possible to calculate the spectrum of 

the hydrogen atom and hydrogen-like systems, i.e. systems consisting of a nucleus 

with a charge of Ze  and one electron (for example, He + ions, Li2 +), and also 

theoretically calculate the Rydberg constant. 

 Considering the motion of an electron in a hydrogen-like system with circular 

stationary orbits, it is possible, according to Bohr's theory, to obtain an expression for 

the radius of the n-th stationary orbit: 
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 ,                                       (16.12) 

where ...,3,2,1n   

 For the hydrogen atom ( 1Z ), the radius of the first orbit of an electron at 

1n , called the Bohr radius (a ), is  
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This corresponds to calculations based on the kinetic theory of gases. 

 Since the radii of stationary orbits can not be measured, to test the theory it is 

necessary to turn to such quantities that can be measured experimentally. Such a 

quantity is the energy produced and absorbed by the hydrogen atoms.  

 The total energy of an electron in a hydrogen-like system consists of its kinetic 

energy ( 2/2em ) and potential energy in the electrostatic field (  rZe 0
2 4/  ) of 

the nucleus. The total energy is 
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 Taking into account the values quantized for the radius of the n-th stationary 

orbit, we obtain that the electron energy can take only the following allowed discrete 

values:  

 

Figure 16.1. Hydrogen energy levels diagram. 
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,                            (16.15) 

 

where the minus sign means that the electron is in a bound state. 

It follows from the last formula that the energy states of an atom form a 

sequence of energy levels. The position of the levels depends on the value of n . 

Integer value n , which determines the energy levels of the atom, is called the 

principal quantum number. The energy state with 1n  is the main (normal) state. 

The states with 1n are excited.  

 The change in the integer values leads to the appearance of different energy 

levels for the hydrogen atom with Z = 1 (Figure 16.1). 

 The energy of the hydrogen atom increases with increasing n  (its negative 

value decreases) and the energy levels approach the boundary corresponding to the 

value of n . The hydrogen atom thus possesses a minimum energy 

( eVE 55.131  ) for n = 1 and a maximum (E1  = 0) for n  (when the electron 

is removed from the atom). Consequently, the value 0E  corresponds to ionization 

of the atom (emission of an electron from an atom).  

 According to the second postulate, when a hydrogen atom (Z = 1) passes from 

a stationary state n  with a higher energy to a stationary state with a lower energy, a 

quantum is emitted 
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In this case the frequency of the radiation is 
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where 
2

0
3

4

8 h

em
R e . 

According to Bohr's theory, quantitatively explaining the spectrum of the 

hydrogen atom, the spectral series correspond to the radiation produced as a result of 

the transition of an atom to a given state from excited states located above this.  

Bohr's theory considered the spectra of the hydrogen atom and hydrogen-like 

systems and calculated the frequencies of the spectral lines, but could not explain 

their intensity and answer the question: why are these or those transitions performed? 

A serious shortcoming of Bohr's theory was the impossibility of describing with its 

help the spectrum of the helium atom - one of the simplest atoms immediately 

following the hydrogen atom. 

 Rutherford, investigating 4-particles with energy of several megaelectron volts, 

which passed through thin gold films, came to the conclusion that the atom consists 
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of a positively charged nucleus and surrounding electrons. The atomic nucleus 

consists of elementary particles: protons and neutrons. Protons and neutrons are 

called nucleons. The total number of nucleons in an atomic nucleus is called the mass 

number A .  

 

16.3. Characteristics of Atomic Nucleus 

 

The atomic nucleus is characterized by the charge Ze , where e is the charge of 

the proton, Z  is the charge number of the nucleus equal to the number of protons in 

the nucleus and coinciding with the atomic number of the chemical element in the of 

Mendeleev’s periodic system of elements. The nucleus is denoted by the same 

symbol as the neutral atom: XA
Z , where X  is the symbol of the chemical element, Z 

is the atomic number (the number of protons in the nucleus), The value of A  is the 

mass number (the number of nucleons in the nucleus). Nuclei with the same Z, but 

different A  (i.e. with different neutron numbers ZAN  ) are called isotopes, and 

nuclei with the same A , but different Z  are called isobars.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The law of conservation of energy indicates that to divide the nucleus into 

constituent parts, it is necessary to expend the same amount of energy that is released 

during its formation. The energy that must be expended to split the nucleus into 

individual nucleons is called the nuclear binding energy, namely  

 

   2сmmZAZmE NnPb  ,                           (16.18) 

 

where Pm , nm , Nm  are, respectively, the masses of the proton, neutron, and nucleus.  

The quantity  
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  NnP mmZAZmm                               (16.19) 

 

is called the nuclear mass defect. Instead of the binding energy, the specific binding 

energy bE  is often considered, i.e. the binding energy per one nucleon. It 

characterizes the stability (strength) of atomic nuclei, that is, the larger the bE , the 

more stable the nucleus. The specific binding energy depends on the mass number A  

of the element (Figure 16.2). The most stable are the so-called magic nuclei, in which 

the number of protons or the number of neutrons is equal to one of the magic 

numbers: 2, 8, 20, 28, 50, 82, 126. The magic nuclei are particularly stable, in which 

the number of protons is magical, and number of neutrons (there are only five of 

these nuclei: He4
2 , O16

8 , Ca40
20 , Ca48

20 , Pb208
82 ). 

Researchers use the high-resolution devices and special sources of spectral 

excitation to detect the hyperfine structure of the spectral lines.  

The intrinsic angular momentum of the nucleus (the spin of the nucleus) is 

composed of the nucleon spins and the orbital angular momentum of the nucleons 

(momentum moments due to the motion of the nucleons inside the nucleus). Both 

these quantities are vectors, so the nuclear spin represents their vector sum. The spin 

of the nucleus is quantized according to the law 

 

 1 IIhLn ,                                    (16.20) 

 

where I  is the spin nuclear quantum number (it is often called simply the nuclear 

spin), which takes integer or half-integral values 0, 1/2, 1, 3/2, .... Nuclei with even A  

have integers I , and with odd A  have half-integral I .  

The atomic nucleus except the spin has a magnetic moment mnP . The magnetic 

moment of the nucleus is related to the nuclear spin by the relation  

 

nnmn LgP  ,                                      (16.21) 

 

where ng  is the proportionality coefficient, called the nuclear gyromagnetic ratio. 

 

16.4. Radioactive Decay 

 

Radioactive decay, or simply decay, is the natural radioactive transformation of 

nuclei, which occurs spontaneously. Nearly 90% of the 2500 known nuclides are 

radioactive [6]; they are not stable but decay into other nuclides.The theory of 

radioactive decay is based on the assumption that radioactive decay is a spontaneous 

process that obeys the laws of statistics. Since the individual radioactive nuclei decay 

independently of each other, we can assume that the number of nuclei dN  decaying 

on the average over a time interval from t  to dtt   is proportional to the time 

interval dt and the number N  of nondecaying nuclei at the time t :  

NdtdN  ,                                   (16.22) 
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where  is the radioactive decay constant. The minus sign indicates that the total 

number of radioactive nuclei decreases during the decay process. 

Dividing the variables and integrating, that is, 
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ln ,                                       (16.23) 

we get  

 

 tNN  exp0 ,                                   (16.24) 

 

where 0N   is the initial number of nondecayed nuclei at time 0t ,  

           N  is the number of nondecayed nuclei at time t .  

Last formula  expresses the radioactive decay law, according to which the 

number of undecomposed nuclei decreases exponentially with time. 

The intensity of the radioactive decay process is characterized by two values: 

the half-life 2/1T  and the mean lifetime t  of the radioactive nucleus. The half-life 

2/1T  is the time for which the initial number of radioactive nuclei decreases on 

average by half. Then, according to the law of radioactive decay 

 

 2/100 exp2/ TNN                               (16.25) 

and 




/693,0
2ln

2/1 T .                                (16.26) 

 

The total lifetime of the dN  nuclei is  

 

NtdtdNt  .                                     (16.27) 

Integrating this expression over all possible t  (i.e. from 0 to ) and dividing by 

the initial number of nuclei 0N , we obtain the mean lifetime of the radioactive 

nucleus 
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N

tt .          (16.28) 

 

Thus, the average lifetime   of a radioactive nucleus is the reciprocal of the 

constant of radioactive decay  . 
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The nuclide activity A   (nuclide is the general name of atomic nuclei, differing 

in the number of protons Z  and neutrons N ) in the radioactive source is the number 

of decays occurring with the nuclei of the sample in 1 s:  

 

N
dt

dN
A  .                                       (16.29) 

 

Radioactive decay occurs in accordance with the so-called radioactive 

displacement law of Fajans and Soddy, which make it possible to establish which 

nucleus arises from the decay of a given nucleus. Radioactive displacement law for 

-decay:  

 

HeYX A
Z

A
Z

4
2

4
2  

 .                                 (16.30) 

 

Radioactive displacement law for -decay: 

 

eYX A
Z

A
Z

0
11   ,                                (16.31) 

 

where XA
Z  is the nucleus before decay,  

           Y is the symbol of the nucleus after decay,  

            He4
2  this is the helium nucleus (-particle),  

            e0
1  is the symbolic designation of the electron (its charge is –1 and the mass 

number is zero). 

 

Test questions 

 

1. Is it possible to relate a continuous spectrum to the emission of gases? 

2. Write down the Balmer empirical formula. 

3. Formulate the concept of the Balmer series. 

4. Specify the nature of lines location of the Balmer series with increasing main 

quantum number. 

5. What formula determines the Lyman series? 

6. Specify the values of the main quantum number for the Humphrey series. 

7. Write down the generalized Balmer formula. 

8. Explain the physical meaning of the Rydberg constant. 

9. Formulate the first Bohr’s postulate. 

10. What physical quantity determines the value of the main quantum number? 

11. Formulate the second Bohr’s postulate. 

12. Specify the ratio between the energies of the atom stationary states at which 

radiation occurs. 

13. Write down the formula according to which the radius of the electron orbit is 

determined. 



 245 

14. Indicate factors affecting the value of the Bohr radius. 

15. Calculate the total energy of an electron in a hydrogen-like atom. 

16. What parameter determines the position of the atom energy levels? 

17. Specify the minimum value of the hydrogen atom energy. 

18. Write down the formula for the frequency of the emission of a hydrogen atom. 

19. Formulate the concept of binding energy. 

20. Analyze the radioactive decay law. 

 

Problem-solving examples 

 

Problem 16.1  

 

Problem description. The alpha particle counter, installed near the radioactive 

isotope, at the first measurement recorded 1400 particles per minute, and after a time 

t = 4 h, only 400 particles per minute. Determine the half-life of the isotope. 

 

Known quantities: hT 4 ; 1
1 min1400 N ; 1

2 min400 N . 

 

Quantities to be calculated: 2/1T . 

 

Problem solution. The activity of the radioactive substance is equal to  

 
teAA  0 ,                                    (16.1.1) 

 

where 0A  is the activity at the initial time;  

             is the radioactive decay constant;  

            t  is a time.  

For the radioactive decay constant we get 

 

2/1

2ln

T
 ,                                         (16.1.2) 

where 2/1T  is the half life.  

Then 
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from where 
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where t  is the time elapsed from the beginning of the decay to the moment of the 

first observation; and 

 

 
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The result of dividing the last two equations by each other 
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 Then the half-life is  

 

hT

A

A
T 2.2

ln

2ln

2

1

2/1 





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


 .                            (16.1.7) 

 

Answer. The half-life is hT 2.22/1  . 

 

Problem 16.2  

 

Problem description. How many times will change the period of rotation of an 

electron in a hydrogen atom, if during the transition to the unexcited state the atom 

emitted a photon with a wavelength of 97.5 nm? 

 

Known quantities: H , 1k ; nm5.97 . 

 

Quantities to be calculated: 12 /TT . 

 

Problem solution. The serial formula that determines the wavelength   of light 

emitted or absorbed by a hydrogen atom during the transition of an electron from one 

orbit to another, has the form  

 











22

111

nk
R


,                                         (16.2.1) 

 

where R  is Rydberg's constant;  

          k , n  are numbers of electronic levels.  

Then 
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In this case 

 

4n .                                       (16.2.3) 

Circulation period is  

 



 r
T

2
 ,                                   (16.2.4) 

where r  is the orbit radius; 

            – is the speed of an electron in orbit with number n .  

Radius of the orbit and the electron velocity are 
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and  
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e 1
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
  ,                                         (16.2.6) 

where h  is the Planck's constant;  

           0  is the electrical constant;  

           m  is an electron mass. 

  Rewrite the formula for the period of circulation 
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Therefore, the desired ratio of electron rotation periods is  

 

64433

3

3

1

2  n
k

n

T

T
,                             (16.2.8) 

 

therefore, the rotation period will increase 64 times. 

 

Answer. The rotation period will increase 64
1

2 
T

T
 times 

 

Problem 16.3  
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Problem description. Within what limits should the wavelength of monochromatic 

light lie, so that when hydrogen atoms are excited by quanta of this light, the radius 

of the electron orbit increases 16 times? 

 

Known quantities: H ; 16/ 0 rr . 

 

Quantities to be calculated:  . 

 

Problem solution. The serial formula that determines the wavelength of light emitted 

or absorbed by a hydrogen atom when an electron moves from one orbit to another 

has the form 


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






22

111

nk
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
,                                   (16.3.1) 

 

 where R  is Rydberg's constant;  

            k  and n  are numbers of electronic orbits;  

              is the wavelength of radiation or absorption.   

The radius of the Bohr orbit of the hydrogen atom 
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where  0r  is the Bohr radius;  

            0  is the electrical constant;  

            m  is the electron mass; 

            h   is the Planck's constant; 

            e  is an electron charge.  

For n  we get 
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from where  

 

4n .                                   (16.3.4) 

Then 
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hence 

 

m8
1 1075.9  .                                   (16.3.6) 
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This is the wavelength for the first boundary. The second boundary is 

determined from the condition that energy should not be enough to transfer to the 

fifth level. Consequently  

 

17

22
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10053.1
5

1

1
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from where 

 

m8
2 105.9  .                                   (16.3.8) 

 

Calculations show that the wavelength should be within  

 

nmnm 5.9795   .                                   (16.3.9) 

 

Answer. The wavelength should be within nmnm 5.9795   . 

 

Problems 
 

Problem A  

 

Problem description. Boron is a mixture of two isotopes with relative atomic masses 

of 013.101, rA  and 009.112, rA . Determine the mass fractions of the first ( 1 ) and 

second ( 2 ) isotopes in natural boron. The relative atomic mass of boron is 

811.10rA . 

 

Answer. 2.01  , 8.02  . 

 

Problem B  

 

Problem description. The nucleus of the cobalt isotope Co60
27  has ejected a negatively 

charged  -particle. Identify the nucleus that was formed as a result of this nuclear 

decay. 

 

Answer. Ni60
28 . 

 

Problem C  

 

Problem description. During the decay of radioactive polonium Po210 , helium He4  

was formed over time ht 1 , which under normal conditions took up a volume of 
35.89 cmV  . Determine the half-life 2/1T  of polonium. 
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Answer. sT 7
2/1 1019.1  . 

 

Problem D  

 

Problem description. The radioactive isotope Na22
11  emits gamma rays with an energy 

of MeV28.1 . Determine the energy W  emitted during time min5t  by the 

isotope of sodium, which has a mass of gm 5 . Note that the each decay is 

accompanied by the emission of one gamma photon with the specified energy. 

 

Answer. JW 41006.7  . 

 

Problem E  

 

Problem description. The binding energy of a nucleus consisting of two protons and 

one neutron is MeVWb 72.7 . Determine the mass am  of a neutral atom having this 

nucleus. 

 

Answer. kgma
2710008436.5  . 
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                                              APPENDICES 

 

                                                Table A1. SI prefixes 

Prefix Representation Prefix Representation 

Name Symbol Base 10 Name Symbol Base 10 

yotta Y 1024 deci d 10–1 

zeta Z 1021 centi c 10–2 

exa E 1018 milli m 10–3 

peta P 1015 micro   10–6 

tera T 1012 nano n 10–9 

giga G 109 pico p 10–12 

mega M 106 femto f 10–15 

kilo k 103 atto a 10–18 

hecto h 102 zepto z 10–21 

deca da 101 yocto y 10–24 

                          

                                                                                                         Table A2. SI base units       

Unit 

name 

Unit 

symbol 

Quantity 

name 
Definition 

1 2 3 4 

metre m length The distance traveled by light in vacuum 

in 1/299792458 second. 

kilogram kg mass 

The kilogram is defined by taking the 

fixed numerical value of the Plank 

constant h to be 6.6260701510–34 when 

expressed in the unit Js, which is equal 

to kgm2s–1 , where the metre and the 

second are defined in terms of c and Cs. 

second s time 

The second is define by taking the fixed 

numerical value of the caesium frequency 

Cs, the unperturbed ground-state 

hyperfine transition frequency of the 133C 

atom, to be  9192631770 when expressed 

in the unit Hz, which is equal to s–1. 
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1 2 3 4 

ampere A electric current 

The ampere is defined by taking the fixed 

numerical value of the elementary charge 

e to be 1.60217663410–19 when 

expressed in unit C, which is equal to 

As, where the second is defined in terms 

of Cs. 

kelvin K 
thermodynamic 

temperature 

The kelvin is defined by taking the fixed 

numerical value of the Boltzmann 

constant k to be 1.38064910–23 JK–1 

(J=kgm2s–2), given the definition of the 

kilogram, the metre, and the second. 

mole mol 
amount of 

substance 

The amount of substance of exactly 

6.022140761023 elementary entities. Thi 

number is the fixed numerical value of 

the Avogadro constant, NA, when 

expressed in the unit mol–1 and is called 

the Avogadro number. 

candela cd 
luminous 

intencity 

The luminous intensity, in a given 

direction, of a source that emits 

monochromatic radiation of frequency 

5.41014 hertz and that has a radiant 

intensity in that direction of 1/683 watt 

per steradian. 
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                            Table A3. SI derived units  

Unit name Unit symbol Quantity name 

hertz Hz frequency 

radian rad angle 

steradian sr solid angle 

newton N force, weight 

pascal Pa pressure, stress 

joule J energy, work, heat 

watt W power, radiant flux 

coulomb C electric charge 

volt V voltage, electromotive force 

farad F electrical capacitance 

ohm  electrical resistance, impedance 

siemens S electrical conductance 

weber Wb magnetic flux 

tesla T magnetic field strength 

henry H electrical inductance 

degree Celsius οC temperature relative to 273.15 K 

lumen lm luminous flux 

lux lx illuminance 

becquerel Bq radioactivity 

gray Gy absorbed dose 

sievert Sv equivalent dose 

katal kat catalytic activity 

                                                
 

                                                                                       Table A4. Greek alphabet 

 

Name Capital 
Lower-

case 
Name Capital 

Lower-

case 
Name Capital 

Lower-

case 

Alpha A  Iota I  Rho P  
Beta B  Kappa K  Sigma   
Gamma Г  Lambda   Tau T  
Delta   Mu M  Upsilon ϒ  
Epsilon E  Nu N  Phi Ф  
Zeta Z  Xi   Chi X  
Eta H  Omicron O  Psi   
Theta   Pi П  Omega   
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                                                                               Table A5. Physical constants 

  

Quantity Symbol Value 

Avogadro constant AN  6.0221415(10)×1023 mol–1  

Boltzmann constant k  1.3806505(24)×10–23 J / K 

Electric constant 0  8.854187817×10–12 F×m–1  

Faraday constant F  96485.3383(83) C×mol–1  

Fine-structure constant   7.297352568(24) ×10–3  

Gravitational constant G  6.6742(10)×10–11 N×m2 / kg2 

Magnetic constant 0  4×10–7 T×m /A (exact) 

Molar gas constant R  8.314472(15) J/(mol×K) 

Planck constant h  6.6260693(11)×10–34 J×s 

Rydberg constant HR  1.0973731568525(73)×107 m–1  

Stefan-Boltzmann constant   5.670400(40)×10–8 W×m–2×K–4  

Wien displacement law constant b  2.8977685(51)×10–3 m×K 

Atomic mass unit u  1.66053886(28)×10–27 kg 

Electron mass em  9.1093826(16)×10–31 kg 

Neutron mass nm  1.67492728(29)×10–27 kg 

Proton mass pm  1.67262171(29)×10–27 kg 

Elementary charge e  1.60217653(14)×10–19 C 

Speed of light in vacuum c  2.99792458×108 m /s 

Bohr magnetron B  9.27400949(80)×10–24 J/T 

Bohr radius 0a  5.291772108(18)×10–11 m 

Compton wavelength C  2.426310238(16)×10–12 m 

 

                                                                                    Table A6. Astronomical data 

 

Body Mass, kg 
Equatorial 

radius, m 

Perihelion/ 

Aphelion, 

m 

Sidereal 

period 

Orbital  

speed, 

km/s 

Sun 1.9981030  6.955108  2.51020 (*) 2.3108 y(*) 2.2102 (*) 

Moon 7.3421022  1.738106  (3.63/4.05)108  27.321661 d 1.002 

Mercury 3.3011023  2.440106  (4.60/6.98)1010  87.9691 d 47.362 

Venus 4.8671024  6.052106  (1.08/1.09)1011  224.698 d 35.02 

Earth 5.9731024  6.378106  (1.47/1.52)1011  365.256363004 d 29.783 

Mars 6.4171023  3.396106  (2.07/2.49)1011  686.971 d 24.007 

Jupiter 1.8981027  7.149107  (7.40/7.78)1011  11.862 y 13.07 

Saturn 5.6831026  6.027107  (1.35/1.51)1012  29.4571 y 9.68 

Uranus 8.6831025  2.556107  (2.75/3.00)1012  84.01 y 6.81 

Neptune 1.0241026  2.476107  (4.45/4.55)1012  164.79 y 5.4349 

 (Milky Way) 
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                                                                   Table A7. Periodic table of elements 

 

Name 
Sym-

bol 

Atomic 

number 

Standard 

atomic 

weight 

Name 
Sym- 

bol 

Atomic 

number 

Standard 

atomic weight 

1 2 3 4 5 6 7 8 

Actinium 89Ac 89 227 Hassium 108Hs 108 270 

Aluminium 13Al 13 26.9815384 Helium 2He 2 4.002602 

Americium 95Am 95 243 Holmium 67Ho 67 164.930328 

Antimony 51Sb 51 121.760 Hydrogen 1H 1 1.008 

Argon 18Ar 18 39.948 Indium 49In 49 114.818 

Arsenic 33As 33 74.921595 Iodine 53I 53 126.90447 

Astatine 85At 85 210 Iridium 77Ir 77 192.217 

Barium 56Ba 56 137.327 Iron 26Fe 26 55.845 

Berkelium 97Bk 97 247 Krypton 36Kr 36 83.798 

Beryllium 4Be 4 9.0121831 Lanthanum 57La 57 138.90547 

Bismuth 83Bi 83 208.98040 Lawrencium 103Lr 103 266 

Bohrium 107Bh 107 270 Lead 82Pb 82 207.2 

Boron 5B 5 10.81 Lithium 3Li 3 6.94 

Bromine 35Br 35 79.904 Livermorium 116Lv 116 293 

Cadmium 48Cd 48 112.414 Lutetium 71Lu 71 174.9668 

Calcium 20Ca 20 40.078 Magnesium 12Mg 12 24.305 

Californium 98Cf 98 251 Manganese 25Mn 25 54.938043 

Carbon 6C 6 12.011 Meitnerium 109Mt 109 278 

Caesium  55Cs 55 132.905452 Mendelevium 101Md 101 258 

Cerium 58Ce 58 140.116 Mercury 80Hg 80 200.592 

Chlorine 17Cl 17 35.45 Molybdenum 42Mo 42 95.95 

Chromium 24Cr 24 51.9961 Moscovium 115Mc 115 290 

Cobalt 27Co 27 58.933194 Neodymium 60Nd 60 144.242 

Copernicium 112Cn 112 285 Neon 10Ne 10 20.1797 

Copper 29Cu 29 63.546 Neptunium 93Np 93 237 

Curium 96Cm 96 247 Nickel 28Ni 28 58.6934 
Darmstadtium 110Ds 110 281 Nihonium 113Nh 113 286 

Dubnium 105Db 105 268 Niobium 41Nb 41 92.90637 

Dysprosium 66Dy 66 162.500 Nitrogen 7N 7 14.007 

Einsteinium 99Es 99 252 Nobelium 102No 102 259 

Erbium 68Er 68 167.259 Oganesson 118Og 118 294 

Europium 63Eu 63 151.964 Osmium 76Os 76 190.23 

Fermium 100Fm 100 257 Oxygen 8O 8 15.999 

Flerovium 114Fl 114 289 Palladium 46Pd 46 106.42 

Fluorine 9F 9 18.9984032 Phosphorus 15P 15 30.973761998 

Francium 87Fr 87 223 Platinum 78Pt 78 195.084 

Gadolinium 64Gd 64 157.25 Plutonium 94Pu 94 244 

Gallium 31Ga 31 69.723 Polonium 84Po 84 209 

Germanium 32Ge 32 72.630 Potassium 19K 19 39.0983 

Gold 79Au 79 196.966570 Praseodymium 59Pr 59 140.90766 

Hafnium 72Hf 72 178.49 Promethium 61Pm 61 145 



 257 

1 2 3 4 5 6 7 8 

Protactinium 91Pa 91 231.03588 Tantalum 73Ta 73 180.94788 

Radium 88Ra 88 226 Technetium 43Tc 43 98 

Radon 86Rn 86 222 Tellurium 52Te 52 127.60 

Rhenium 75Re 75 186.207 Tennessine 117Ts 117 294 

Rhodium 45Rh 45 102.90549 Terbium 65Tb 65 158.925354 

Roentgenuim 111Rg 111 282 Thallium 81Tl 81 204.38 

Rubidium 37Rb 37 85.4678 Thorium 90Th 90 232.0377 

Ruthenium 44Ru 44 101.07 Thulium 69Tm 69 168.934218 

Rutherfordium 104Rf 104 267 Tin 50Sn 50 118.710 

Samarium 62Sm 62 150.36 Titanium 22Ti 22 47.867 

Scandium 21Sc 21 44.955908 Tungsten 74W 74 183.84 

Seaborgium 106Sg 106 269 Uranium 92U 92 238.02891 

Selenium 34Se 34 78.971 Vanadium 23V 23 50.9415 

Silicon 14Si 14 28.085 Xenon 54Xe 54 131.293 

Silver 47Ag 47 107.8682 Ytterbium 70Yb 70 173.045 

Sodium 11Na 11 22.98976928 Yttrium 39Y 39 88.90584 

Strontium 38Sr 38 87.62 Zinc 30Zn 30 65.38 

Sulfur 16S 16 32.06 Zirconium 40Zr 40 91.224 

 

 

          Table A8. Relative permittivity of some materials at 20 C under 1 kHz 

 

Material r Material r Material r 

Vacuum 1 Ammonia 17  Paraffin 2.1 

Air 1.00058986 Methanol 30 Rochelle salt 10000 

PTFE/Teflon 2.1 Ethylene glycol 37 Porcelain 5.7 – 6.3 

Polyethylene/XLPE 3.4 Furfural 42 Ebonite 2.6 

Polystyrene 2.4 - 2.7 Glycerol 47 Wood, dry 2 - 6 

Carbon disulfide 2.6 Water 80.2 Turpentine 2.2 

Mylar 3.1 Hydrofluoric acid 83.6 Steatite 6 

Mica 3 - 6 Hydrazine 52.0 Slate 4 

Silicon dioxide 3.9 Formamide 84 Shellac 3.5 

Sapphire 8.9 – 11.1 Sulfuric acid 84 Paper, waxed 2.5 

Concrete 4.5 Hydrogen peroxide 60 Nylon 4.0 – 5.0 

Pyrex (glass) 4.7 Hydrocyanic acid 2.3 Nitrogen 1.00058 

Neoprene 6.7 Titanium dioxide 86 - 173 Marbe  8 

Rubber 7 Strontium titanate 310 Isoprene 2.1 

Diamond 5.5 - 10 Wax 7.8 Ice (-2 C) 3.2 

Salt 5.9 Germanium 16 Granite 7 - 9 

Graphite 10 - 15 Quartz 4.5 Caster oil 4.7 

Silicon 11.68 Kerosene 2.0 Calcium 3.0 

Silicon nitride  7 - 8 Silicon 12 Amber 2.8 – 2.9 
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                                                  Table A9. Relative permeability of some materials  

 

Material /0  Material /0 Material /0 
Air 1.00000037 Iron (99.8% pure) 5000 Permalloy 8000 

Aluminum 1.000022 Nanoperm 80000 Platinum 1.000265 

Bismuth 0.999834 Neodymium magnet 1.05 Sapphire 0.99999976 

Carbon  steel 100 Nickel 100 - 600 Teflon 1 

Cobalt-Iron 18000 Mu-metal 20000 Vacuum 1 

Cooper 0.999994 Electrical steel 4000 Water 0.999992 

Nickel-Zinc 16 - 640 Manganese steel 640 Wood 1.00000043 

Hydrogen 1 Concrete (dry) 1   

 

    Table A10.  Refractive indices of gases for  = 589 nm, P = 101325 Pa, t = 0 C 

 

Material n  Material n Material n 
Acetone 1.001090 Chlorine 1.000773 Methyl alcohol 1.000586 

Air 1.000292 Chloroform 1.001450 Methyl ether 1.000891 

Ammonia 1.000376 Ethyl alcohol 1.000878 Nitric oxide 1.000297 

Argon 1.000281 Ethyl ether 1.001533 Nitrogen 1.000298 

Benzene 1.001762 Helium 1.000035 Nitrous oxide 1.000516 

Bromine 1.001132 Hydrochloric acid 1.000447 Oxygen 1.000271 

Carbon dioxide 1.000449 Hydrogen 1.000132 Pentate 1.0001711 

Carbon disulphide 1.001481 Hydrogen sulphide 1.000634 Sulphur dioxide 1.000686 
Carbon monoxide 1.000338 Methane 1.000444 Water vapour 1.000256 

 

                 Table A11. Refractive indices of liquids for  = 589 nm, t = 20 C 

 

Liquid n Liquid n 

Water 1.333 Benzyl benzoate 1.568 

Paraldehyde 1.405 Aniline 1.586 

Carbon tetrachlorine 1.46 Quinoline 1.627 

Glycerol 1.47 Methylene iodine 1.737 

Liquid paraffin 1.48 Oil, paraffin 1.44 

Toluene 1.497 Oil, olive 1.46 

Benzene  1.501 Oil, turpentine 1.47 

Ethyl salicylate 1.523 Oil, cedar 1.516 

Chlorobenzene 1.525 Oil, cloves 1.532 

Methyl salicylate 1.538 Oil, cinnamon 1.601 

Ethyl cinnamate 1.559   
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        Table A12. Refractive indices of optical materials for  = 589.3 nm, t = 20 C 

 

Material n Material n 

Diamond 2.417 Ruby 1.76 

Garnet 1.74 – 1.89 Sugar 1.56 

Gelatin 1.525 Mica 1.56 – 1.60 

Rock salt 1.544 Quartz glass 1.458 

Quartz 1.544 Glass 1.48 – 1.53 

Corundum 1.769 Optical glass 1.47 – 2.04  

Ice (0 – 4 C) 1.310 Topaz 1.63 

Organic glass 1.485 – 1.500 Amber 1.532 

Polystyrene 1.592   

 

          Table A13. Refractive indices of calcite (Iceland Spar), t = 20 C 

 

, nm 
n 

, nm 
n 

O-ray E-ray O-ray E-ray 

200 1.90284 1.57649 1422 1.63590  

303 1.71959 1.51365 1497 1.63457 1.47744 

410 1.68014 1.49640 1609 1.63261  

508 1.66527 1.48956 1682 1.63127  

643 1.65504 1.48490 1749  1.47638 

706 1.65207 1.48353 1761 1.62974  

801 1.64869 1.48216 1849 1.62800  

905 1.64578 1.48098 1909  1.47573 

1042 1.64276 1.47985 1946 1.62602  

1159 1.64051 1.47910 2053 1.62372  

1229 1.63926 1.47870 2100  1.47492 

1307 1.63789 1.47831 2172 1.62099  

1396 1.63637 1.47789 3324  1.47392 

 

                Table A14. Photopic spectral luminous efficiency function V() 

 

, 
nm 

V() 
, 
nm 

V() 
, 
nm 

V() 
, 
nm 

V() 
, 
nm 

V() 

360 0.000004 450 0.038000 540 0.954000 620 0.381000 710 0.002091 

370 0.000012 460 0.060000 550 0.994950 630 0.265000 720 0.001047 

380 0.000039 470 0.090980 555 1.000000 640 0.175000 730 0.000520 

390 0.000120 480 0.139020 560 0.995000 650 0.107000 740 0.000249 

400 0.000396 490 0.208020 570 0.952000 660 0.061000 750 0.000120 

410 0.001210 500 0.323000 580 0.870000 670 0.032000 760 0.000060 

420 0.004000 510 0.503000 590 0.757000 680 0.017000 770 0.000030 

430 0.011600 520 0.710000 600 0.631000 690 0.008210 780 0.000015 

440 0.023000 530 0.862000 610 0.503000 700 0.004102 790 0.000007 

 

 



 260 

Table A15. Electron configurations of elements, I.  

 
El 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 

H 1                    

He 2                    

Li 2 1                   

Be 2 2                   

B 2 2 1                  

C 2 2 2                  

N 2 2 3                  

O 2 2 4                  

F 2 2 5                  

Ne 2 2 6                  

Na 2 2 6 1                 

Mg 2 2 6 2                 

Al 2 2 6 2 1                

Si 2 2 6 2 2                

P 2 2 6 2 3                

S 2 2 6 2 4                

Cl 2 2 6 2 5                

Ar 2 2 6 2 6                

K 2 2 6 2 6  1              

Ca 2 2 6 2 6  2              

Sc 2 2 6 2 6 1 2              

Ti 2 2 6 2 6 2 2              

V 2 2 6 2 6 3 2              

Cr 2 2 6 2 6 5 1              

Mn 2 2 6 2 6 5 2              

Fe 2 2 6 2 6 6 2              

Co 2 2 6 2 6 7 2              

Ni 2 2 6 2 6 8 2              

Cu 2 2 6 2 6 10 1              

Zn 2 2 6 2 6 10 2              

Ga 2 2 6 2 6 10 2 1             

Ge 2 2 6 2 6 10 2 2             

As 2 2 6 2 6 10 2 3             

Se 2 2 6 2 6 10 2 4             

Br 2 2 6 2 6 10 2 5             

Kr 2 2 6 2 6 10 2 6             

Rb 2 2 6 2 6 10 2 6   1          

Sr 2 2 6 2 6 10 2 6   2          

Y 2 2 6 2 6 10 2 6 1  2          

Zr 2 2 6 2 6 10 2 6 2  2          

Nb 2 2 6 2 6 10 2 6 4  1          

Mo 2 2 6 2 6 10 2 6 5  1          

Tc 2 2 6 2 6 10 2 6 5  2          

Ru 2 2 6 2 6 10 2 6 7  1          

Rh 2 2 6 2 6 10 2 6 8  1          

Pd 2 2 6 2 6 10 2 6 10            

Ag 2 2 6 2 6 10 2 6 10  1          

Cd 2 2 6 2 6 10 2 6 10  2          

In 2 2 6 2 6 10 2 6 10  2 1         

Sn 2 2 6 2 6 10 2 6 10  2 2         

Sb 2 2 6 2 6 10 2 6 10  2 3         

Te 2 2 6 2 6 10 2 6 10  2 4         

I 2 2 6 2 6 10 2 6 10  2 5         

Xe 2 2 6 2 6 10 2 6 10  2 6         
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     Table A15. Electron configurations of elements, II. 
 

El K L M 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 6h 7s 

Cs 2 8 18 2 6 10  2 6    1       

Ba 2 8 18 2 6 10  2 6    2       

La 2 8 18 2 6 10  2 6 1   2       

Ce 2 8 18 2 6 10 2 2 6    2       

Pr 2 8 18 2 6 10 3 2 6    2       

Nd 2 8 18 2 6 10 4 2 6    2       

Pm 2 8 18 2 6 10 5 2 6    2       

Sm 2 8 18 2 6 10 6 2 6    2       

Eu 2 8 18 2 6 10 7 2 6    2       

Gd 2 8 18 2 6 10 7 2 6 1   2       

Tb 2 8 18 2 6 10 9 2 6    2       

Dy 2 8 18 2 6 10 10 2 6    2       

Ho 2 8 18 2 6 10 11 2 6    2       

Er 2 8 18 2 6 10 12 2 6    2       

Tm 2 8 18 2 6 10 13 2 6    2       

Yb 2 8 18 2 6 10 14 2 6    2       

Lu 2 8 18 2 6 10 14 2 6 1   2       

Hf 2 8 18 2 6 10 14 2 6 2   2       

Ta 2 8 18 2 6 10 14 2 6 3   2       

W 2 8 18 2 6 10 14 2 6 4   2       

Re 2 8 18 2 6 10 14 2 6 5   2       

Os 2 8 18 2 6 10 14 2 6 6   2       

Ir 2 8 18 2 6 10 14 2 6 7   2       

Pt 2 8 18 2 6 10 14 2 6 9   1       

Au 2 8 18 2 6 10 14 2 6 10   1       

Hg 2 8 18 2 6 10 14 2 6 10   2       

Tl 2 8 18 2 6 10 14 2 6 10   2 1      

Pb 2 8 18 2 6 10 14 2 6 10   2 2      

Bi 2 8 18 2 6 10 14 2 6 10   2 3      

Po 2 8 18 2 6 10 14 2 6 10   2 4      

At 2 8 18 2 6 10 14 2 6 10   2 5      

Em 2 8 18 2 6 10 14 2 6 10   2 6      

Fr 2 8 18 2 6 10 14 2 6 10   2 6     1 

Ra 2 8 18 2 6 10 14 2 6 10   2 6     2 

Ac 2 8 18 2 6 10 14 2 6 10   2 6 1    2 

Th 2 8 18 2 6 10 14 2 6 10   2 6 2    2 

Pa 2 8 18 2 6 10 14 2 6 10 2  2 6 1    2 

U 2 8 18 2 6 10 14 2 6 10 3  2 6 1    2 

Np 2 8 18 2 6 10 14 2 6 10 4  2 6 1    2 

Pu 2 8 18 2 6 10 14 2 6 10 6  2 6     2 

Am 2 8 18 2 6 10 14 2 6 10 7  2 6     2 

Cm 2 8 18 2 6 10 14 2 6 10 7  2 6 1    2 

Bk 2 8 18 2 6 10 14 2 6 10 9  2 6     2 

Cf 2 8 18 2 6 10 14 2 6 10 10  2 6     2 

Es 2 8 18 2 6 10 14 2 6 10 11  2 6     2 

Fm 2 8 18 2 6 10 14 2 6 10 12  2 6     2 

Md 2 8 18 2 6 10 14 2 6 10 13  2 6     2 

No 2 8 18 2 6 10 14 2 6 10 14  2 6     2 

Lr 2 8 18 2 6 10 14 2 6 10 9  2 6 1    2 
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                                                    Table A16. List of radioactive isotopes by half-life 

 

Isotope T1/2 Isotope T1/2 Isotope T1/2 Isotope T1/2 
7H 2.3,10–23 s 19B 2.92,10–3 s 47Ca 3.92,105 s 87Rb 1.55,1018 s 
5H 8.0,10–23 s 22C 6.2,10–3 s 7Be 4.59,106 s 144Nd 7.2,1022 s 
10N 2.0,10–22 s 12Be 2.15,10–2 s 49V 2.9,107 s 113Cd 2.4,1023 s 
5He 7.6,10–22 s 24O 6.5,10–2 s 63Ni 3.16,109 s 180W 5.68,1025 s 
8C 2.0,10–21 s 20N 1.30,10–1 s 39Ar 8.5,109 s 82Se 3.1,1027 s 
9He 7.0,10–21 s 8Li 8.40,10–1 s 108Ag 1.32,1010 s 130Te 2.5,1028 s 
18B 2.6,10–8 s 289Fl 2.6, s 202Pb 1.66,1012 s 76Ge 5.7,1028 s 
254Rf 2.3,10–5 s 10C 19.29, s 60Fe 8.2,1013 s 128Te 6.94,1031 s 
254Fm 2.3,10–5 s 262Db 34, s 182Hf 2.8,1014 s   

264Hs 5.4,10–4 s 259No 3.5,103 s 244Pu 2.5,1015 s   

241Fm 7.3,10–4 s 160Er 3.73,104 s 40K 4.03,1016 s   

  

                                                  Table A17. Quarks 

 

Name Symbol Charge, e 
Mass, 

MeV/c2 
Spin 

up u +2/3 2.2 1/2 

down d –1/3 4.6 1/2 

charm c +2/3 1280 1/2 

strange s –1/3 96 1/2 

top t +2/3 173,10 1/2 

bottom b –1/3 4,18 1/2 

 

                                                          Table A18. Leptons and bosons 

 

Name Symbol Charge, e Mass, MeV/c2 Spin 

Leptons 

Electron e – –1 0.511 1/2 

Electron neutrino e 0 < 2.210–6 1/2 

Muon  – –1 105.7 1/2 

Muon neutrino  0 0.170 1/2 

Tau  – –1 1776,86 1/2 

Tau neutrino  0 <15.5 1/2 

Bosons 

Photon  0 0 1 

W boson W – –1 80.385, GeV/c2 1 

Z boson Z 0 91.1875, GeV/c2 1 

Gluon g 0 0 1 

Higgs boson H0 0 125.09, GeV/c2 0 
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electrostatics, 8 

energy eigenvalues, 233 

energy intensity, 145 
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external photoelectric effect, 218 

extraneous forces, 60 
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Fermat’s principle, 140 
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Gauss’s theorem, 16 
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magnetic field lines, 76 

magnetic hysteresis, 100 
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magnetic permeability, 77 

magnetic saturation, 99 

magnetic susceptibility, 96 
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main optical axis, 140 

Malus’ law, 185 

mass number, 245 

Maxwell's equations, 125 

monochromatic waves, 157 

 

natural light, 184 
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nonpolar molecules, 31 

normal dispersion, 199 

nuclear binding energy, 245 

nuclear gyromagnetic ratio, 246 

nuclear mass defect, 246 
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optical centre, 140 

optical path difference, 160 

optical path length, 160 

optical power, 142 

optical pyrometry, 217 

ordinary ray, 188 

orientation polarization, 32 

 

paramagnetic effect, 94 

paramagnetic, 94 

Paschen series, 240 

period of diffraction grating, 175 

Pfund series, 241 

photometry, 145 

photons, 220 

Planck constant, 92 

Planck postulate, 156 

plane of polarization, 184 

plane polarized light, 184 

polar molecules, 31 

polariser, 186 

polarization current, 123 

polarization, 31 

polarized light, 184 
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Poynting vector, 129 

precession, 93 

principal quantum number, 244 
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radiant flux, 145 
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radioactive decay constant, 247 

radioactive decay law, 247 

radioactive decay, 246 
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relative index of refraction, 140 
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resistance thermometer, 64 

resistivity, 62 

Rydberg constant, 240 

 

Schrodinger equation, 231 

Snell’s law, 136 

solitary conductor, 47 

specific thermal power, 65 

spectral absorption capacity, 212 

spherical aberration, 143 

spin, 92 

Stefan-Boltzmann law, 214 

Stokes’ theorem, 126 

superconductivity, 64 

superposition principle, 14 

surface charge density, 24 

 

temporal coherence, 158 

test charge, 10 

thermal radiation, 211 

thermistor, 64 

thermodynamic temperature, 63 

thin lens formula, 140 

time-dependent Schrödinger equation, 
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time-independent Schrödinger 
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total internal reflection, 138 

 

uncertainty relations, 228 
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voltage, 62 
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width of the interference fringe, 162 
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