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PREFACE 
 

Study guide “Physics course. Mechanics" is intended for students of higher 

educational institutions of specialty 192 "Construction and Civil Engineering". This 

study guide aims to provide an up-to-date and comprehensive coverage of the core 

curriculum in physics specified in the current Odessa State Academy of Civil 

Engineering and Architecture syllabus. 

The guide covers topics related to kinematics, dynamics of translational and 

rotational motion, oscillatory motion, and relativistic dynamics. It builds from 

concrete experiments to more abstract understanding. Elements of the study guide 

include the following: 

 fundamental concepts of physics 

 test questions 

 problem-solving examples 

 problems 

 appendices. 

The problem-solving examples at the end of each chapter are provided to 

clarify concepts and to guide students in the analytical approach to the solutions of 

problems. In order to unify conceptual, analytical and calculation skills within the 

learning process, the International System of Units is used in study guide.  

Most of the chapters are relatively independent, but some necessary 

background is established in certain key chapters.  

By the end of study guide “Physics course. Mechanics" students will be able 

to: 

 apply principles and concepts of physics to explain various phenomena 

 construct models and simulations to describe and explain natural 

phenomena 

 use mathematics as a precise method for showing relationships 

 solve problems by applying physics principles and laws 

 select and use appropriate technological instruments to collect data, 

 analyze data, check it for accuracy and construct reasonable conclusions 

 use precise scientific language in oral and written communication. 

Physics is the science that studies the simplest and, at the same time, the most 

general patterns of natural phenomena, the properties and structure of matter. The 

most simple forms of matter motion (mechanical, thermal, electromagnetic) are part 

of more complex movements (chemical and biological). Physics has common objects 

and research methods with other natural sciences, as a result of which the following 

areas of knowledge have emerged: physical chemistry, chemical physics, chemical 

thermodynamics, astrophysics, biophysics, geophysics.  

Mathematics is the basis of modern physics. The mathematical apparatus is 

widely used in the processing and generalization of experimental results. The 

electromagnetic field theory, statistical theory, thermodynamics, the theory of 

relativity, as well as quantum mechanics could not be developed without 

mathematics.  
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Physics is the basis of modern scientific and technological progress. The 

successful development of such areas of technology as: mechanical transport, 

electrical engineering, electronics, heat engineering, automation and remote control, 

construction equipment, modern technology, semiconductor and computing 

technology is strongly dependent on knowledge of physical laws and phenomena.  

Physics is of great importance in the development of all areas of the economy. 

This fact determines the place of the physics course in the curriculums of higher 

education, especially in the curriculums of higher technical educational institutions. 

Acquaintance with the main physical phenomena, their mechanisms, laws and 

practical application can be postulated as the goal of studying physics. Achieving this 

goal is the physical basis for the study of general technical and special disciplines. 

Proper understandings of the nature of physical phenomena are particularly important 

in the practice of engineering.  

Course of general physics refers to the experimental knowledge, and one of its 

main tasks is to represent knowledge as a result of observation, experiment, reflection 

and generalization of the experience. Therefore, in general, the course statement must 

be inductive. However, this does not preclude the use of the deductive method of 

presentation.  

The model nature of physical theories, various methods for determining 

physical quantities and concepts, features of measuring physical quantities, the 

correct choice of units of measurement and systems of units occupy a significant 

place in this study guide. 

It is well known that theoretical knowledge is useless without the ability to use 

it to solve practical problems. Therefore, the acquisition of problem solving skills is 

an integral part of studying the course of general physics. Currently, there are a 

sufficient number of collections of physical problems, but, unfortunately, there are 

practically no manuals intended for training in methods of solving problems. The 

material located at the end of each chapter of study guide is intended to remove the 

indicated disadvantage. This material is divided into three blocks. The first block 

contains test questions on the theoretical information that is present in the chapter. 

Examples of solving typical problems are included in the second block. The third 

block contains a number of problems for independent solution. These tasks are 

accompanied only by short answers. It is worth noting that in the theoretical part, the 

descriptions of experiments and in the methods of solving problems, the SI system is 

mainly used, which is convenient from a practical point of view. 

The appendices placed at the end of the textbook are, on the one hand, an 

illustrative addition to the laws and phenomena that are described in the physics 

course, and on the other hand, have a reference character necessary for successful 

problem solving. 
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CHAPTER 1. KINEMATICS AND DYNAMICS  

1.1. Types of Mechanics 

 

The most important assumptions of mechanics are the definition of 

measurement procedures, obtaining quantitative expressions of distances, directions 

in space and time intervals. Depending on the nature of the motion being studied and 

the necessary accuracy, various assumptions are made about the procedures and 

measurement possibilities. According to these assumptions, the basic concepts, laws, 

and methods for describing mechanical motion turn out to be different.  

Classical mechanics is used if the accuracy of studying the motion allows us to 

neglect the following values compared to unity: 

а) the value v2/c2 (where v is the average speed of motion, c is the speed of 

light in vacuum); 

b) the value φ/c2, (where φ is the average value of the gravitational field 

potential). 

In addition (case c), in classical mechanics, the product of an allowable error in 

measuring the speed of movement Δv  and an allowable error in measuring the 

coordinate Δr and mass of the body m are significantly larger than a certain constant 

h called the Planck constant. Max Karl Ernst Ludwig Planck (23.04.1858 –

 4.10.1947) introduced the concept of energy quanta and action quantum. 

If the first of these conditions is violated, the mechanics of the special theory 

of relativity (relativistic mechanics), are used. This condition is associated with a 

restriction on the speed of bodies, the description of the motion of which is possible 

in the language of classical physics. The speed of motion of bodies should be small 

compared with the speed of light in vacuum: с = 299792458 m/s. In our immediate 

environment, the largest of the velocities of macroscopic bodies encountered is the 

speed of the orbital motion of the center of mass of the Earth around the Sun, which 

varies from 29.29 km/s to 30.29 km/s. For parameter v2/c2, a change interval of 

9.5410–9 to 1.0210–8 is obtained.  

However, in the universe there are objects whose speed is comparable to the 

speed of light in a vacuum. For example, GN-z11 is a high-redshift galaxy found in 

the constellation Ursa Major. GN-z11 is currently the oldest and most distant known 

galaxy in the observable universe. This galaxy has helio radial velocity ~ 

295000 km/s. Therefore, for the parameter v2/c2 we get the value 0.969, and a 

relativistic approach is required to describe the motion of such celestial bodies. 

As an impressive example, one can cite the characteristics of the motion of a 

particle of cosmic radiation with the maximum recorded energy. Researchers, struck 

by the magnitude of the energy of this microparticle (about 3×1020 eV ≈ 50 J), gave it 

a name “Oh-My-God particle”. Assuming it was a proton, this particle traveled at 

99.99999999999999999999951 % of the speed of light. The Large Proton Collider is 

capable of accelerating protons at 99.9999991 % of the speed of light. Naturally, a 

https://ru.wikipedia.org/wiki/23_%D0%B0%D0%BF%D1%80%D0%B5%D0%BB%D1%8F
https://ru.wikipedia.org/wiki/23_%D0%B0%D0%BF%D1%80%D0%B5%D0%BB%D1%8F
https://ru.wikipedia.org/wiki/4_%D0%BE%D0%BA%D1%82%D1%8F%D0%B1%D1%80%D1%8F
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description of the motion of particles mentioned in the last two cases is not possible 

from the point of view of classical mechanics. 

If the first and second conditions are violated, the general theory of relativity is 

used, namely, Einstein's theory of gravitation. Albert Einstein (14.03.1879 – 

18.04.1955) predicted gravitational waves. The equations of the relativistic theory of 

gravity go over into the equations of classical mechanics and Newtonian theory of 

gravitation if the speeds acquired by bodies under the influence of gravity are small 

compared with the speed of light, i.e. while the gravitational energy of the body is a 

small part of the total energy (including the rest energy). In this case, the concept of a 

weak gravitational field is used. In the solar system, we are dealing only with weak 

gravity. Assuming that the gravitational potential is zero at an infinitely distant point, 

the gravitational potential on the surface of the Earth is φ/c2  710–10, and on the 

surface of the Sun, the gravitational potential is φ/c2  2.1210–6. In both cases, we 

can assume that the ratio φ/c2 << 1 is satisfied with sufficient accuracy. Therefore, in 

our time, all calculations in celestial mechanics and cosmic dynamics are based on 

the Newtonian theory of gravity, which uses the laws and relations of classical 

mechanics. 

If the third condition is violated, the system under study is described by 

quantum mechanics. This limit of applicability of the classical method of describing 

motion, associated with the particle-wave nature of matter, is mathematically 

expressed by uncertainty relations, first formulated by Heisenberg and underlying the 

modern quantum theory. Heisenberg's (Werner Karl Heisenberg (5.12.1901 – 

1.02.1976)) article “On the Visual Contents of Quantum Theoretical Kinematics and 

Mechanics” with a detailed exposition of the uncertainty principle was received by 

the editors of Zeitschrift für Physik on March 23, 1927. In accordance with the 

uncertainty relations, the particle cannot simultaneously have exact values of the 

coordinate and the corresponding projection of the momentum, namely, the product 

of the uncertainties satisfies the following relation 2/ xpx , (where   is the 

reduced Planck constant  ≈ 1.05457180010–34 J∙s). For macroscopic bodies (i.e., 

bodies consisting of a number of particles equal to the Avogadro number  

NA ≈ 6.0221407610–23 mol–1), the existing possibilities for measuring coordinates 

and momentum are such that the uncertainty relations do not impose restrictions on 

the applicability of the classical way of describing motion in which the state of 

particles is specified by indicating its coordinates and momentum. This possibility is 

associated with the small (on the scale of the macroscopic world) Planck constant.  

Moreover, in describing the motion of microparticles in many cases, classical 

mechanics can be used. For example, when electrons move in macroscopic vacuum 

electronic devices (such as accelerators, electro-optical converters, electron 

microscopes), the uncertainties in the coordinates and momentum of electrons, 

determined by the experimental conditions, are much larger than the limit values 

established by the uncertainty relations. The classical method does not describe the 

motion of an electron in an atom: if we take as the uncertainty of the coordinate a 

value of the order of the size of the atom, then the corresponding uncertainty in the 
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value of the speed of the electron, calculated from the uncertainty relation, turns out 

to be greater than the speed of the electron itself. 

The following theories have not been fully developed: relativistic quantum 

mechanics (violation of the first and third conditions) and relativistic quantum 

theory of gravitation (violation of all three conditions). 

Non-classical mechanics satisfy the compliance principle. This means that if in 

the fundamental law or in any other consequence of nonclassical mechanics, the 

values that are considered negligible in classical mechanics (v2/c2, φ/c2, h) tend to 

zero, then as a limit we obtain the corresponding laws and consequences of classical 

mechanics.  

Relativistic mechanics is used in calculations of elementary particle 

accelerators, and Einstein's theory of gravitation is used in some astrophysical 

studies. The laws of quantum mechanics form the basis of a variety of sciences that 

study the properties of matter and develop methods for their targeted change and use. 

Quantum mechanics is necessary in studying the structure of the atom and atomic 

nucleus, the structure and many important properties of solids and liquids, the 

properties of matter at low temperatures, and the issues of optics, spectroscopy, 

chemistry and materials science. 

Relativistic and quantum representations are more general in comparison with 

non-relativistic and classical (non-quantum) laws. The laws of non-relativistic 

mechanics follow from relativistic in the limit of low speeds, i.e. at v2/c2 << 1. This 

transition is carried out if in relativistic equations it is accepted that с  . The laws 

of classical motions are the limiting case of quantum motions at h  0. 

However, this does not mean that classical mechanics has lost its significance. 

In many cases, the actual changes introduced by the theory of relativity and quantum 

mechanics come down to small corrections to classical mechanics. These corrections 

are called, respectively, relativistic and quantum corrections. In the case of ordinary 

slow motions of macroscopic bodies, these corrections are so insignificant that, as a 

rule, they go far beyond the accuracy of the finest physical measurements.  

In addition, even the simplest problems on the motion of macroscopic bodies, 

which classical mechanics can easily cope with, would lead to insurmountable 

mathematical difficulties in trying to find their exact solutions in relativistic and 

quantum mechanics.  

Thus, classical mechanics has a very broad and practically important area of 

applicability. Within this area, it will never lose its scientific and practical 

significance. Refusal of classical mechanics is necessary only outside the field of its 

applicability, when it leads to incorrect or insufficiently accurate results.  

The laws of classical mechanics are the theoretical basis of many technical 

sciences (resistance of materials, technical mechanics, hydraulics, technical 

hydrodynamics, etc.), as well as celestial mechanics, which studies the motion of 

various celestial bodies, including stars, their clusters and interstellar gas.  

Three main sections are considered in classical mechanics: kinematics, 

dynamics, and statics.  
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Kinematics describes mechanical motion without considering the interaction of 

bodies and the force fields applied to them. Kinematics operates with concepts that 

characterize motion, makes basic assumptions about measuring quantities, establishes 

relationships between quantities describing motion, and classifies movements. 

Dynamics consider the effects of the interaction of bodies and the action of 

force fields on the characteristics of their mechanical motion, find out the causes of 

body motion in a certain way. In addition, dynamics operates with concepts that 

describe the properties of bodies and systems. These concepts are essential for the 

mechanical movement of systems.  The basic laws of dynamics establish a 

relationship between quantities, which are a quantitative measure of these properties, 

and the kinematic characteristics of motion. An important task of dynamics is the 

study of the fundamental and general consequences of the basic laws, namely, 

conservation laws.  

An important section of dynamics in terms of practical applications is statics. 

Statics studies the state of rest of bodies and systems that are under the influence of 

other bodies and force fields. Since the balance of bodies and systems is a special 

case of motion, the laws of statics are a natural consequence of the laws of dynamics. 

 

1.2. Basic Concepts of Mechanics  

 

A quantitative description of the mechanical motion of bodies is carried out 

using quantities characterizing space, time, as well as geometric and physical 

parameters of the bodies themselves. Consider the basic units of mechanical 

quantities. 

Length l is defined as the geometric distance between two points in space.  

In the International System of Units (SI), a meter is taken as a unit of length (m): 

[l] = m. According to the current definition, a meter (from the Greek noun 

“measure”) is the length of the path travelled by light in a vacuum over a time 

interval of 1/299792458 s. The characteristic sizes of objects that are found in nature 

are shown in Table 1.  

Table 1. Characteristic body sizes in nature 

Specification l, m 

Diameter of the whole observable universe 8.81026 

Milky Way’s diameter (1.421.89)1021 

Sun’s equatorial radius 6.957108 

Earth’s equatorial radius 6.378106 

Everest’s summit 8.848103 

Height of the moai Hoa Hakananai’a 2.42100 

Visible wavelength range of electromagnetic radiation (3.67.8)10-7 

12Mg covalent radius (1.41  0.07)10–10 

Compton wavelength of the electron 2.42610–12 
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Derivatives of length are area S and volume V. They characterize the regions 

of spaces of two and three dimensions occupied by extended bodies. The units of 

measurement of area and volume in SI are: [S] = m2,  [V] = m3. 

The time t between two events at a given point in space is defined as the 

difference between the readings of a device called a clock, which is based on a 

strictly periodic and uniform physical process. The unit of time in SI is indicated as 

second (s): [t] = s. The word “second” comes from the lat. secunda (in the expression 

secunda pars minuta "the next part of the minute"). By definition, a second is a time 

interval equal to 9192631770 periods of radiation corresponding to the transition 

between two ultrathin levels of the ground state of the cesium-133 atom, which is at 

rest at a temperature of 0 K in the absence of external fields. Typical time intervals 

are shown in Table 2. 

Table 2. Characteristic time intervals 

Specification t, s 

Age of the whole observable universe 4.341017 

Galactic year (7.107.89)1015 

Pluto’s orbital period 7.83109 

Earth’s orbital period 3.16107 

Day 8.64104 

Bat’s sonar signals period (2.51.0)10–5 

Ytterbium lattice clock period 1.9310–15 

 

Body mass m is a scalar physical quantity that determines the inertial and 

gravitational properties of bodies when their speed is much less than the speed of 

light in a vacuum. The unit of mass in SI is a kilogram (kg): [m] = kg. The word 

"kilogram" comes from the French word "kilogramme", which in turn was formed 

from the Greek words "χίλιοι" (chilioi), which means "thousand," and "γράμμα" 

(gram), which means "low weight". 

The definition of a kilogram is based on fixing the numerical value of the 

Planck constant h (h = 6.6260701510–34 J∙s): hvgfCfm 11
21

 . In this formula, 

the mass m is linearly related to the Planck constant h. In turn, parameters C, f1, f2, g, 

v are determined using the Kibble balance. Bryan Peter Kibble (1938 – 28.04.2016) 

invented the moving-coil watt balance in 1975. 

The characteristic body masses that are found in nature are shown in Table 3. 
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Table 3. Characteristic masses of objects 

Specification m, kg 

Mass of the whole observable universe 4.51051 

Milky Way’s mass (1.63.0)1042 

Sun’s mass 1.991030 

Jupiter’s mass 1.901027 

Halley’s Comet mass 2.21014 

Rosetta Stone’s mass 7.6102 

Nettle (Urtica dioica) pollen mass 7.710–13 

Water’s molecule mass  2.9910–23 

Electron rest mass 9.10910–31 

 

Any motion of the body can be divided into two main types: translational and 

rotational motion. Translational motion means a movement in which any straight 

line (axis) associated with a moving body remains parallel to itself. A movement in 

which all points of a body move in circles whose centres lie on the same straight line 

(axis of rotation) is called a rotational movement.  

A macroscopic body whose size can be neglected when describing its motion is 

called a material point. The question of whether a given body can be considered as a 

material point does not depend on the size of this body, but depends on the conditions 

of the problem being solved. For example, the radius of the Earth is much less than 

the distance from the Earth to the Sun and its orbital motion can be well described as 

the movement of a material point with a mass equal to the mass of the Earth and 

located in its centre. However, when considering the daily movement of the Earth 

around its own axis, replacing it with a material point does not make sense.  

The mechanics of the material point is the basis of all mechanics. Any 

macroscopic body can be represented as a set of interacting material points with 

masses equal to the masses of its parts. The study of the motion of these parts is 

reduced to the study of the motion of material points.  

A body or a set of motionless bodies relative to one another, with respect to 

which the spatial and temporal position of other bodies is determined, is called a 

reference frame. From the point of view of kinematics, all reference frames are 

equivalent. Kinematics does not allow to indicate the advantages of one reference 

system relative to another. The choice of a reference frame for solving kinematics 

problems is determined by considerations of expediency (convenience). 

The description of the space in which the movement of the material point is 

carried out is made by linking the spatial coordinate system with the reference 

system. The coordinate system is understood as a triple of linearly independent 

directed segments of straight lines (coordinate axes), leaving one point (reference 

point). In this case, the position of the material point M in space is determined by the 
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radius vector r


 drawn from the origin O of the coordinates to this point, and the 

movement is represented as the vector sum of independent movements along the 

three spatial axes of the selected coordinate system. In the Cartesian system, we have  

kzjyixr


 ,                                          (1.2.1) 

where i


, j


, k


  are unit vectors directed along the positive directions of the 

coordinate axes; x, y, z are the projection of the radius vector on these axes, which 

are expressed by numbers. 

René Descartes (31.031596 – 11.02.1650) (latinized name: Cartesius) invented 

Cartesian coordinates in the 17th century.  In a rectangular coordinate system 

10),(),(),(  kjiikkjji


,                (1.2.2) 

point M position is given by three numbers x, y, z: 

 zyxMM ,, .                                             (1.2.3) 

In a cylindrical coordinate system, the position of point M is specified by three 

other numbers ρ, φ, z 

 zMM ,,  

  zzxyzx  ,/arctan,22  ,  

 20,,sin,cos  zzyx               (1.2.4) 

In a spherical coordinate system, we have 

 zMM ,,  

x

y

z

yx
zyxr arctan,arctan,

22
222 


   

 cos,sincos,cossin rzryrx   

 20,0  .                            (1.2.5) 

An unambiguous determination of the position of point M in space is made by 

assuming that the radius vector r


 depends on parameter t, called time, so that one 

value t corresponds to one value of function: 

https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes
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       ktzjtyitxtrr


 .                         (1.2.6) 

Equality (1.1.6) is called the kinematic equation of motion of a point M 

written in vector form. 

The line along which the material point M moves is called the trajectory. The 

distance between two given points 1 and 2, counted along the path, is called a  

path Δs. A rectilinear directional segment (vector) drawn from start point 1 to end 

point 2 is called displacement 12r


 . The sum of two consecutive movements from 

point 1 to point 2 and from point 2 to point 3 is a movement from point 1 to point 3: 

132312 rrr


 .                                         (1.2.7) 

If the radius vector of the material point M at time t is  tr


, and at time 

t + Δt is  ttr 


, then the displacement r


  of this point over time interval Δt is 

   trttrr


 .                                     (1.2.8) 

Moving r


  is a function of time t: 

 trr


 .                                             (1.2.9) 

In the general case, the trajectory of a material point is a curved line. In 

addition to moving r


 , the motion of a material point is characterized by speed and 

acceleration.  

The average speed of v


 over a period of time Δt is called the movement of 

r


  per unit of this time 

   
t

trttr

t

r
v














.                          (1.2.10) 

Instantaneous speed is the limit to which the average speed v


 tends when 

the time interval Δt tends to zero 

r
dt

rd

t

r
v

t













lim

0

.                                (1.2.11) 

The concept of instantaneous speed was introduced by William of Heytesbury 

(1313 – 1373) in his work written about 1335. Velocity v


 is directed along the 

tangent to the curved path, because infinitesimal (elementary) displacement rd


 

coincides with an infinitely small element of the trajectory ds. In Cartesian 

coordinates, formula (1.2.11) is equivalent to the three equations 
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z
dt

dz
y

dt

dy
x

dt

dx
zyx    ,, ,                 (1.2.12) 

where vx, vy, vz are projections of the vector v


 onto the coordinate axes with orts  

i


, j


, k


: 

     ktzjtyitxkvjvivv zyx











 .             (1.2.13) 

The modulus of the vector v


 is 

222222 zyxvvvvv zyx 


 .                (1.2.14) 

The transition from Cartesian rectangular coordinates to curvilinear coordinates 

is carried out according to the rules of differentiation of complex functions.  

Let the radius vector r


 be a function of curvilinear coordinates: 

 321 ,, qqqrr


 ,                                        (1.2.15) 

then 


 













3

1

3

1 i
i

ii

i

i

q
q

r

t

q

q

r

dt

rd
v 




.                      (1.2.16) 

For spherical coordinates, relations rq 1 , 2q , 3q . In this case, for 

speed v


 we get 

 evevevv rr


  

 
 rrrr  ,sin, , 

 22222 sin    rrv ,                            (1.2.17) 

where re


, e


, e


 are unit vectors of tangents to lines r, φ, θ. 

The elementary movement of the body r


  over a period of time from t1 to t2 
is determined by the formula 

      
2

1

2

1

12

t

t

t

t

tdtvrdtrtrr


.                       (1.2.18) 

The path s covered by the material point is equal to the area of the curved 

trapezoid 

  
2

1

t

t

tdtvs .                                           (1.2.19) 
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The average speed over a period of time 12 ttt   is 

 








2

112

1 t

t t

r
tdtv

tt
v




.                           (1.2.20) 

In the SI system, speed is measured in meters per second: [v] = m/s. 

The average acceleration a


 over a period of time Δt is called the increment 

of speed    tvttvv


  over a time interval Δt: 

t

v
a









.                                            (1.2.21) 

Instantaneous acceleration a


 is the limit of the average acceleration a


 

when Δt tends to zero: 

v
dt

vd

t

v
a

t













lim

0

 

r
dt

rd

dt

rd

dt

rd

dt

d
a 














2

2

.                           (1.2.22) 

In Cartesian coordinates, formula (1.1.22) is equivalent to the three equations 

zvayvaxva zzyyxx   ,, ,               (1.2.23) 

where ax, ay, az are projections of the acceleration vector a


 on the coordinate axes  

x, y, z with orts i


, j


, k


 

kajaiaa zyx


  

kvjviva zyx











  

kzjyixa










 .                                        (1.2.24) 

Acceleration module is equal to 

222222222 zyxvvvaaaaa zyxzyx 


 .     (1.2.25) 
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The representation of acceleration in a spherical coordinate system has the 

form: 

 eaeaeaa rr


  

  222 sin  rrar  

  cossin2sin   rra  


 rrra 2cossin2   

222
 aaaa r  .                                     (1.2.26) 

The end of the velocity vector when the material point moves describes a curve 

called the velocity hodograph. The acceleration at a given point of the hodograph of 

speed is directed tangentially to the hodograph at this point: 

 
dt

vd
a





 ,                                            (1.2.27) 

where 


 is unit vector tangent to the trajectory and directed along the vector v


. 

Acceleration can be represented as: 

naaa


   

22
naaa    







vava n  , .                                    (1.2.28) 

Vector a


 is called tangential acceleration, and vector na


 is called normal 

acceleration. Tangential acceleration a


 characterizes the in the modulus of speed 

v


. Normal acceleration na


 characterizes the change in the velocity vector v


 in the 

direction of curvilinear acceleration. Orth 


 is directed along the tangent to the 

trajectory. 

Consider the case when the body trajectory is in the same plane. Then, for 

normal acceleration of the body, we can write 

n
R

v
an

 2

 ,                                               (1.2.29) 

where ddsR /  is radius of curvature of the trajectory at a given point, n


 is the 

unit vector for the normal to the trajectory, directed towards the direction of rotation 

of the vector 


 when the body moves (i.e., to the centre of curvature of the 

trajectory).  
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Vector a


 coincides in the direction with unit vector 


 at 0v  (the speed 

increases with time) and opposite to it at 0v  (speed decreases with time). 

The final increment of speed v


  over time 12 ttt   is 

      
2

1

2

1

12

t

t

t

t

tdtavdtvtvv


.                          (1.2.30) 

The average acceleration over a period of time 12 ttt   is 

 








2

112

1 t

t t

v
tdta

tt
a




.                           (1.2.31) 

In the general case, a material point can participate simultaneously in several 

translational movements. Since speed and acceleration are vectors, they can be added 

according to the laws of vector addition 

cos2, 21

2

2

2

121  vvvvvvvv


, 

cos2, 21

2

2

2

121  aaaaaaaa


.          (1.2.32) 

Consider a special case 2/  , 2/  , then 

2

2

2

1

2

2

2

1 , aaavvv


 .             (1.2.33) 

 

1.3. Classification of Mechanical Movements 

 

Mechanical movements are classified according to specific driving conditions. 

This classification is shown in Table 4.  

Table 4. Classification of mechanical movements 

 Uniform motion Uneven motion 

Rectilinear motion 
constv 


, constv   constv 


, constv   

0a , 0na , 0a  aa


 , 0na , 0  

Curvilinear motion 

constv 


, constv   constv 


, constv   

naa


 , 0na , 0a  
aaa n


 ,  

0na , 0a  

 

A uniform movement is a movement in which a material point (body) travels 

the same path for equal arbitrarily small intervals of time. The module of the 
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displacement vector r


  is equal to the path Δs in rectilinear motion. The speed v


 is 

constant and equal to the average speed v


 with uniform rectilinear movement 

const
t

r
vv 









.                                     (1.3.1) 

Equation for the trajectory of motion  

     00 ttvtrtr 


,                                 (1.3.2) 

where  0tr


 is the radius vector of the body at the initial time t0.  

The vector equation for  tr


 is equivalent to three equations for coordinates 

x(t), y(t), z(t)  
     00 ttvtxtx x   

     00 ttvtyty y   

     00 ttvtztz z  ,                                    (1.3.3) 

where vx, vy, vz are projections of the velocity vector v


 on the coordinate axis.  

The path traveled by the body during t is determined by the formula 

tvs  .                                                  (1.3.4) 

Translational motion is called uniformly accelerated motion if the acceleration 

over time remains constant. With this movement, the acceleration a


 is equal to the 

average acceleration a


  

const
t

v
aa 









,                                  (1.3.5) 

where v


  is speed increment over time Δt.  
At a > 0, the movement is accelerated, and at a < 0, the movement is slowed 

down. The speed  tv


 at time t is determined by the expression 

     00 ttatvtv 


.                                  (1.3.6) 

The last formula is equivalent to the three equations for velocity components 

vx, vy, vz 
     00 ttatvtv xxx   

     00 ttatvtv yyy   

     00 ttatvtv zzz  ,                                 (1.3.7) 

where ax, ay, az are the projections of  vector a


 on the coordinate axis.  
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For the case of motion with constant acceleration, the equation for the 

trajectory of motion has the form 

       
 

2

2
0

000

tta
tttvtrtr





.                     (1.3.8) 

The equations for the projections of vector  tr


 on the coordinate axis in this 

case are of the form 

       
 

2

2
0

000

tta
tttvtxtx x

x


  

       
 

2

2
0

000

tta
tttvtyty

y
y


  

       
 

2

2
0

000

tta
tttvtztz z

z


 .                     (1.3.9) 

The path, travelled by the body, in time t is 

2

2

0

at
tvs  ,                                              (1.3.10) 

where v0, is speed at the initial time t0. 
In case t0 = 0, for the path, speed, average speed, travel time and acceleration, 

the following formulas can be written 

t
vvat

tv
a

vv
s

222

0
2

0

2
0

2 



 , 

atvasvv  0
2
0 2 , 

t

sat
v

vv
v 




22
0

0 , 

a

v

a

v

a

s

vv

s
t 0

2

0

0

22












 , 














t

v

t

s

s

vv
a 0

2

2
0

2

2
2

.                               (1.3.11) 

Free fall is a special case of uniformly accelerated motion without initial speed 

v0 = 0. The acceleration during this movement is equal to the acceleration of gravity  

a = g = 9.81 m/s2. Consider the case where the daily rotation of the Earth, the 



 23 

dependence of the acceleration of gravity on the distance to the centre of the Earth, 

and air resistance can be neglected. Then we can write the following formulas 

22
,2

2 tvgt
hghtgv                                 (1.3.12) 

where v is body fall rate over time t; h is height at which the body falls. 

A body thrown vertically upward with an initial speed of v0 moves equally 

slowly with an acceleration of a = – g = – 9.81 m/s2. The rise time to a height of h 

and the speed acquired during time t can be determined by the following formulas 

ghvtgvv
gt

tvt
vv

h 2,
22

2
00

2

0
0 


          (1.3.13) 

The last formulas are written without air resistance.  

In turn, the time tmax, during which the body reaches a maximum height of 

hmax = h at v = 0, and a height of hmax can be determined by formulas 

g

v
h

g

v
t

2
,

2
0

max
0

max  .                             (1.3.14) 

The motion of a body thrown horizontally at a speed of 0v


 is the vector sum of 

two independent motions: uniform horizontal motion with a constant speed v0 along 

x axis and uniformly accelerated vertical motion (free fall along y axis with 

acceleration g). In this case, the movements of the body in the horizontal and vertical 

directions during the time t are equal, respectively 

g

h
vtvs

2
00   

2

2gt
hy   

g

h

v

s
t

2

0

 .                                          (1.3.15) 

The equation of the trajectory is parabola 

2

2
02
x

v

g
y 













 .                                         (1.3.16) 
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Other characteristics of motion include: 

radius vector 

2

2

0

tg
tvr




 ,                                      (1.3.17) 

instantaneous velocity 

tgvv


 0 ,                                         (1.3.18) 

angle between initial velocity 0v


 and instantaneous velocity v


 

0

tan
v

gt
 ,                                         (1.3.19) 

instantaneous speed module 

222
0 tgvv  .                                   (1.3.20) 

Formulas (1.3.17) – (1.3.20) also do not take into account air resistance and 

daily rotation of the Earth. 

The motion of a body thrown at an angle α to the horizon with a speed of 0v


 is 

the vector sum of two independent motions: a uniform rectilinear motion with a speed 

of cos0v  along the x axis and free fall along the y axis. Suppose that during time 

t, the movement of the body in the horizontal direction is s, and the lift height is h. 

Then, for such a movement, the following formulas 

cos0tvsx   

2
sin

2

0

gt
tvhy    

cos0v

x
t  .                                               (1.3.21) 

The equation of the trajectory of the body is parabola 

2

22
0 cos2

tan x
v

g
xy


   .                               (1.3.22) 
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The horizontal vx and vertical vy components of the instantaneous velocity 

vector v


 are equal 

gtv
dt

dy
vv

dt

dx
v yx   sin,cos 00                (1.3.23) 

The following characteristics of this motion can be written for the case when 

air resistance and the Earth's daily rotation can be neglected: 

instantaneous speed module  

ghvv 2
2

0  ,                                         (1.3.24) 

body lift time to maximum height 

g

v
t

sin0
max  ,                                         (1.3.25) 

total movement time 

g

v
ts

sin2 0 ,                                          (1.3.26) 

maximum lifting height 

g

v
h

2

sin22
0

max


 ,                                        (1.3.27) 

maximum path 

g

v
s

2sin2
0

max  .                                        (1.3.28) 

1.4. Movement of Material Point in a Circle 

 

The motion of a material point in a 

circle is a special case of curvilinear motion 

along a path lying in one plane (i.e., along a 

plane curve). We will choose the XY plane as 

this plane (Figure 1.4). The radius of 

curvature in this case is constant and equal to 

the radius of the circle  
 

constyxR  22
.             (1.4.1) 

 

The radius vector of the moving 

material point is 
 

     jtyitxtr


 ,                   (1.4.2) 

X  

Y  

a


 

Z,,


  

R  

r


 

na


 

a


 

Figure 1.4. Kinematic characteristics 

of circular motion. 
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or in polar coordinates 

       ttytRtx  sin,cos  ,                        (1.4.3) 

where φ(t) is the angle of rotation of the radius vector  tr


 in the XY plane at a 

given point in time t.  
The speed 

 
 
dt

trd
tv


 ,                                               (1.4.4) 

with which a material point moves in a circle is called the linear velocity.  

Circular motion can also be characterized by angular velocity and angular 

acceleration. To determine these values, we define a rotation through a small angle  

Δφ in the form of a vector 


 , whose module is equal to the angle of rotation 

(  


), and the direction coincides with the axis of rotation around which the 

rotation is made, and is determined by the rule of the right screw.  

Angular velocity 


 is the limit to which the ratio of the small angle of rotation 

Δφ to the time interval Δt, over which this rotation occurred, tends to the time 

interval to zero 




 










 dt

d

tt 0
lim .                                     (1.4.5) 

Albert of Saxony (1320 – 07.08.1390) is the author of the concept of angular 

velocity of rotation. The direction of the angular velocity 


 coincides with the 

direction of the infinitesimal angular displacement 

d . The relationship of linear 

velocity v


 with angular velocity 


 has the form 

  Rrvvrv   sin,,


,                      (1.4.6) 

where r


 is radius vector drawn from the origin; α is the angle between the vectors 


 

and r


; R is the distance from the material point M to the axis of rotation (the radius 

of the circle along which point M moves)  

Normal acceleration equals 

Ran
 2  

RRR
R

v
aa nn 


,2

2

 .                        (1.4.7) 

The minus sign in (1.4.7) reflects the fact that vectors na


 and R


 have opposite 

directions. 
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Angular acceleration 


 is the limit to which the ratio of the small increment 

of the angular velocity 


  tends due to a change in the speed of rotation of the 

material point around the axis or a small rotation of the axis of rotation in space, 

obtained in time Δt when Δt tends to zero 




 








 2

2

0
lim

dt

d

dt

d

tt
.                        (1.4.8) 

The tangential acceleration module a


 and the angular acceleration module 


 

are interconnected as follows 

R
t

R
t

v
aa

tt



 
















00
limlim .                  (1.4.9) 

The elementary increment of the angle of rotation is 

 dttd 


 .                                          (1.4.10) 

The rotation angle Δφ (angular displacement) for a period of time from t0 to t 
is determined by the formula 

      
t

t

tdttt
0

0 


,                  (1.4.11) 

where φ(t0) is the value of the angle of rotation at the initial moment of time t0.  
The elementary increment of the angular velocity is 

 dttd 


 .                                        (1.4.12) 

The increment of the angular velocity 


  for a time from t0 to t is  

      
t

t

tdttt
0

0 


,                          (1.4.13) 

where  0t


 is the angular velocity at the initial moment of time t0. 

The average angular velocity 


 and the average angular acceleration 


 

over a period of time 0ttt   are determined by formulas 
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 








t

t t
tdt

tt
00

1 





 

 








t

t t
tdt

tt
00

1 



.                            (1.4.14) 

SI units of angular velocity and angular acceleration: [w] = rad/s, [β] = rad/s2. 

The period T of the rotation of the material point around the fixed axis of 

rotation is the time during which this point rotates through an angle of Δφ 

  
T

dtt
0

2  .                             (1.4.15) 

The number ν of turns per unit of time is  

 
1

02

1
dtt


 .                                          (1.4.16) 

Uniform circular motion (or uniform rotation) is a movement in which for 

equal intervals of time there is a rotation at the same angle. With this movement, the 

angular velocity 


 is constant and equal to the average angular velocity 


 

const
t













.                               (1.4.17) 

Uniform rotation is characterized by a period of T. At  2  we have 

Tt   , and therefore 



2
T ,                                             (1.4.18) 

the number ν of turns per unit of time is 

T

1

2





 ,                                      (1.4.19) 

angular displacement 

N 2 ,                                       (1.4.20) 

where N is number of turns. 

Between the formulas that describe the translational motion and circular 

motion, there is an analogy, which is shown in table 5. 
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Table 5. Translational motion and circular motion 

Translational motion Rotational motion 

Core quantities 

Path s Angle φ (rad) 

Velocity v Angular velocity ω 

Acceleration a Angular acceleration β 

Relationship formulas 

Rs  ,  Rv   

naaa   ,  Ra   ,  Ran
2  

Uniform movement 

tvs   t   

Uniformly accelerated movement ( 00 t ) 

22

2

0

2
0

2 at
tv

a

vv
s 


  

22

2

0

2
0

2 t
t







 


  

t
v

s
2

0 
  t

2

0 



  

atvasvv  0
2
0 2  t  0

2
0 2  

t

sat
v

vv
v 




22
0

0  
t

t 



 




22
0

0  














t

v

t

s

s

vv
a 0

2

2
0

2

2
2

 












tt
0

2

2
0

2

2
2






  

 

1.5. Newton's Laws 

 

Newton's laws were formulated by Isaak Newton (25.12.1642 – 20.03.1726) in 

his book Mathematical Principles of Natural Philosophy (1687).  

Newton’s first law is formulated as follows: a body (material point) is at rest or 

in a uniform and rectilinear motion, if it is not subject to external influences from 

other bodies. The property of the body to maintain its speed in the absence of 

interaction with other bodies is called inertia. A measure of the inertia of the body 

(material point) in translational motion is a physical quantity called the inert mass of 
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the body. The presence of mass in the body is confirmed by experiments, which show 

that the same effect gives different bodies different accelerations in magnitude. Mass 

is one of the main quantities characterizing the mechanical movement of the body. 

The mass of a body contained in a unit volume is called its density.  

The density ρ of the body at a given point is equal to the limit to which the 

ratio of the mass Δm of the body element tends in the vicinity of this point to the 

volume ΔV of this element with unlimited decrease 

dV

dm

V

m

V







 0
lim .                                       (1.5.1) 

Density ρ is a function of three spatial coordinates x, y, z, characterizing a 

point within a volume V defined by the size of the body:    rzyx


  ,, .  

Therefore, body mass can be determined by formula 

  
V V

dxdydzzyxdVm ,, ,                         (1.5.2) 

where the integral is taken over the entire volume V of the body; dx, dy, dz are 

linear sizes of elementary volume dV, counted along the coordinate axes x, y, z. 
Average density is 

V

m
dV

V V

 
1

.                                    (1.5.3) 

A body is called homogeneous body if 

V

m
  .                                          (1.5.4) 

SI unit of density: [ρ] = kg/m3. 

A consequence of Newton's first law is that any change in the state of motion 

of the body is due to the action of forces on it. 

Newton's first law is not absolute. This law is not valid in all reference frames. 

The reference frame in which this law holds is called the inertial reference frame. 

The equivalent definition of an inertial reference frame has the following form: a 

system with respect to which space is homogeneous (i.e., the law of conservation of 

momentum is fulfilled in it) and isotropic (i.e., the law of conservation of angular 

momentum is valid), and time is homogeneous (i.e., the law of conservation of 

energy is valid), called the inertial reference frame. 
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The existence of an inertial reference frame in classical mechanics is a 

postulate generalizing a large number of experimental data. The physical content of 

Newton’s first law, therefore, consists in asserting that there is at least one inertial 

reference frame. 

Newton’s second law establishes a relationship between the force F


 acting on 

the body and the acceleration a


 acquired by the body under the influence of this 

force: acceleration is directly proportional to the acting force and inversely 

proportional to the mass of the body 

m

F
a



 .                                                       (1.5.5) 

Other forms of equation (1.5.5): 

Fam


 , 

FvmF
dt

vd
m





 , , 

FrmF
dt

rd
m





 ,

2

2

.                                     (1.5.6) 

SI unit of force: [F] = N.  

According to Newton’s second law, force F


 in the general case is a function of 

the radius vector r


, velocity v


 and time t 

 tvrFF ,,


 .                                            (1.5.7) 

For two material points 1 and 2 interacting with a force of F


, we obtain 

 tvvrrFF ,, 1212


 ,                                (1.5.8) 

where 1r


, 2r


 and 1v


, 2v


 are the coordinates and speeds of the material points 1 and 

2.  

Equation (1.5.6) is called the equation of body motion (equation material point 

motion) or the basic law of the dynamics of the material point. This equation is a 

second-order differential equation with respect to time t. Solutions of this equation 

with boundary conditions determining the position of the material point at the initial 

time t0, and its speed    00 tvtr
  , make it possible to determine the position  tr


 

of the point and its velocity  tv


 at any subsequent moment  0tt   in time.  



 32 

Differential equation (1.5.6) is equivalent to such equations: 

1) Cartesian coordinates 

zyx FzmFymFxm   ,,                            (1.5.9) 

where Fx, Fy, Fz are projections of the force vector F


 on the coordinate 

axes with orts i


, j


, k


.  

2) spherical coordinates 

  rFrrrm  222 sin    

   Frrrm  cos2sin2   

   Frrrm  cossin2 2 ,                      (1.5.10) 

where Fr, Fφ, Fθ are projections  of vector F


 on coordinate axes with orts 

re


, e


, e


. 

In the general case, when body mass m is a function of time (motion with 

variable mass), the basic law of dynamics has the form 

F
dt

pd 

 ,                                                (1.5.11) 

where value 

dt

rd
mvmp



                                        (1.5.12) 

is called the momentum of a material point by a mass m moving at a speed of 

dt

rd
v



 .  

The law of dynamics (1.5.6) can be written in integral form 

      
t

t

tdtFtptpp
0

0


,                        (1.5.13) 

where the value p


  characterizes the change in momentum over a period of time 

from t0 to t, and is called the momentum of the force.  

In the case of a body moving under the influence of a force F


 which is 

independent of time, the momentum of the force is 

0, ttttFp 


.                           (1.5.14) 
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Then the momentum  tp


 is determined by the formula 

     00 ttFtptp 


,                                (1.5.15) 

where  0tp


 is the momentum of the body at the initial moment of time. 

In the case of inertia, the following relations can be written 

const,0  pF


.                                    (1.5.16) 

When moving under the action of a variable force, the change in momentum 

p


  over a period of time 0ttt   is expressed by the relation 

     00 ttFtptpp 


,                       (1.5.17) 

where 

 








t

t t

p
tdtF

tt
F

00

1


                            (1.5.18) 

is the average value of the force vector F


 over a period of time Δt. 
Newton’s third law is formulated as follows: the forces with which two bodies 

act on each other are equal in magnitude and opposite in direction. We denote by 

symbol 12F


 the force with which body 1 acts on body 2, and by symbol 21F


 we 

denote the force with which body 2 acts on body 1. In this case 

2112 FF


 .                                                   (1.5.19)  

From experience it follows that the forces 12F


 and 21F


 are directed along one 

straight line connecting the bodies 1 and 2.  

Newton's third law implicitly contains the assumption of an infinitely large 

velocity of propagation of the disturbance in the field through which the bodies 

interact. In classical mechanics, considering the motion of bodies with velocities v 

much lower than the speed of light in vacuum (v << c), the above assumption is 

fulfilled with very high accuracy. 
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1.6. Forces 

 

The absolute movement of a point is its movement with respect to some 

inertial reference frame. The relative motion of a point is its movement with respect 

to the moving reference frame. The portable movement is the absolute movement of 

that point of the moving frame of reference through which the moving point passes at 

the moment in time. The choice of an absolute and relative reference frame is 

conditional. The relationship between the radius vectors r


 and r 


 of the moving 

point, drawn, respectively, from the beginning O of the fixed reference system  

(x, y, z) and the beginning O' of the moving reference system (x', y', z' ) has the 

form 

 kzjyixrrrr 


00 .                            (1.6.1) 

We get the expression for absolute speed 

    kzjyixkzjyixv
dt

rd
v














0  

       kzjyixvv


,,,0   

    rvvkzjyixvv 


,, 00  ,            (1.6.2) 

where 0v


 is the translational speed of the moving system; v


 is the speed of the point 

relative to the moving system (relative speed);  rvve 


,0   is portable speed. 

The absolute acceleration is 

  kzjyixkzjyixa
dt

vd
a
















0  

  kzjyixkzjyix
  

            rrvvaa


,,,,,0   

      rraa 


,,,,20  ,                    (1.6.3) 

where 0a


 is the acceleration of the translational movement of the moving system;  

a


 is relative acceleration; 

  r 


,,   is centrifugal acceleration; 

    rraae 


,,,0   is portable acceleration; 

 vaC 


,2  is Coriolis acceleration.  
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Gaspard-Gustave de Coriolis (21.05.1792 – 19.09.1843) in 1835 introduced the 

concept of a special type of inertia force, which is now called the Coriolis force. 

Non-inertial reference frames are reference frames that move with 

acceleration relative to inertial reference frames. In non-inertial reference frames 

there are accelerations that are associated with forces of the same nature that are 

known in inertial reference frames. For convenience, it is assumed that in non-inertial 

reference systems, as well as in inertial reference systems, accelerations are caused 

only by forces. However, along with the "ordinary" forces, there are forces of a 

special nature, which are called the forces of inertia.  

Newton's second law in non-inertial reference frames has the form 

iFFam


 ,                                                (1.6.4) 

where iF


 are inertia forces. 

Then for the inertia forces we get 

  aamamamFamFi


 

       rrvam 


,,,,20   .                    (1.6.5) 

Therefore, the inertia forces are due to the difference between relative and 

absolute accelerations. The names of the inertia forces are associated with the names 

of the corresponding accelerations (see the notation for the formula (1.6.3)). 

When solid bodies come into contact, an interaction arises between them, 

which prevents their relative movement. The forces of this interaction are called 

friction forces. Friction forces act along the surfaces of the contacting bodies (i.e., 

tangent to the rubbing surfaces) and are directed in the direction opposite to the 

movement of these bodies relative to one another. Friction between the surfaces of 

two solids in the absence of any layer is called dry friction. Three types of dry 

friction are distinguished: rest friction, sliding friction and rolling friction. 

With an increase in the external force rexF ,


, which tends to give relative 

motion to the bodies at rest, the friction force of rest increases from zero to a certain 

maximum value mF


. The bodies begin to move relative to each other under condition 

mrex FF


, . We denote by symbol rFmin,


 the minimum external force at which the 

bodies begin to move, and by symbol NF


 we denote the modulus of the normal 

pressure force pressing one body to another. Then, by definition, the rest friction 

force rfF ,


 is 

Nrrfrrf FFFF


 ,min,, , ,                              (1.6.6) 

where μr called the coefficient of rest friction.  
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Force N


, equal in magnitude to force NF


 and directed opposite to it, is called 

the normal reaction force 

NFN


 .                                                (1.6.7) 

The force of rest friction increases with an increase in the force of normal 

pressure and does not depend on the area of contacting surfaces. The rest friction 

coefficient depends on the substance of the contacting bodies and the state of their 

surfaces.  

The force that arises between bodies in contact and moving relative to each 

other is called the sliding friction force. The sliding friction force is less than the rest 

friction force. This force depends on the kind and condition of the rubbing surfaces, 

as well as on the speed of their mutual movement. By definition, the sliding friction 

force sfF ,


 is equal in magnitude and opposite in direction to that external force sexF ,


, 

at which the contacting bodies move uniformly one relative to the other 

NFFF ssfsexsf 


,,, , .                              (1.6.8) 

The value μs is called the coefficient of sliding friction. In general, μs < μ. The 

sliding friction coefficient depends on the speed v of the mutual movement of the 

bodies: μs = μs(v). For the case when the speed v is small, a relation of μs ≈ μr takes 

place. Formula (1.6.8) is called the Amontons’ first law. Guillaume Amontons 

(08.31.1663 – 10.10.1705) in 1699 and Charles-Augustin de Coulomb (06.14.1736 – 

08.23.1806) in 1785 investigated the physical processes associated with sliding 

friction. 

The force acting from the supporting surface on the rolling body is called the 

rolling friction force. The rolling friction force rolfF ,


 is much less than the sliding 

friction force 

sfrolf FF ,,


 .                                        (1.6.9) 

The rolling friction force rolfF ,


 is equal in magnitude and opposite in direction 

to that external force rolexF ,


 at which the body rolls along the support uniformly 

NFFF rolrolfrolexrolf


 ,,, , ,                      (1.6.10) 

where μrol called rolling friction coefficient (μrol << μs). The coefficient μrol depends 

on the radius of the rolling body. 

All real solids under the influence of external forces change their linear 

dimensions and volume. Such changes are called solid deformation. Deformations 

are conditionally divided into elastic and plastic deformations. Elastic deformations 
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disappear after the termination of the action of external forces. Plastic deformation is 

stored in the body after the termination of external forces. Deformation leads to the 

appearance in the body of forces that impede this deformation. Such forces are called 

elastic forces.  

Bodies are called isotropic bodies if their elastic properties are the same in all 

directions. An anisotropic body is characterized by a difference in elastic properties 

in different directions.  

Elastic deformations are characterized by stress 

dS

Fd el
n




 ,                                                 (1.6.11) 

where elFd


 is the elastic force with which two parts of the body interact on an 

infinitely small area dS. 

To uniquely determine the mechanical stress n


 in a solid at point O of area 

S, it is sufficient to set the stresses x


, y


 and z


 on three mutually perpendicular 

platforms passing through point O: 

zzyyxxn nnn 


 ,                                 (1.6.12) 

where nx, ny и nz are projections of the external normal n


 to the area S on the axis 

of the Cartesian coordinate system with the origin at point O.  

The set of nine quantities, which are projections of vectors x


, y


, and z


 on 

axis x, y, z, is called the tensor of elastic strains 



















zzzyzx

yzyyyx

xzxyxx







 .                                      (1.6.13) 

Elastic deformations are called small if Hooke’s law is valid for them: the 

stress σ at elastic deformation of the body is proportional to the relative  

deformation ε: 

 K ,                                               (1.6.14) 

where K is the modulus of elasticity. 

The law (1.6.14) is named after Robert Hooke (28.07.1635 – 3.03.1703). 

https://en.wikipedia.org/wiki/Robert_Hooke
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In the case of linear tension or compression of the rod, the relative deformation 

is 

0l

l
 ,                                                  (1.6.15) 

where l0 is the length of the undeformed rod; l0 + Δl is the length of the deformed 

rod. 

The elastic modulus K = E is called Young's modulus. Young's modulus is 

named after Thomas Young (13.06.1773 – 10.05.1829). 

Consider the case of comprehensive (volumetric) extension or contraction of 

the body. Then the stress, relative strain, and elastic modulus are 

 


213
,,

0 





E
K

V

V
K ,                   (1.6.16) 

where V0 is the volume of the non deformed body; V0 + ΔV is the volume of the 

deformed body.  

The value μ is called the Poisson's ratio (named after Siméon Poisson  

(21.06. 1781 – 25.04.1840)). 

00 l

l

d

d 



 ,                                               (1.6.17) 

where d0, l0 are the transverse size and length of the deformed body; d0 + Δd and 

l0 + Δl is the transverse size and length of the deformed body.  

Young's modulus E and Poisson's ratio μ fully characterize the elastic 

properties of isotropic bodies.  

An example of uniform deformation is mechanical shear. A deformation in 

which all layers of a solid body parallel to a plane (shear plane) move in the same 

direction is called shear. The direction of the shift is parallel to the plane of the shear. 

According to Hooke's law, the mechanical stress at shear is 

 G
S

F
 ,                                          (1.6.18) 

where S is the surface area perpendicular to which an external force F acts; γ is the 

angle between the surfaces before and after deformation. The quantity G is called the 

shear modulus. The shear modulus is related to Young and Poisson moduli by 

 


12

E
G .                                            (1.6.19) 

An example of heterogeneous deformation is torsion and bending. Torsion is a 

deformation of a rigid body in which, under the action of an external force, a relative 

rotation of parallel sections of the body around a certain axis occurs. External 

https://en.wikipedia.org/wiki/Sim%C3%A9on_Poisson
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torsional force creates torque M. According to Hooke's law, the following equation 

can be written 

fM  ,                                             (1.6.20) 

where f is the torsion module; φ is the angle of rotation of one section relative to 

another closely spaced section. 

The torsion modulus f depends on the physical properties of the body and its 

geometric dimensions. For a solid wire with a radius of r and a length of l, a relation 

of 

4

2
r

l

G
f


                                           (1.6.21) 

takes place. 

Any two bodies having masses are attracted to each other. Gravity is a 

universal property. The gravitational force can only be the forces of attraction. The 

law of gravity is formulated as follows: the force with which two material points are 

attracted to each other is directly proportional to the masses m1 and m2 of these 

points and inversely proportional to the square of the distance r12 between them 

2
12

21
12

r

mm
GF N ,                                          (1.6.22) 

where GN = 6.67430(15) 
2

3

skg

m


 is a gravitational constant. 

Gravitational force is directed along a straight line passing through interacting 

material points. Consider the radius vector 12r


, directed from the first material point 

with radius vector 1r


 to the second with radius vector 2r


. The modulus of vector 12r


 

is equal to the distance between the material points. In this case, the law of gravity 

can be written in vector form 

  rrrr
r

mm
GrF


  212123

12

21
1212 , .                     (1.6.23) 

In the general case, to determine the gravitational force of the interaction of 

two extended bodies, these bodies are mentally divided into elementary masses Δm. 

Each of these masses can be considered a material point. Then the gravitational force 

between element i of one body and element k of another is 

ikikik
ik

ki
Nik rrrr

r

mm
GF





 ,

3
.                      (1.6.24) 
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For the case of continuous mass distribution, we can write 

   
  




21,
21123

12

2211
12

VV
N dVdVrr

rr

rr
GF




 
, 

     kzzjyyixxrr


12121212  , 

       2/32
12

2
12

2
12

3

12 zzyyxxrr 


,        (1.6.25) 

where 1111 dzdydxdV  , 2222 dzdydxdV  . 

The law of universal gravitation in the form of (1.6.22) is applicable to 

describe the interaction not only of material points, but also for two bodies, which are 

homogeneous balls. 

The motion of bodies in the Earth’s gravitational field describes Galileo’s law: 

all bodies under the influence of the Earth’s gravitational force fall with the same 

acceleration relative to the Earth’s surface, equal to g


. Consequently, on every body 

of mass m the force P acts 

gmP


 .                                                (1.6.26) 

This force is called gravity.  

The force N


, with which the body acts on the suspension or support, is called 

the weight of the body. If the body moves with acceleration a


, then its weight is 

determined by the formula 

 agmN


 .                                          (1.6.27) 

The state of weightlessness (body weight is equal to zero) corresponds to 

equality N = 0, those ga


 . Forces P


 and N


, equal at 0a


, are different forces. 

The force P


 is applied to the body, and the force N


 is applied to the support or 

suspension, which limit the movement of the body in the gravitational field of the 

Earth.  

The acceleration of gravity g


, as well as gravity P


 depend on the latitude of 

the terrain φ and altitude h above sea level, time of day and other factors. 

Approximately the acceleration of gravity can be calculated by empirical formula 

g


9.780318∙(1 + 0.005302∙sin2φ – 0.0000006∙sin22φ) – 0.00003086∙h.   (1.6.28) 
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Test questions 

 

1. Formulate the principle of compliance. 

2. Which section of mechanics includes the law of conservation of momentum? 

3. Give a definition of a second. 

4. Can a rectangular Cartesian coordinate system include the x-axis and y-axis, 

which are superimposed by relation y = 2x–5 ? 

5. Calculate the displacement of the centre of mass of the Earth that it completed 

in half a year. 

6. Describe the conditions under which the directions of instantaneous and 

average speeds coincide during the entire movement. 

7. Under what conditions is tangential acceleration modulo almost equal to full 

acceleration? 

8. The normal acceleration is zero at each point on the path. What is the radius 

of curvature in this case? 

9. Write down the equation for the trajectory of uniform rectilinear motion. 

10. Is it possible to change slow motion to accelerated motion, if the acceleration 

of the body does not depend on time? 

11. What shape does the graph of dependence  tfr   have for a body thrown 

at a certain speed at an angle to the horizontal? 

12. Can the concept of free fall be applied at distances comparable to the radius of 

the Earth? 

13. Is it possible to replace the concept of linear velocity with the concept of 

average speed when a material point moves in a circle? 

14. Estimate the angular velocity of a soccer ball that has rolled across the field, a 

distance of 10 m in a time equal to 2.5 s. 

15. Write down a formula that describes the relationship between linear and 

angular velocities. 

16. Estimate the normal acceleration of the material point, which is resting 

relative to the surface of the Earth. 

17. Formulate Newton's first law. 

18. Write down Newton's second law for the body that moves by inertia. 

19. Indicate the unit of measure for the coefficient of sliding friction. 

20. Calculate the gravitational force of interaction between two protons at a 

distance of 1 cm. 
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Problem-solving examples 

 

Problem 1.1  

 

Problem description. The kinematic equation of motion of a material point in a 

straight line (x axis) has the form x = A + Bt + Ct3, where A = 4 m, B = 2 m/s,  

C = – 0.5 m/s3. For time t1 = 2 s calculate: 1) t1 coordinate of the point;  

2) instantaneous speed v1; 3) instantaneous acceleration a1.  

 

Known quantities: A = 4 m, B = 2 m/s, C = – 0.5 m/s3, t1 = 2 s 

 

Quantities to be calculated: x1, v1, a1. 

 

Problem solution. The coordinate of the point for which the kinematic equation of 

motion is known can be found by substituting the set value of time t1 instead of time t 
in the equation of motion 

3
111 CtBtAx  .                                          (P.1.1.1) 

We substitute the values A, B, C, t1 into the formula (P.1.1.1) and calculate the 

coordinates 

m 425.0224 3
1

1


tt
xx . 

We differentiate the x coordinate with respect to time 

23CtBv
dt

dx
 .                                          (P.1.1.2) 

We substitute the values B, C, t1 into the formula (P.1.1.2). In this case, the 

velocity value is  

m/s425.032 2
1

1


tt
vv . 

A minus sign indicates that at time t1 = 2 s, the point moves in the negative direction 

of the coordinate axis.  

Instantaneous acceleration at an arbitrary point in time can be found if we take 

the second-order derivative of the x  coordinate in time or the first-order derivative of 

speed in time 

Ct
dt

dv

dt

xd
a 6

2

2

 .                                     (P.1.1.3) 
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We substitute the values C, t1 into the formula (P.1.1.3). Then the 

instantaneous acceleration at time t1 is  

2
1 m/s625.06

1


tt
aa . 

A minus sign indicates that the direction of the acceleration vector coincides 

with the negative direction of the coordinate axis. Under the conditions of this 

problem, this is true for any moment in time. 

 

Answer. The coordinate of the point is x1 = 4 m. Instantaneous speed equals  

v1 = – 4 m/s. Instantaneous point acceleration equals a1 = – 6 m/s2. 

 

Problem 1.2 

 

Problem description Calculate the centripetal acceleration of points on the earth's 

surface: at the equator (point A), at latitude 45 (point B) and at the pole (point C). 

The reason for this centripetal acceleration is the daily rotation of the Earth. 

 

Known quantities: T = 24 h = 8.64×104 s, φ =45° ≈ 0.79 rad. 

 

Quantities to be calculated: ac. 

 

Problem solution. A point on the Earth’s surface at the equator makes one complete 

turn with the Earth in a day. Therefore, the linear velocity of point A is 

T

R

T

l
v e

e

2
 ,                                            (P.1.2.1) 

where le is the circumference of the Earth's equator; R is the radius of the Earth 

(R ≈ 6.63×106 m). 

The centripetal acceleration of point A  at the equator is 

R

v
a e

ec

2

,  .                                               (P.1.2.2) 

We substitute the formula (P.1.2.1) into the formula (P.1.2.2). Then 

2

2

2

22

,

44

T

R

RT

R
a ec


 .                                (P.1.2.3) 

Substituting the numerical values, we obtain 
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 
22

24

62

, m/s1036.3
1064.8

1036.614.34 



eca . 

The linear velocity of point B on the Earth’s surface at latitude φ is 

T

r

T

l
v

2
 ,                                          (P.1.2.4) 

where r is the radius of the circle described by point B. 

For radius r, we can write the following relation 

cosRr  .                                              (P.1.2.5) 

By definition, the centripetal acceleration of point B is 

r

v
ac

2

,  ,                                             (P.1.2.6) 

or, taking into account (P.1.2.4) and (P.1.2.5) 

 



 cos

442
2

2

2

2

2

2

,
T

R

T

r

rT

r
ac  .                   (P.1.2.7) 

We take into account that ecaTR ,
22 /4  . In this case, formula (P.1.2.7) 

can be rewritten as follows 

 cos,, ecc aa  .                                        (P.1.2.8) 

Substitute the numerical values in the formula (P.1.2.8) 

222
, m/s1038.2707.01036.3  ca . 

The linear velocity of point C of the earth’s surface at the pole is zero. 

Therefore, the centripetal acceleration at the pole is zero: ac,p = 0. 

 

Answer. Centripetal accelerations at the equator, at latitude φ =45° and at the pole, 

are: ac,e ≈ 3.36×10–2 m/s2, ac,φ ≈ 2.38×10–2 m/s2, ac,p = 0 respectively. 

 

Problem 1.3  

 

Problem description A 5000 kg freight elevator serves a 900 m deep mine. When the 

elevator is at the bottom of the shaft, a thrust force of 60 kN begins to act vertically 
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upwards. At a distance of 150 m after the start of the lift, the traction force changes so 

that over 600 m the movement of the elevator becomes uniform. Finally, the traction 

force changes once again so that the elevator stops, reaching the top of the shaft. The 

friction force along the entire path is constant and equal to 5 kN. Consider the 

movement of the elevator in these areas and determine the total time of movement of 

the elevator.  

 

Known quantities: m = 5×103 kg, h = 9×102 m, Ff = 5 kN = 5×103 N, 

FT = 50 kN = 6×104 N,    h1 = 1.5×102 m,    h2 = 6×102 m.  

 

Quantities to be calculated: t. 
 

Problem solution. Consider the movement of the elevator in each section. In the first 

section of length h1, the elevator moves uniformly accelerated at zero initial speed. In 

the second section of length h2, the elevator moves evenly. In the third section of 

length 

 213 hhhh                                                 (P.1.3.1) 

the elevator moves equally slowly and stops at the end of the section. 

To describe the movement of the elevator in the first section, we direct the y 

axis vertically upward and select the beginning of the axis at the bottom of the shaft.  

We write the equation of motion of the elevator with acceleration a1 

2

2
1

1

ta
y  .                                                   (P.1.3.2) 

For the case when t = t1, and y1 = h1, equation (P.1.3.1) takes form 

2/2
111 tah  , whence follows 

1

1
1

2

a

h
t  .                                               (P.1.3.3) 

We write the second Newton's law for the chosen direction of the y axis 

1maFmgF fT  ,                                 (P.1.3.4) 

where FT is traction, Ff is the force of friction,g is the acceleration of gravity, m is 

the mass of the elevator. 

Rewrite the equation (P.1.3.4) 

m

FmgF
a

fT 
1 .                                (P.1.3.5) 
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Solving equations (P.1.3.3) and (P.1.3.5) together, we obtain 

fT FmgF

mh
t


 1

1

2
.                                        (P.1.3.6) 

The elevator speed at the end of the first section is v1 = a1t1 or, taking into 

account equations (P.1.3.5) and (P.1.3.6) 

 
m

FmgFh

FmgF

mh

m

FmgF
v

fT

fT

fT 







11
1

22
.    (P.1.3.7) 

In the second section, the elevator moves uniformly at the same speed that it 

received at the end of the first section v2 = v1. 

Choose the beginning of the y axis for the second section at a height of h1 from 

the bottom of the shaft. We write the equation of motion of the elevator 

tvy 22  .                                                  (P.1.3.8) 

If t = t2, then y2 = h2 and equation (P.1.3.8) takes form h2 = v2t2, whence 

follows t2 = h2/v2, or, given that v2 = v1 we get 

 fT FmgFh

m
ht




1

22
2

.                              (P.1.3.9) 

We find the movement time in the third section using the concept of average 

speed:   2/2/0 223 vvv  , or, given that v2 = v1 we get 

 
m

FmgFh
v

fT

2

1

3


 .                             (P.1.3.10) 

Then the elevator travel time in the third section is 




3

3
3

v

h
t .                                          (P.1.3.11) 

We transform the formula (P.1.3.11) taking into account the formulas 

(P.1.3.1) and (P.1.3.10) 

  
 fT FmgFh

m
hhht




1

213

2
.                     (P.1.3.12) 
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The total lift time is 

 
 





fT FmgFh

m
hhtttt

1

2321
2

2             (P.1.3.13) 

 
 

s69
1055060105.12

105
1061092

32

3
22 




  

Answer. The total lift time is t = 69 s. 

 

 

Problems 
 

Problem A  

 

Problem description. The material point begins its uniformly accelerated movement 

from a state of rest. A material point passes a path equal to 90 m in the fifth second. 

Identify the displacement of the material point in the seventh second. 

 

Answer. s = 1.3 m. 

 

Problem B  

 

Problem description. From a balloon descending at a constant speed of 2 m/s, a load 

was thrown vertically upward at a speed of 18 m/s relative to the ground. Determine 

the distance between the ball and the load at the moment when the load reaches the 

highest point of its lift. 

 

Answer. s = 20 m. 

 

Problem C  

 

Problem description. The dependence of the angle of rotation of the radius of the 

wheel on time is given by equation φ = 4 +5t – t3. Find at the end of the first second 

of rotation the angular velocity of the wheel, as well as the linear velocity and the full 

acceleration of the point lying on the wheel rim. The radius of the wheel is 2 cm. 

 

Answer. ω = 2 rad/s, v = 0.4 m/s, a = 1.44 m/s2. 
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Problem D  

 

Problem description. A vehicle with a mass of 1 t rises along a highway with a slope 

of 30 under the influence of a traction force of 7 kN. The coefficient of friction 

between the tires of the car and the surface of the highway is 0.1. Find car 

acceleration. 

 

Answer. a = 1.2 m/s2. 

 

Problem E  

 

Problem description. A ball weighing 200 g, tied with a thread to the suspension. The 

trajectory of a ball moving at a constant speed is a circle. Determine the speed of the 

ball and the period of its rotation around the circle if the length of the thread is 1 m 

and the angle of deviation of the thread from the vertical is 60.  

 

Answer. v = 3.8 m/s, t = 1.4 s. 



 49 

CHAPTER 2. CONSERVATION LAWS IN MECHANICS 
 

2.1. Law of Momentum Conservation 

 

Newton’s second law can be written in the following form 

F
dt

vd
m


 .                                                 (2.1.1) 

We take into account that mass m in classical mechanics can be a constant 

value. Therefore, the mass can be introduced under the sign of the derivative and the 

formula (2.1.1) can be written as follows 

 
F

dt

vmd 
 .                                            (2.1.2) 

The vector value  

vmp


                                                    (2.1.3) 

is called the momentum of the material point.  

Taking into account formulas (2.1.1) and (2.1.3), Newton’s second law can be 

written as follows 

F
dt

pd 
 .                                                  (2.1.4) 

Consequently, Newton’s second law can be formulated as: the time derivative 

of the momentum of a material point is equal to the resultant of all forces acting on 

this point.  

Equation (2.1.4) has a wider scope. The theory of relativity claims that body 

mass is a function of speed: with increasing speed, the mass grows. In this case, the 

form of Newton’s second law, in which mass and acceleration are explicitly present, 

becomes inapplicable. However, Newton’s second law in the form of (2.1.4) can also 

be applied in the relativistic case.  

Multiply the left and right sides of equation (2.1.4) by dt: 

dtFpd 


.                                               (2.1.5) 

Integration (2.1.5) results in an increment of the momentum over a period of 

time 12 tt   


2

1

12

t

t

dtFpp


.                                            (2.1.6) 
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In the particular case, if constF 


, then the increment of the pulse for the 

time interval τ is Fp


 . 

Consider a system consisting of N material points (bodies). The bodies that are 

part of this system can interact both among themselves and with bodies that do not 

belong to this system. In accordance with this, the forces acting on the bodies of the 

system can be divided into internal and external forces. The forces with which all 

other bodies belonging to the system act on this body are called internal forces. The 

forces with which bodies that do not belong to a given system act on a given body are 

called external forces.  

A system of bodies is called a closed system if external forces are absent.  

The momentum p


 of a system of bodies is the vector sum of the momenta of 

the bodies that make up the system 




n

i
ipp

1


.                                               (2.1.7) 

The centre of inertia of a system is a point whose position in space is defined 

by a radius vector  

m

rm

m

rm

mmm

rmrmrm
r ii

i

ii

N

NN
c

















...

...

21

2211 ,            (2.1.8) 

where mi is body mass with an index of i, ir


 is a radius-vector that determines the 

position of this body in space, m is the mass of the system.  

The Cartesian coordinates of the centre of inertia are equal to the projections of 

the vector cr


 onto the coordinate axes 

m

xm
x ii

c


 ,   

m

ym
y ii

c


 ,   

m

zm
z ii

c


 .                 (2.1.9) 

The speed of the centre of inertia can be obtained by differentiating the vector 

cr


 with respect to time 

m

vm

m

rm
rv iiii
cc










.                              (2.1.10) 

We write the relations iii vmp


  and  ipp


, then 

cvmp


 .                                               (2.1.11) 

Thus, the momentum of the system is equal to the product of the mass of the 

system and the speed of its centre of inertia. 



 51 

Consider the case when the system consists of three bodies. Each of the 

internal forces, for example, the force 12F


 with which body 2 acts on body 1, 

corresponds to the force 21F


 with which body 1 acts on body 2. According to 

Newton’s third law 2112 FF


 . Let us denote by symbols 1F 


, 2F 


, 3F 


 the results of 

all the forces with which the external bodies act on the bodies 1, 2 and 3 respectively.  

We write down Newton’s second law for each of these bodies 

11312
1 FFF

dt

pd



,  

22321
2 FFF

dt

pd



, 

33231
3 FFF

dt

pd



.                               (2.1.12) 

Summarize the three equations (2.1.12). The sum of the internal forces will be 

zero, therefore 

  321321 FFFp
dt

d
ppp

dt

d



.             (2.1.13) 

In the absence of external forces, equation (2.1.13) will have the form 

0
dt

pd


                                            (2.1.14) 

or 

constp 


.                                         (2.1.15) 

Therefore, for a closed system, momentum p


 is a constant.  

We generalize the result to a system consisting of an arbitrary number n of 

bodies. In this case, equation (2.1.12) will have the form 

 
ik

iik
i FF

dt

pd 
, ni ,...,2,1 .                  (2.1.16) 

Let us summarize by index i all the equations (2.1.16), taking into account the 

fact that kiik FF


 . As a result, we obtain the relation 

 


n

i
iF

dt

pd

1


.                                       (2.1.17) 
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Consequently, the time derivative of the momentum vector of the system is 

equal to the vector sum of all external forces applied to the bodies of the system.  

For a closed system, the right-hand side of equation (2.1.17) is equal to zero, as 

a result of which the vector p


 does not depend on time. This statement is the content 

of the law of momentum conservation, which is formulated as follows: the 

momentum of a closed system of material points remains constant.  

It should be noted that the momentum remains constant for a system subject to 

external influences, provided that the external forces acting on the bodies of the 

system give a zero. If even the sum of the external forces is not equal to zero, but the 

projection of this sum to a certain direction is zero, then the momentum component in 

this direction will be constant. Indeed, projecting all the values of equation (2.1.17) in 

an arbitrary direction x  and taking into account that  

x

x

p
dt

d

dt

pd











,                                          (2.1.18) 

we get 

 


N

i
ixx Fp

dt

d

1
, .                                       (2.1.19) 

It follows from (2.1.19) that for the case 0
1

,  


n

i
ixF  the following relation 

holds 

constpx  .                                        (2.1.20) 

In accordance with equation (2.1.11), from the law of momentum conservation 

it follows that the centre of inertia of a closed system of bodies either moves linearly 

and uniformly, or remains stationary. 

 

2.2. Law of Angular Momentum Conservation   

 

The angular momentum of a particle with mass m relative to point O is called 

the pseudo-vector L


, equal to the vector product of vectors r


 and p


: 

    vmrprL


,,  ,                                     (2.2.1) 

where r


 is the radius vector of a particle drawn from a point O, vmp


  is the 

momentum of the particle, v


 is the speed of the particle. 

The angular momentum of a system of particles relative to a point O is the 

vector sum of angular momenta of the particles iL


 that make up the system. For a 

system of N particles, we can write the relation 
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  
 

n

i

n

i
iii prLL

1 1

,


.                                  (2.2.2) 

The moment of force F


 relative to the point O from which the radius vector r


 

is drawn to the point of application of force is called a pseudovector N


 equal to the 

vector product of vectors r


 and F


 

 FrN


, .                                              (2.2.3) 

The modulus of the moment of force is  

FlrFFrNN   sinsin


,                       (2.2.4) 

where l = r∙sinα  is a arm of force F


 relative to the point O. 

From the equation of motion for N particles, the equations of motion for 

momenta iL


 follow 


k

iki
i NN

dt

Ld 


,  ni ...,,2,1 ,                         (2.2.5) 

where  iii FrN


,  is the moment of external force iF


 relative to the point O acting 

on the particle with index i, ir


 is the radius vector of this particle drawn from point 

O,  ikiik FrN


,  is a moment of inner strength ikF


.  

From the fact that the resultant internal forces are equal to zero, it follows that 

the total moment of internal forces is also equal to zero 

 





n

i

n

ik
k

ikN
1 1

0


.                                        (2.2.6) 

Using these relations, we can write the following equation for the angular 

momentum of a system of n particles relative to a point O 

N
dt

Ld 


 ,                                               (2.2.7) 

where 
i

iNN


 is the geometric sum of the moments of external forces relative to 

point O. 
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The moments of external forces for a closed system of bodies are equal to zero: 

0
i

iN


. Therefore, in this case, the law of conservation of angular momentum is 

valid 

0
dt

Ld


,   constL 


.                                  (2.2.8) 

The law of conservation of angular momentum is also valid for open systems 

in the case when the sum of the moments of all external forces is zero: 0
i

iN


. 

Formulas (2.2.1) and (2.2.3) determine the angular momentum L


 of a particle 

and the momentum of force N


relative to point O. Values L


 and N


 are vectors. The 

projections of these vectors onto some z axis passing through point O are called the 

angular momentum and the momentum of force relative to z axis.  The angular 

momentum and momentum of force relative to the z axis are indicated by symbols Lz 

and Nz, respectively. Values Lz and Nz are related by the equation of motion 

z
z N

dt

dL
 .                                                (2.2.9) 

All three axes x, y, z are equal, therefore, two more analogs of formula (2.2.9) 

can be written 

x
x N

dt

dL
  

y

y
N

dt

dL
 .                                              (2.2.10) 

The shoulder of a force F


 relative to z axis is the shortest distance between z 

axis and the line of action of force F


. The moment of force F


 relative to the axis is 

equal to the product of the component of the force perpendicular to this axis by the 

corresponding arm of the force.  The angular momentum relative to the axis is equal 

to the product of the momentum p


 component perpendicular to the axis by the same 

arm of force. The signs of these products are determined by the directions and 

modules of the vectors r


, p


 and F


.  

The moment of force N


 and angular momentum L


 of a particle depend on the 

position of the point relative to which they are determined. Suppose that L


 and N


 

are angular momentum and force relative to some point O, аnd L


 and N 


 are 

angular momentum and force relative to another point O'. In this case, we can write 

the following relation 
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 pRLL


,  

 FRNN


,  

rrR


 ,                                               (2.2.11) 

where r 


 and r


 are the radius vectors of the same particle relative to the points O' 

and O.  

 

2.3. Mechanical Work and Power 

 

A force does work on a material point if this force moves the point a certain 

distance. The elementary work dA of force Fd


, which can be considered constant 

(independent of displacement), on elementary displacement rd


, is called the scalar 

product of force F


 and displacement rd


  

dsFdsFrdFrdFdA r  coscos


.            (2.3.1) 

where α is the angle between the vectors F


 and rd


, rdds


  is the length of the 

elementary displacement rd


, cosFFr   is the projection of the force F


 on the 

direction of movement rd


.  

For Cartesian coordinates, we can write 

dzFdyFdxFdA zyx  ,                                (2.3.2) 

where dx, dy and dz are coordinate increments the radius of the vector r


, Fx, Fy and 

Fz are the projections of the force on the coordinate axes.  

The work A12 of force F


 along a curvilinear trajectory L from point s1 to point 

s2 is equal to the sum of all elementary work dA performed by the force F


 on this 

segment of the trajectory, and is determined by the curvilinear integral 


2

1

2

1

cos12

s

s
r

s

sL

dsFdsFrdFA 


.                     (2.3.3) 

Other formulas for mechanical work may be considered 
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
1

2

12

v

v

vdvmA


,                                            (2.3.4) 

where x1, y1, z1 and x2, y2, z2 are Cartesian coordinates of points s1 and s2, p1 and p2 

are initial and final momenta of the material point, v1 and v2 are initial and final 

speeds of the material point. 

Work A12 is a scalar quantity. The work A12 is the area along the curve Fr(s) 

between points s1 and s2.  

For the case when the force F


 remains constant ( FF 


) when moving the 

material point along the trajectory from the point s1 with radius vector 1r


 to the point 

s2 with radius vector 2r


, the work is equal to the scalar product of the force F


 and 

displacement 12 rrr


 : 

 coscos12 rFrFrFA


 ,               (2.3.5) 

where α is the angle between the vectors F


 and r


 . 

 SI unit of work is the joule: [A] = J.   

 The work A of the resulting force F


 is equal to the sum of the work of all the 

forces iF


 acting on the material point 

    









  

rdFrdFrdFAA
n

i

n

i

n

i
iii



1 1 1

.                   (2.3.6) 

The average power < P > is the work ΔA per unit of time Δt spent on this 

work 

t

A
P




 .                                            (2.3.7) 

Instantaneous power is the limit to which the average power < P >  tends 

when the time interval Δt tends to zero 

A
dt

dA

t

A
P

t







 0
lim .                                 (2.3.8) 

The SI unit of power is a watt: [Р] = W. 

The following formula can be used to calculate power 

  cosvFvFP


 ,                            (2.3.9) 
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where 
dt

rd
v



  is the instantaneous velocity of the particle, which is affected by the 

instantaneous (constant when moving by rd


) force F


, α is the angle between the 

vectors F


 and v


.  

If the work is proportional to time, then the power is constant. For the case of 

uniform accelerated motion ( constF 


), we can write the following relation 

 vFP


,                                  (2.3.10) 

where  v


 is the average particle velocity. 

Efficiency η is the ratio of useful work Au performed by the forces when 

moving the body to the total work Af of the forces applied to the body 

f

u

A

A
 .                                                 (2.3.11) 

The efficiency can also be defined as the ratio of useful power Pu to the total 

power Pf 

f

u

P

P
 .                                                 (2.3.12) 

The efficiency is often expressed as a percentage 

%100
f

u

A

A
 ,  %100

f

u

P

P
 .                      (2.3.13) 

If the body is involved in various processes related to the transfer or conversion 

of energy, then the overall efficiency is equal to the product of the efficiency of each 

of the processes 


i

i .                                           (2.3.14) 

 

2.4. Law of Energy Conservation 

 

Kinetic energy is equal to 

m

pmv
Wk

22

22

 ,                                     (2.4.1) 

where m is the mass of the material point, v and p = mv is the speed and momentum 

of the material point. 
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It follows from Newton’s second law that  

 rdF
mv

d











2

2

,                                    (2.4.2) 

where F


 is the resultant of external forces acting on a material point. 

Consider the case when the mechanical system is closed. In this case, the 

relation 0F


 is valid and the law of conservation of kinetic energy is satisfied 

constWk  .                                            (2.4.3) 

The work of all external forces acting on a material point is equal to the 

increment of the kinetic energy of this point 

1,2,

2
1

2
2

12
22

kk WW
mvmv

A  ,                       (2.4.4) 

where v1 and v2 are the initial and final speeds of the material point, Wk,1 and Wk,2 

are the initial and final kinetic energies of the material point, A12 is work when 

moving a material point from position 1 to position 2.  

Formula (2.3.18) allows you to determine the kinetic energy of a material point 

as a measure of its mechanical motion. This measure is determined by the work that a 

material point can perform when braking to a complete stop.  

The kinetic energy Wk of a system of n material points is the sum of the kinetic 

energies of these material points 




n

i

ii
n

i
ikk

vm
WW

1

2

1
,

2
,                                   (2.4.5) 

where mi and vi  is the mass and velocity of the material point with index i.  
The work of all external forces acting on the system of material points is equal 

to the increment of the kinetic energy of this system.  

The unit of energy in the SI system is the joule: [Wk] = J. 

 

We state Koenig's theorem. The kinetic energy of the system of material points 

is equal to the sum of the kinetic energy of the motion of its center of mass with a 

speed of V and the kinetic energies of the motion of material points with speeds of vi 

relative to the translationally motion coordinate system with the origin at the center of 

mass of the system 

2

1

2

2

1

2
mV

vm
W

n

i

ii 


.                                     (2.4.6) 

 



 59 

Conservative forces are those whose work does not depend on the transition of 

the system of material points from the initial to the final position. Gravity and all 

central forces are conservative forces. A central force is a force that is directed to the 

same point in space, called a power centre, and depends only on the distance to this 

centre. All other (except conservative forces) forces are called non-conservative 

forces. Dissipative and gyroscopic forces are non-conservative.  

For the case when only conservative forces act on the system of material 

points, the concept of potential energy can be introduced. A force field is called a 

potential force field if it can be described by a function 

   trWtzyxWW ppp ,,,,


 . Function Wp depends on coordinates and time, and 

the partial derivatives of this function with respect to coordinates determine the 

projections Fx, Fy and Fz of the force F


 on the coordinate axes 

x

W
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
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 , 
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W
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


 , 

z

W
F

p

z



 .                     (2.4.7) 

The function Wp is called potential. In the case of a potential force field, we 

can write the following expression for the force 

pp WgradWF 


.                                  (2.4.8) 

The value   is called the Hamilton operator or the gradient. The Hamilton 

operator is named after William Rowan Hamilton (4.08.1805 – 2.09.1865). The 

representation of the potential gradient in Cartesian coordinates has the form 

k
z

W
j

y

W
i

x

W
WgradW

ppp

pp
















 ,               (2.4.9) 

where i


, j


 and k


 are the unit vectors of Cartesian coordinates. 

The function Wp is also called potential energy. We write the following 

relation for potential energy when moving a material point from position 1 to position 

2: 


2

1

rdFWp


.                                                (2.4.10) 

Consequently, the work of conservative forces is equal to the loss of potential 

energy.  

The unit of measurement of potential energy in the SI system is the joule:  

[Wp] = J. 
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Examples of potential energies.  

The potential energy of a material point with mass m in a uniform gravitational 

field at an altitude of h above sea level is 

mghWp  ,                                           (2.4.11) 

where the sea level potential is taken equal to zero. 

The potential energy of gravitational attraction of two material points with 

masses m1 and m2, which are at a distance r from each other, is 

r

mm
GW Np

21 ,                                     (2.4.12) 

where the potential of the gravitational field at infinity is zero. 

The potential energy of a stretched spring with a coefficient of elasticity k 

when stretched equal to x is  

2

2

1
xkWp  ,                                       (2.4.13) 

where the potential energy of the undeformed spring is taken equal to zero. 

If only conservative forces act in the system, then the following relation is 

valid 

 
2

1

2

1
12 pk dWdWA ,       2,1,1,2, ppkk WWWW  .       (2.4.14) 

Formula (2.3.25) can be written as 

2,2,1,1, pkpk WWWW  .                              (2.4.15) 

From the equation (2.3.26) follows the law of conservation of mechanical 

energy. The formulation of this law has the form: if only conservative forces act in 

the system of material points, then for this system mechanical energy 

pkm WWW   is conserved and does not depend on time: constWm  . 

Mechanical energy is defined as the sum of the kinetic and potential energies.  

Consider the case when, in addition to conservative forces, a non-conservative 

force acts on a material point, the resultant of which is F 


. The work 12A  of non-

conservative forces when moving a material point from position 1 to position 2 is to 

increment the total energy of the material point 

 
2

1
1212 WWrdFA


.                              (2.4.16)  
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Condition W > Wp defines the range of permissible coordinates of the material 

point. If the total energy of a material point is positive W > 0, then its motion is 

infinite motion, i.e. point can go to infinity. If the total energy is negative W < 0, 

then the motion of the material point is finite motion, i.e. this point can only move in 

a limited area of space.  

The total energy W of a system of n non-interacting particles is equal to the 

sum of all kinetic Wk and potential Wp energies of individual particles i  = 1,2,…, n. 

If only external conservative forces act on these particles, then the total energy 

remains constant 

  


n

i
pk constWWW

1

.                        (2.4.17) 

For the total energy of a system of n non-interacting particles, the following 

relation holds 

expk WWW , ,                                      (2.4.18) 

where 


n

i
ikk WW

1
,  is the kinetic energy of the system, 



n

i
ipexp WW

1
,,  is the 

potential energy of particles in an external field of forces.  

The force acting on the particle with index i from the side of the external field 

is determined by the relation 
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where xi, yi, zi are the coordinates of the particle with index i. 

For a system of n material points with radius vectors ir


 that are under the 

action of forces iF


, the virial theorem is valid 
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where 


n

i

ii
k

vm
W

1

2

2
 is the total kinetic energy of the system. 

The angle brackets in the formula (2.4.20) mean the time average determined 

by the characteristic relation 

    tdtftf  


 0

1
,                                      (2.4.21) 

where τ is the time interval over which averaging is performed.  
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2.5. Laws of Conservation and Symmetry 

 

The most general formulation of the law of motion of mechanical systems is 

given by the Hamilton principle (or principle of least action). According to this 

principle, every mechanical system is characterized by a specific function 

   tqqqqqqLtqqL ss ;,...,,;,...,,;; 2121   ,              (2.5.1) 

 

where sqqq ,...,, 21  these are generalized coordinates (any quantities characterizing 

the position of the system in space), sqqq  ,...,, 21  are generalized speeds, s is the 

number of degrees of freedom of the system.  

The function  tqqL ;;   is called the Lagrange function. Lagrangian 

mechanics is introduced by Joseph-Louis Lagrange (25.01.1736 – 10.04.1813). 

The simultaneous assignment of all generalized coordinates and all generalized 

speeds completely allows you to determine the mechanical state of the system and 

determine its further movement. Suppose that at times t1 and t2 the system occupies 

certain positions, which are characterized by a certain set of generalized coordinates 
 1q  and 

 2q . Then the mechanical system moves between these positions so that the 

integral  

 dttqqLS
t

t


2

1

,,                                              (2.5.2) 

has the smallest (for sufficiently small sections of the trajectory) possible value. The 

above statement is called the principle of least action.  

A consequence of the principle of least action is the system of Lagrange 

equations or Euler equations (Euler equations are named after Leonhard Euler 

(15.04.1707 – 18.09.1783) if we consider the relations of the calculus of variations 
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If the Lagrange function of this mechanical system is known, then the 

Lagrange equations establish a relationship between accelerations, velocities and 

coordinates, i.e. represent the equations of motion of the system.  
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The movement of the system is accompanied by a change over time of the 

quantities 2s ( iq  and iq ), which determine its state. However, there are functions of 

these quantities that maintain constant values when the mechanical system moves. 

These functions are called integrals of motion. The number of independent integrals 

of motion for closed mechanical systems with s degrees of freedom is 2s – 1. Among 

these 2s – 1 integrals of motion there are those whose constancy is connected with 

the fundamental properties of space and time. These integrals of motion possess the 

property of additivity. The values of the additive integrals of motion for systems 

consisting of parts whose interaction can be neglected are equal to the sum of the 

values for each of the parts separately. Consider the conservation laws associated 

with these integrals of motion. 

The law of conservation of energy is associated with the uniformity of time. 

The uniformity of time means that if at any two points in time all the bodies of a 

closed system are placed under exactly the same conditions, then starting from these 

moments, all phenomena in a mechanical system will proceed in exactly the same 

way. 

Due to the homogeneity of time, the Lagrange function is clearly independent 

of time. We write the total derivative of the Lagrange function with time 
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We rewrite equation (2.5.3) 
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Then equation (2.5.4) will have the form 
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or 
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It follows that the value of L
q

L
qW

i i

i 






  remains unchanged when the 

closed-loop system moves. Value W is called energy. The law of conservation of 

energy was obtained as a consequence of the uniformity of time. This law is valid not 

only in closed systems, but also in systems that are in a constant external field. 

The law of conservation of momentum is associated with the homogeneity of 

space. The homogeneity of space means that if you transfer a closed system of bodies 
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from one place in space to another, while placing all the bodies in it in the same 

conditions in which they were in their former position, then this will not affect the 

course of all subsequent phenomena. Due to this homogeneity, the mechanical 

properties of a closed system do not change with any parallel transfer of the system as 

a whole in space. In this regard, we consider an infinitesimal transfer to segment 


 

and require that the Lagrange function remain unchanged. Parallel transfer means a 

transformation, during which all points of the system move to the same segment 


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In view of arbitrariness 


, requirement 0L  is equivalent to requirement 
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We use the Lagrange formulas 
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Transformations (2.5.10) lead to the law of conservation of momentum for 

closed systems. Therefore, the law of conservation of momentum is a consequence of 

the homogeneity of space.  

The law of conservation of angular momentum is related to the isotropy of 

space. The isotropy of space means that if you turn the closed system of bodies in 

space at any angle, while placing all the bodies in this system under the same 

conditions that they were before turning, this will not affect the behaviour of the 

system at subsequent times.  

We consider the infinitely small rotation of the system and require that the 

Lagrange function does not change. We introduce a vector 


 of infinitely small 

rotation, the absolute value of which is equal to the angle   of rotation, and the 

direction coincides with the axis of rotation. We find the increment of the radius 

vector r


 drawn from the common origin to any of the material points of the rotated 

system. The linear displacement modulus of the end of the radius vector is 

 sin rr


.                                    (2.5.11) 

We rewrite equation (2.5.11) taking into account the direction, in addition, we 

write the corresponding relation for speed 
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The variation of the Lagrange function during rotation must be equal to zero 
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We take into account that  
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Then equations (2.5.12) and (2.5.13) can be rewritten in the form 

     0,,  
i

iiii vprp
                           (2.5.15) 
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We have found that the law of conservation of angular momentum (relation 

(2.5.15)) is a consequence of the isotropy of space.  

Summing up the above, it can be argued that any closed system has only seven 

additive integrals of motion: energy, three components of the momentum and three 

components of the angular momentum. 

 

Test questions 

 

1. What form does the graph p = f(v) have in classical non relativistic 

mechanics? 

2. Give the general form of Newton’s second law. 

3. Can the force acting on the body be in one case external, and in another case 

internal? 

4. Formulate the conditions under which for non-closed systems you can use the 

law of conservation of momentum. 

5. Calculate the angular momentum module for case vr


|| . 

6. Write down the formula for the moment of force relative to the point. 

7. Indicate the reason why the total moment of internal forces is zero. 



 66 

8. Compare the concepts: shoulder strength relative to a point and shoulder 

strength relative to an axis. 

9. Write down the formula for elementary work in case rdF


 . 

10. Give the units of work and power. 

11. Is the power constant if the following relationship is maintained for work and 

time A ~ t2 ? 

12. Is relation η > 1 true for the case when the body is involved in several 

processes? 

13. What form does the dependence graph Wk = f(v) have in classical non 

relativistic mechanics? 

14. Write down the relationship between the work of all external forces acting on 

the system and the increment of the kinetic energy of the system. 

15. Formulate Koenig's theorem. 

16. Indicate the explicit form of the dependence of the potential energy of 

attraction of two material points on the distance between them. 

17. Formulate the law of conservation of mechanical energy. 

18. What parameter affects the number of Lagrange equations describing the 

behavior of a given mechanical system? 

19. Calculate the number of independent integrals of motion for a system with six 

degrees of freedom. 

20. Formulate the property of homogeneity of time. 

 

 

Problem-solving examples 

 

Problem 2.1  

 

Problem description. Two balls, whose masses are m1 = 2 kg and m2 = 1.5 kg, move 

towards each other at speeds of v1 = 6 m/s and v2 = 2 m/s. Determine the following 

values: 1) the speed u of the balls after the impact; 2) kinetic energy of the balls 

before (T1) and after (T2) the impact; 3) a fraction ω of the kinetic energy of the 

balls, converted into internal energy. The impact is seen as direct and inelastic.  

 

Known quantities: m1 = 2 kg, m2 = 1.5 kg, v1 = 6 m/s, v2 = 2 m/s. 

 

Quantities to be calculated: u, T1, T2, ω. 

 

Problem solution. Inelastic balls do not restore their original shape after impact. 

Consequently, after an impact there are no forces repelling the balls from each other, 
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and after the impact I will move the balls together at the same speed u. We define this 

speed according to the law of conservation of momentum. Since the balls move in 

one straight line, the law of conservation of momentum can be written in scalar form 

 ummvmvm 212211  .                               (P.2.1.1) 

Express speed u  from equation (2.1.1) 
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The direction of the velocity of the first ball is taken as positive. In this case, 

the speed of the second ball, which moves towards the first, should be taken with a 

negative sign. We substitute the numerical values in the formula (P.2.1.2) 

m/s28.4
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The kinetic energies of the balls before and after the impact are determined by 

the formulas 
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We substitute numerical values in formulas (P.2.1.4) and (P.2.1.5) 
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A comparison of the kinetic energies of the balls before and after the impact 

shows that, as a result of the inelastic impact of the balls, their kinetic energy 

decreased. Consequently, there was an increase in the internal energy of the balls. 

The fraction of kinetic energy, which has turned into internal energy, is determined 

from equation 

1

21

T

TT 
 .                                                 (P.2.1.6) 

We substitute the numerical values in the formula (P.2.1.6) 
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18.0
39

3239



 . 

Answer. The speed of the balls and their kinetic energy before and after the collision 

are u = 4.28 m/s, T1 = 39 J, T2 = 32 J. The fraction of kinetic energy that has turned 

into internal energy is ω ≈ 0.18. 

 

Problem 2.2  

 

Problem description. Sleds moving horizontally on ice at a speed of 5 m/s leave the 

road. Determine the distance travelled by the sled along the road if the length of their 

runners is 1 m, and the coefficient of friction of the runners on the road surface is 0.5. 

Neglect the friction of the sled on ice. 

 

Known quantities: μ = 0.5, v = 5 m/s, l = 1 m. 

 

Quantities to be calculated: L. 

 

Problem solution. Divide the distance travelled by the sled on the rough surface of 

the road into two sections. In the first section, the length of which is equal to the 

length l  of the runners, the friction force is variable. In this section, there is a gradual 

increase in the normal reaction force of the road surface from zero to a value equal to 

the gravity of the sled. 

In the second section with length l1, when the runners leave completely from 

the ice, the friction force is constant. We calculate the work of the friction force in 

these two sections 

2,1, fff AAA  .                                         (P.2.2.1) 

Suppose that the sled passed a small portion of the first stretch of length x. The 

friction force acting on the length of two runners equal to 1 m is μmg/(2l). The 

friction force acting on the length 2x of two runners is equal to lmgxFf / . The 

work of the friction force in the first and second sections is 
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The full work of the friction force in two sections is 
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The work of the friction force, on the other hand, is equal to the change in the 

kinetic energy of the sled 

1,2, kkkf WWWA  .                                   (P.2.2.5) 

According to the condition of the problem Wk,2 = 0, 2/2
01, mvWk  . Then for 

work, we can write the following expression 
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Having completed the transformation of formulas (P.2.2.4) and (P.2.2.6), we 

obtain 
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then 
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All distance travelled by sled is equal 
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We substitute the numerical values in the formula (P.2.2.9) 

m1.3
8.95.02
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
L . 

Answer. The distance travelled by the sled is L ≈ 3.1 m. 

 

Problem 2.3 

 

Problem description. Determine the distance at which the rocket will move away 

from the surface of the Earth. The initial velocity of the rocket is 9 km/s. 

 

Known quantities: v = 9 km/s = 9×103 m/s. 

 

Quantities to be calculated: h. 

 

Problem solution. A variable force of gravity acts on a rocket with mass m 

2r

GmM
F  ,                                                 (P.2.3.1) 
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where G is the gravitational constant, m is the mass of the rocket, M is the mass of  

Earth, r is the distance between the rocket and Earth. 

When climbing to a height of h, force F will do the work 


hR

R

drFA cos ,                                           (P.2.3.2) 

where α = π rad is the angle between the directions of force and displacement, R is 

the radius of Earth. 

Substituting the formula (2.3.1) into the formula (2.3.2), we obtain 
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Work is equal to the change in the kinetic energy of the rocket  

Af  = ΔWk = Wk,2 – Wk,1. For height h, the following relation is true Wk,2 = 0. In this 

case, we can write the following formula 
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We equate the right-hand sides of formulas (P.2.3.3) and (P.2.3.4) 
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We transform the formula (P.2.3.5) 
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Since 0
2/ gRGM   is the acceleration of gravity near the surface of the 

Earth, equality (P.2.3.6) can be written in the form   2// 2
0 vhRRhg  , and 
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We substitute the numerical values in the formula (2.3.7) 
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Answer. The distance at which the rocket moves away from the Earth’s surface is 

h ≈ 1.17×107 m. 

 

Problems 
 

Problem A 

Problem description. A load whose mass is 5 kg falls from a certain height and 

reaches the surface of the earth in 2.5 s. Find the job done by the load. 

 

Answer. A = 1.5×103 J. 

 

Problem B  

Problem description. The slope of the highway section is 1 m for every 20 m of the 

path. Going downhill with the engine turned off, the car moves evenly at a speed of 

60 km/h. Determine the power of the engine of the car, rising on the same slope at the 

same speed. The mass of the car is 1.5 t.  

 

Answer. N = 2.5×104 W.  

 

Problem C  

Problem description. A satellite with a mass of 12 t rotates in a circular orbit around 

the Earth, possessing kinetic energy 5.4×1010 J. Find the speed of the satellite and the 

altitude at which it is moving. 

 

Answer. v = 3×103 m/s, h = 3.8×107 m. 

 

Problem D  

Problem description. A bullet flying horizontally gets into a ball suspended on a light 

rigid rod and gets stuck in it. The mass of the bullet is 1000 times less than the mass 

of the ball. The distance from the point of suspension of the rod to the centre of the 

ball is 1 m. Find the speed of the bullet, if it is known that the rod with the ball 

deviated from the bullet by an angle equal to 10.  

 

Answer. v = 570 m/s 

 

Problem E  

Problem description. At the top of a smooth hemisphere with a radius of 0.5 m there 

is a puck with a mass of 10 g. The puck began to slide along the sphere under the 

action of a horizontally directed short-term impulse of force 2×10–2 N∙s. At what 

height from the base of the hemisphere does the puck come off its surface? 

 

Answer. h = 0.47 m. 
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CHAPTER 3. ROTATIONAL MOTION 
 

3.1. Rigid Body Kinematics 

 

An rigid body in mechanics is an idealized system of material points, all 

distances between which remain unchanged when this system as a whole moves in 

space and time. Real bodies can be approximately regarded as absolutely rigid body 

if the deformations arising under the action of external forces are small and are not 

considered when solving the problem of motion of a rigid body. 

To unambiguously determine the position of an absolutely rigid body in space, 

it is enough to set the position of any three of its points that do not lie on one straight 

line. The distance between the points of a solid does not change when the body 

moves. Therefore, of the nine coordinates characterizing the position of these three 

points, only six coordinates are independent. In view of the foregoing, it can be 

argued that a rigid body, the movement of which is not subject to any restrictions 

(constraints), is a mechanical system with six degrees of freedom: s = 6. The 

presence of bonds reduces the number of degrees of freedom. Let's look at some 

examples. Suppose a body has one fixed point. In this case, the body can rotate 

around this point, and this body has three degrees of freedom In this case, the body 

can rotate around this point, and this body has three degrees of freedom s = 3. A body 

that can rotate around a fixed axis has one degree of freedom s = 1. A rotating body, 

which can move along a fixed axis, has two degrees of freedom s = 2.  

Any arbitrary motion of a rigid body under the action of external forces can be 

represented as the sum of the translational and rotational independent movements.  

Translational motion is characterized by the same values of speeds and 

accelerations of all points of the body. Therefore, such a movement of the body is 

completely described by the movement of one of its points. It seems convenient to 

choose the centre of mass of the body as such a point. All points of a rotating body 

move in circles. The centres of these circles lie on the same line, which is called the 

axis of rotation. This motion of the body is completely described by setting the 

position in space of the axis of rotation and the angular velocity of the body at each 

moment in time. The rotational movement of the body is flat. A plane motion is a 

motion in which the trajectories of all points are located in parallel planes. Plane 

motion is characterized by three degrees of freedom. 

To describe the motion of a rigid body, two coordinate systems are introduced: 

a fixed (inertial) system x, y, z and moving coordinate system x', y', z', which is 

tightly bound to a solid body. The centre O' of the moving coordinate system is 

conveniently combined with the center of mass of the body. The position of the body 

in space relative to the system x, y, z is determined by the position of the moving 

system x', y', z'. Suppose that the position of an arbitrary point M in the system x, y, 

z is characterized by a radius vector r


. Position of a point M in the system x', y', z' is 

characterized by a radius vector r 


. Radius vector R


 indicates the position of the 

moving system x', y', z' initial point O'. In this case 
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rRr 


 

 rvv O
 


, ,                                           (3.1.1) 

 

where rv 
  is the speed of a point M in a fixed coordinate system x, y, z;  

RvO


  is the speed of translational motion of a solid body, equal to the 

speed of motion of its centre of mass;  

O' is the centre of mass of the body; 

 
  is the angular velocity of the point M. 

Since the angular velocity 


 does not depend on the position of the point O' to 

which the motion is assigned, the quantity 


 is called the angular velocity of rotation 

of the solid. 

Formula (3.1.1) shows that if the velocity vectors Ov 


 and 


 at a given time 

are mutually perpendicular for any choice of point O', then the velocities v


 of all 

points of the body lie in one plane (plane motion) perpendicular to vector 


. The 

value of the translational velocity of plane motion depends on the position of the axis 

of rotation passing through the point O' and perpendicular to the plane of motion.  

The axis of rotation, for which the translational speed is zero, is called the 

instantaneous speed of rotation. The speed of all points at a given time can be 

represented as the speed of rotational motion around the instantaneous axis. 

Velocities of all points of the body that are located on the instantaneous axis are zero 

at a given time. Over time, the position of the instantaneous axis changes both 

relative to the body and relative to the fixed coordinate system. 

The plane motion of a solid can be represented as a series of successive 

elementary rotations around instantaneous axes. In the case of non-plane motion, 

when the velocity vectors Ov 


 and 


 are not mutually perpendicular, elementary 

movements of the body cannot be represented as a rotation around the instantaneous 

axis. In this case, the motion of a solid at each moment of time is the sum of two 

independent motions, namely rotation around a certain axis and translational motion 

along this axis.  

The motion of a rigid body can be described by Euler's theorem. A solid body 

having one fixed point can be moved from one position to any other by turning at a 

certain angle around a fixed axis passing through this point. This theorem holds for 

infinitesimal and finite displacements. The speed v


 of a rigid body in accordance 

with Euler's theorem can be represented as the sum of two speeds 

   rrv


,,0   ,                                       (3.1.2) 

where r


 is the radius vector of the moving point of the body relative to the fixed 

point, 0


 is the angular velocity of rotation about an axis that is stationary in the  

coordinate system x, y, z; 
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The angular velocity 0


 during body movement varies only in magnitude, but 

not in direction. The angular velocity 


 can vary both in magnitude and in direction. 

The orientation of the coordinate axes of the system x', y', z', associated with 

the moving solid, relative to the stationary system x, y, z is described using Euler 

angles ψ, θ, φ. Suppose that at the initial moment the axes of the systems x, y, z and 

x', y', z' coincide. Then the Euler angles correspond to the following successive 

rotations of a rigid body. The first rotation occurs at an angle φ around the z axis. The 

second rotation takes place at an angle θ around the new position of the x axis (line 

of nodes). The third rotation occurs at an angle ψ around the z' axis. The limits of 

change of angles are 

 20  ,      0 ,      20  .                      (3.1.3) 

Angle ψ is called the angle of precession. Angle θ is called the angle of 

nutation. Angle φ is called the angle of pure rotation.  

The projections ωx', ωy', ωz' of the angular velocity vector 


 of the body on 

the axis of the moving coordinate system are associated with angles ψ, θ, φ and their 

time derivatives  ,  ,   by the following relationships 

 sinsincos  x  

 cossinsin 


y  

 cos z .                                            (3.1.4) 

The radius vector r


 of the material point of the body has the form 

kzjyixkzjyixr 


,                         (3.1.5) 

where x, y, z are the coordinates of the vector r


 in a fixed coordinate system with 

orts i


, j


, k


; x', y', z' are the coordinates of the vector r


 in a moving coordinate 

system with orts i 


, j 


, k 


.  

A moving coordinate system is connected to a solid.  

Coordinates x, y, z and x', y', z' are interconnected by ratios 

zRyRxRx  131211  

zRyRxRy  232221  

zRyRxRz  333231  



 75 

zRyRxRx 312111   

zRyRxRy 322221 
 

zRyRxRz 332313 
,                                     (3.1.6) 

where Rij are elements of the transformation matrix for which the following 

conditions are satisfied 

 


3

1j
ikjkij RR  ,     










ki

ki
ik

,0

,1
 .                         (3.1.7) 

3.2. Equations of Motion 

 

The equations of motion of a solid body, regarded as a system of rigidly 

connected material points, have the form 

F
dt

vd
m c


 ,   N

dt

Ld 


 .                                       (3.2.1) 

The first equality in (3.2.1) describes the translational motion of the centre of 

inertia of a solid with a velocity of cv


. A solid body has a mass of m and an external 

force F


 acts on it.  

The second equality in (3.2.1) is the equation of angular momentum L


 of a 

solid. The angular momentum L


 changes with time under the action of the total 

moment N


 of external forces. The angular momentum L


 and the moment of 

external forces N


 can be considered with respect to an arbitrary fixed point or 

relative to the center of inertia of an absolutely rigid body.  

Equation (3.2.1) contains only external forces. Internal forces do not affect the 

movement of an absolutely rigid body. Consider the case when the resultant of all 

external forces and the total moment of external forces are equal to zero 0F


, 

0N


. In this case, an absolutely solid body can be in two states.  The first 

condition is characterized by the balance of the body. The second state is 

characterized by the movement of an absolutely rigid body in space in a certain way. 

The centre of inertia of a solid will move rectilinearly and uniformly with arbitrary 

speed cv


. At the same time, an absolutely rigid body will rotate. The angular 

momentum L


 of a solid will not depend on time.  

In equilibrium, 0F


 and the moment of these external forces does not 

depend on the choice of the point with respect to which it is determined. The 

arbitrariness in choosing a reference point of the moment of forces N


 greatly 

facilitates the solution of a number of practical problems in solid mechanics 
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3.3. Inertia Moment and Inertia Tensor 

 

The moment of inertia of a rigid body relative to a given axis of rotation is the 

value I equal to the sum of the casts of the masses of the material points that make up 

this body per square of the distances of these points to the axis of rotation 


i

iirmI 2
.                                             (3.3.1) 

The moment of inertia is an additive quantity. Consider a body whose mass 

distribution density is the same. In this case, the angular momentum L


 of a body 

rotating with an angular velocity 


 around its axis of symmetry is related to the 

moment of inertia by formula 




IL  .                                                 (3.3.2) 

From (3.2.1) and (3.3.2) the basic equation for the dynamics of the rotational 

motion of a rigid body around a fixed axis follows 

N
dt

d
I





.                                             (3.3.3) 

In the case of a solid body of any shape that has an arbitrary mass distribution 

and rotates around a given z axis, the following relation can be indicated 

zz NI  ,         ILz  ,                                   (3.3.4) 

where  z  is the projection of angular acceleration on the z axis of rotation;  

Nz, Lz are projections of the moment of external forces and angular momentum on 

this axis; I is the moment of inertia about the z axis.   

The moment of inertia I in the mechanics of rotational motion plays a role 

similar to the role of mass in the mechanics of translational motion. Each body has a 

certain moment of inertia, regardless of whether it rotates or not. For a body whose 

mass distribution at each point is characterized by density ρ = ρ(x,y,z), the moment 

of inertia is 

 dmrI 2
 

 dVzyxdm ,, ,     dxdydzdV  ,                         (3.3.5) 

where dm is an element of body mass; dV is an element of volume; r is the distance 

from the given axis to the volume element, which in the general case is a function of 

the coordinates of the points of the body: r = r(x,y,z).  
Moments of inertia of the body can be calculated from the known body shape 

and mass distribution. Consider special cases. 

The moment of inertia Iy about the y axis of a plane figure, for example, a 

curvilinear trapezoid, is determined by formula 
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       
b

a
y dxxfxfxxI 12

2 ,                          (3.3.6) 

where ρ(x) is linear density; f1(x), f2(x) are functions that define the shape of a 

figure in a plane (x,y). 
Moments of inertia Ix and Iy relative to the x axes and y axes, a plane body 

occupying the region S with a mass distributed with a density of ρ(x,y), are equal to 

 
S

x dSyyxI 2, ,     
S

y dSxyxI 2, ,           (3.3.7) 

where dS = dxdy is an element of area.  

The moment of inertia relative to the origin is  

    
S

dSyxyxI ,22
0  .                              (3.3.8) 

Moments of inertia Ix, Iy, Iz relative to the x, y, z axes of the body occupying 

the volume V, with the density ρ(x,y,z) of mass distribution, are expressed by the 

relations 

    
V

x dVzyxzyI ,,22   

    
V

y dVzyxxzI ,,22   

    
V

z dVzyxyxI ,,22  ,                              (3.3.9) 

where  dV = dxdydz is an element of volume. 

Consider a homogeneous disk of radius R  and thickness b. Let z axis pass 

through the center of mass perpendicular to the plane of the disk, and x axis and y 

axis are located in the plane of the disk. Then moments of inertia relative to the axes 

x, y, z are equal 

  
R

z

mRR
brrdrbrdVrI

0

24
22

24
22   

4

2mR
II yx  ,  yxz III  ,                             (3.3.10) 

where m = ρV = πρbR2 is the mass of the disk. 

Consider a homogeneous cylinder of length h with a base equal to R. Z axis 

passes through the centre of mass perpendicular to the plane of the base. In this case, 

the moment of inertia of the cylinder about the z axis is 
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   
h R

z

mRR
hdrrddzI

0

2

0 0

24
3

2
2

4



 ,                  (3.3.11) 

where m = ρπR2h is the mass of the cylinder.  

Consider a homogeneous cone with a height of h and a base with a radius of R. 

Let the z axis pass through the center of mass perpendicular to the plane of the base. 

In this case, the moment of inertia of the cone relative to the z axis is 

   
h hRz

z mR
hR

drrddzI
0

2

0

/

0

2
4

3

10

3

10

 
 ,             (3.3.12) 

where 
3

2hR
m


  is the mass of the cone. 

Here, the equation of the cone  22

2

2
2 yx

R

h
z   and the relation x2 + y2 = r2 

are taken into account. 

Consider a homogeneous rod of mass m and length l. Let the z axis pass 

through the center of mass perpendicular to the rod. In this case, the moment of 

inertia of the rod relative to the z axis is 

12

2ml
I z  .                                                (3.3.13) 

Consider a homogeneous rectangular plate with a length of a and a width of b. 

Let the z axis be directed perpendicular to the plate and pass through its center of 

mass. Axes x and y are located in the plane of the plate. In this case, the moments of 

inertia relative to the axes x, y, z are equal to 

12

2mb
I x  ,  

12

2ma
I y  ,   22

12
ba

m
I z  .             (3.3.14) 

Consider a hollow ball with infinitely thin walls. The radius of the ball is R. In 

this case, the moments of inertia of the hollow ball relative to the axes x, y, z are 

2

3

2
mRIIII zyx  ,    

22mRIII zyx  .          (3.3.15) 

Consider a homogeneous solid ball. In this case, the moments of inertia of the 

continuous ball relative to the axes x, y, z are equal to 

2

0

22

5

2
4 mRdrrrIIII

R

zyx   ,                (3.3.16)  



 79 

where 
3

3

4
Rm    is the mass of a continuous ball.  

Formula (3.3.16) assumes that the moment of inertia of the spherical layer 

relative to the diameter, i.e. a hollow ball with infinitely thin walls of radius r and 

mass dm is 
3

4
2 2

3

2

R

drmr
dmrdI  . 

Consider a homogeneous ellipse with axes a and b. In this case, the moments 

of inertia of the continuous ball relative to the axes x, y, z are 

2

4

1
maI x  , 

2

4

1
mbI y  ,   22

4
ba

m
I z  ,              (3.3.17) 

where m is the mass of the ellipse. 

Consider a homogeneous triaxial ellipsoid with semiaxes a, b, c, directed 

along axes x, y, z, which coincide with the main axes of inertia. In this case, the 

moments of inertia of a continuous ball with respect to the axes x, y, z are equal 

 22

5
bc

m
I x  ,   22

5
ca

m
I y  ,    22

5
ba

m
I z  ,      (3.3.18) 

where m is the mass of an ellipsoid. 

The calculation of the moments of inertia can be simplified using the Huygens-

Steiner theorem. This theorem is named after Christiaan Huygens (14.04.1629 – 

8.07.1695) and Jakob Steiner (18.03.1796 – 1.04.1863). The moment of inertia I 

about any given axis K is determined by the formula 

2maII СK  ,                                      (3.3.19) 

where IC is the moment of inertia about the axis C, passing through the centre of 

mass of the body and parallel to the given axis K; m is body mass; a is the distance 

between axles K and C.  

The Huygens-Steiner theorem reduces the calculation of the moment of inertia 

about an arbitrary axis to the calculation of the moment of inertia about an axis 

passing through the centre of mass of the body.  

If the body is homogeneous and has an axis of symmetry, then the relationship 

between the angular momentum L


 of this body and the angular velocity 


 of 

rotation of the body around the axis of symmetry has the form according to which the 

directions of the vectors 


 and L


 coincide. In the general case of bodies of arbitrary 

shape and with an arbitrary distribution of masses, the directions of vectors 


 and L


 

do not coincide, and the relation between these quantities has the form 
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zxzyxyxxxx IIIL    

zyzyyyxyxy IIIL    

zzzyzyxzxz IIIL   ,                               (3.3.20) 

where Lx, Ly, Lz and ωx, ωy, ωz are projections of vectors L


 and 


 on the 

coordinate axis, respectively.  

The proportionality coefficients between L and ω are components of the 

inertia tensor 



















zzzyzx

yzyyyx

xzxyxx

III

III

III

I .                                        (3.3.21) 

The inertia tensor I characterizes the inert properties of the body during its 

rotation. The components of the inertia tensor I in the case of a continuous mass 

distribution are determined by the expressions 

   dmzyI xx
22

,   xydmII yxxy  

   dmxzI yy
22

,   yzdmII zyyz  

   dmyxI zz
22

,   zxdmII xzzx ,                  (3.3.22) 

where dm = ρ(x,y,z)dV, dV = dxdydz is an element of volume. 

Diagonal components Ixx, Iyy, Izz  are called axial moments of inertia, and off-

diagonal elements Ixy, Iyx, Ixz, Izx, Iyz, Izy are called centrifugal moments of inertia. 

For any point of a solid body, there is a Cartesian coordinate system in which the 

centre of inertia is diagonal 



















z

y

x

I

I

I

I

00

00

00

.                                             (3.3.23) 

The axes of such a coordinate system are called main axes of inertia, and the 

diagonal components Ix, Iy, Iz are called main moments of inertia.  

In the general case, the principal axes for different points of a solid have a 

different direction, and the principal moments have different meanings. The 

calculation of the main moments of inertia of the body is reduced to the solution of 

the so-called secular equation 
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0







IIII

IIII

IIII

zzyzzx

yzyyxy

zxxyxx

.                          (3.3.24) 

The secular equation is a cubic equation for value I. The three roots of the 

secular equation determine the main moments of inertia.  

In the case when the body in the absence of external forces rotates around a 

certain axis, the position of which does not change in space with time, then this axis 

is called the free axis of the body. For any body, there are three mutually 

perpendicular axes passing through the centre of mass of the body, which are its free 

axes. These axes are also the main axes of inertia of the body. Moments of inertia 

about these axes are the main moments of inertia of the body.  

If the body rotates around one of its main axes, for example, z axis, то  

ωy ≠  0 and ωx = ωy =  0  and  

0 yx LL ,      zzz IL  ,       


IL  .                       (3.3.25) 

Finding the main axes of inertia of the body is greatly simplified if the body 

has symmetry. Consider, for example, a round flat plate of finite thickness. In this 

case, one main axis is perpendicular to the plane of the plate, and the other axis is 

located in the middle plane of the plate and passes through its centre. The third major 

axis is perpendicular to the first two axes. Consider the ball. One major axis passes 

through the centre of the ball. The two remaining main axes are oriented arbitrarily 

and lie in a plane perpendicular to the first axis. 

In the case when the main moments of inertia are equal, the body is called a 

spherical top. A body is called a symmetric top if the following relations Ix = Iy ≠ Iz. 

 

3.4. Work and Energy of Moving Solids 

 

Internal forces do not do work when the body rotates. The elementary work of 

dA external forces when the body rotates through an angle of dφ during dt is 

determined by the formula 

   dNdtNdtNdA zz 


, ,                                (3.4.1) 

where ω is the angular velocity; N


 is the total moment of external forces; 

Nz = Ncos(α) is the projection of the vector N


 on the z axis of rotation; α is the 

angle between the vectors N


 and 


.   

The work A of external forces when turning the body at a finite angle 

Δφ = φ2 – φ1 is determined by the expression 
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
2

1





dNA z ,                                              (3.4.2) 

where φ1 and φ2 are the values of the angle in the initial and final positions  

of the body.  

The projection of the moment of forces on the axis of rotation Nz in the general 

case depends on the angle of rotation Nz = Nz(φ).  
The instantaneous power P in the case of rotational motion is found by the 

formula 




zzz NN
dt

d
NP   .                               (3.4.3) 

A body rotating around a fixed z axis has kinetic energy 

2

2

1
zk IW  ,                                            (3.4.4) 

where Iz is the moment of inertia about the axis of rotation; ω is the angular velocity.  

The change in kinetic energy Wk  with a change in angular velocity from ω1 to 

ω2 is determined by the formula 

 2
1

2
2

2

1
  zk IW .                                    (3.4.5) 

If the body rotates in an arbitrary way relative to a fixed point coinciding with 

its centre of mass, then its kinetic energy is 


 zyxki

kiikk IW
,,,2

1
 ,                                 (3.4.6) 

where the summation is performed independently over the three values of the axes x, 

y, z  of the Cartesian coordinate system with the origin at the center of mass of the 

body; Iik is a component of the inertia tensor; ωi and ωk are the angular velocities of 

rotation around the axes i and k, respectively.  

If the axes of the Cartesian coordinate system coincide with the main axes of 

inertia of the body, then 

 222

2

1
zzyyxxk IIIW   ,                        (3.4.7) 

where Ix, Iy, Iz are the main moments of inertia of the body. 

Consider the case of plane motion of a body. Suppose that a body point O 

moves with a speed of 0v


, and the body itself rotates with an angular speed of 


 

around an axis passing through this point. Kinetic energy in this case has the form 
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   2
00

2
0

2

1
,,

2

1
 IvRmmvW ck 


,                       (3.4.8) 

where m is body mass; cR


 is the radius vector of the centre of mass of the body;  

I0 is the moment of inertia of the body about the axis passing through the point O.  

Let us choose the center of mass of the body as point O. In this case, the 

kinetic energy of this body during planar motion will be equal to the sum of the 

kinetic energy of the translational motion of the center of mass with a speed equal to 

the velocity of the center of mass cV


 and the energy of rotational motion with an 

angular velocity 


 around an axis passing through the center of mass of the body 

with a moment of inertia Ic about this axis 

22

2

1

2

1
cck ImVW  .                                  (3.4.9) 

In the case of an arbitrary movement of the body, we have 


 zyxki

kiikck ImVW
,,,

2

2

1

2

1
 .                          (3.4.10) 

 

3.5. Motion of Rigid Body Fixed at Point 

 

The consideration of plane motion is simplified by the fact that the angular 

velocity vector maintains a constant direction in space, perpendicular to the plane of 

motion, and does not change its direction relative to the body. When a solid moves 

about one fixed point, these simplifying circumstances disappear. In this case, the 

angular velocity vector in the general case can change its direction in space.  

It is convenient to consider this type of motion in a coordinate system rigidly 

connected with the body. The origin of the coordinate system is placed at the point of 

fixation of the body. The equations of motion in this case are called the Euler 

equations.  

The equation of motion of the centre of mass in this case has the form 

  Fr
dt

d
m

dt

vd
m




 0
0 , ,                                  (3.5.1) 

where 0r


 is the radius vector of the centre of mass of the body drawn from the point 

of attachment; F


 is a resultant force that includes bond reactions. 

The axes of the coordinate system associated with the body can be 

conveniently directed along the main axes of inertia. In this case, the inertia tensor 

reduces to its three main values I1, I2, I3, and the angular momenta are 
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111 IL  ,       222 IL  ,       333 IL  ,                       (3.5.2) 

where ω1, ω2, ω3 are the components of the angular velocity relative to the 

coordinate axes moving with the body.  

Consideration of the equation of the rotational motion of a body around one 

fixed point requires preliminary recording of the total time derivative of vector A


 

 A
t

A

dt

Ad 


,



 ,                                          (3.5.3) 

where  

k
dt

Ad
j

dt

Ad
i

dt

Ad

t

A zyx 











 


.                            (3.5.4) 

We apply formulas (3.5.3) and (3.5.4) for the angular momentum L


 

  NL
t

L 






, .                                         (3.5.5) 

Taking into account that Lx = Ix ωx, Ly = Iy ωy, Lz = Iz ωz, we rewrite equation 

(3.5.5) for a moving coordinate system 

  xyzyz
x

x NII
dt

d
I  


 

  yzxzx

y

y NII
dt

d
I  


 

  zxyxy
z

z NII
dt

d
I  


.                              (3.5.6) 

Equations (3.5.6) are called Euler equations. These equations fundamentally 

allow us to determine the motion of a body fixed at one point, although in practice the 

solution can be very complex and difficult to fulfil.  

Consider a body that is not affected by external forces, therefore, the moments 

of forces Nx, Ny and Nz are equal to zero. Let us direct the axes of the coordinate 

system rigidly connected with the body along the central principal axes. Therefore, 

quantities Ix, Iy, Iz are the central main moments of the inertia of the body. Let us find 

out the types of free movement of the body in this case. 

A consequence of formulas (3.5.6) is the assertion that free rotation of a rigid 

body is possible only around free axes. Moments of inertia about these axes are 

generally different. It can be proved that the rotation of the body will be stable only 

relative to the central main axis with the maximum or minimum moment of inertia  
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Rotation around a central major axis with an average moment of inertia is not 

stable. This circumstance can be clearly demonstrated in the following experiment. 

The central principal axes of a rectangular parallelepiped are three mutually 

perpendicular axes passing through its geometric centre parallel to its sides. The 

parallelepiped has the largest and smallest moments of inertia with respect to axes 

parallel to its longest and shortest sides. If you toss it with simultaneous rotation 

around one of these axes, the movement will be stable while maintaining the 

direction of the axis of rotation. The rotation of the box around an axis parallel to the 

middle side does not lead to a stable rotation, and the body begins to tumble 

randomly.  

Consider a body that has axial symmetry about some axis. In this case, one of 

the central principal axes coincides with the axis of symmetry, and the other two are 

perpendicular to it. We direct x axis along the axis of symmetry, y axis  and z axis 

direct along two other central principal axes. From the conditions of symmetry it 

follows that Ix = I1, Iy = Iz = I2. Equations (3.5.6) in this case have the form 

01 
dt

d
I x

 

  0212  xz

y
II

dt

d
I 


 

  0122  yx
z II

dt

d
I 


.                               (3.5.7) 

The consequence of equations (3.5.7) is the possibility of motion, at which 

ωx = ω1 = const and ωy = ωz = 0. Therefore, rotation around the axis of symmetry of 

the body is possible at a constant speed. However, this is not the only possibility. We 

write the second and third equations (3.5.7) under the condition ωx = ω1 = const as 

follows 

0 z

y

dt

d



 

0 y
z

dt

d



,                                          (3.5.8) 

where 
 

2

121

I

II 



 . 

Equations (3.5.8) have solutions 

 tAy  cos  

 tAz  sin .                                           (3.5.9) 
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The angular velocity vector kj zy


   lying in the plane (y, z) rotates 

around the origin of the reference frame with a circular frequency of γ. 
The total angular velocity is 

 


i1 .                                    (3.5.10) 

This total vector moves around x axis along the surface of the cone with an 

angle of α at the apex. Angle α satisfies a ratio of 1/tan   . In this case, the 

angular velocity of rotation of the body does not coincide in direction with the x axis 

of symmetry of the body. The axis of symmetry, in turn, does not remain stationary in 

space.  

We describe the full movement of the body. The plane in which the angular 

velocity vectors 


 and the axis of symmetry are located rotates with angular velocity 

γ around vector L


. The relative position of the vector 


 and the axis of symmetry 

does not change. The motion of the axis of symmetry of the body around the 

motionless vector of the total angular momentum L


 is called nutation. The angular 

velocity of rotation γ is called the nutation velocity. 

The amplitude of nutation depends on the initial conditions of motion. 

However, the nutation frequency is determined only by the moments of inertia and 

the angular velocity of rotation around the axis of symmetry. A body can rotate 

without nutation, if its angular velocity is directed along the axis of symmetry. 

The moments of inertia of a homogeneous ball are equal to each other 

Ix = Iy = Iz , hence γ = 0. There is no nutation in a homogeneous ball. However, 

experiments indicate the presence of nutation at the Earth. This proves that the Earth 

cannot be considered as a uniform ball. Measurements of the moments of inertia of 

the Earth showed that (I1 – I2) / I2 ≈ 300. This means that the nutation period of the 

earth's axis should be approximately 300 days. Therefore, within 300 days the axis of 

rotation should make one turn on the surface of the cone around the axis of symmetry 

of the Earth.  

However, the observed motion of the Earth is much more complicated. This 

movement is irregular, as it is affected by earthquakes and seasonal changes 

occurring on the surface of the Earth. In fact, the nutation period is approximately 

440 days, which is apparently due to the Earth’s absolute stiffness. The maximum 

distance of a point on the earth's surface through which the axis of rotation passes 

from a point through which the axis of symmetry passes at the north pole does not 

exceed 5 m.  

An axially symmetric body, brought into very fast rotation around its axis of 

symmetry, is called a gyroscope. Suppose that the gyroscope is fixed at the point of 

the centre of mass, but its axis can rotate freely in any direction. This fastening is 

carried out using a gimbal, providing a free change in the orientation of the axis of 

the gyroscope in three mutually perpendicular directions.  

Let the moment of external forces be applied to the gyroscope. The gyroscope 

rotates around its axis with a large angular velocity. The nutation of a gyroscope 
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along its axis of rotation under the action of external forces is very small. Therefore, 

we can assume that the axis of rotation all the time coincides with the axis of 

symmetry of the gyroscope. The axis of rotation coincides with the central main axis 

of inertia of the gyroscope so it is chosen as to be stable. Around this axis is free 

steady rotation. This direction of the axis of stable rotation is maintained. For 

example, if, having taken up the base of a gimbal, to arbitrarily change its direction in 

space, then the hinges will rotate in such a way that the axis maintains a constant 

direction. Therefore, if the gimbal is mounted on any body, for example, on a rocket, 

then with an arbitrary movement of the rocket, the axis maintains a constant direction 

in space relative to the system of fixed stars. This circumstance makes the gyroscope 

the most important navigation tool for missile and aircraft flights.  

The angular momentum vector L


 approximately coincides with the angular 

velocity vector 


 directed along the central main axis of the gyroscope. Strictly 

speaking, these vectors do not coincide. However, the deviations of the directions of 

the winds are so small that they can be neglected. The movement of the gyroscope is 

conveniently described by equation N
dt

Ld 


 , since a change in the vector L


 

describes the movement of its axis, namely, rotation through an angle of dφ over time 

dt. The direction of movement of the axis of the gyroscope can be determined 

according to relation  LddtNLd


,  using a known value of N


.  

The angular velocity of the gyroscope precession can be easily calculated 





I

N

L

N

dt

d
 .                                      (3.5.11)  

A characteristic feature of precession is that it does not have inertia. The 

precession movement ceases at the moment the termination of the moment of 

external forces.  

Consider a gyroscope whose axis is fixed at one point and suspended by a 

thread at its end. In this case, the axis is not horizontal, but at an angle of α to the 

vertical. The motion of such a gyroscope can be described by the equations 

sinmglN   

dtmgldLdL  sinsin   

L

mgl

dt

d



,                                          (3.5.12) 

where g is the acceleration of gravity; l is the length of the thread; m is the mass of 

the gyroscope. 

The angular velocity Ω does not depend on the angle α of inclination of the 

axis to the vertical. This is due to the fact that when the angle is changed, both the 

angular momentum and the distance in the horizontal plane from the axis of rotation 
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to the end of the vector L


 change. The independence of the precession rate of such a 

gyroscope from the angle of inclination of its axis gave reason to call it a gyroscopic 

pendulum. The period of motion of such a pendulum is 

mgl

I
T

 22



 .                                      (3.5.13) 

The period of the gyroscopic pendulum at sufficiently large moments of inertia 

I and angular velocity of rotation ω, as well as a small suspension length l, can be 

quite large and can be minutes or even hours. A mathematical pendulum with such a 

large period would have a very large length. The length of a mathematical pendulum 

whose oscillation period is equal to the precession period of a gyroscopic pendulum 

is called the reduced length of the gyroscopic pendulum.  

 

 

Test questions 

 

1. Under what conditions can real bodies be considered as absolutely solid? 

2. Compare the number of degrees of freedom of the system for two cases when 

parts of the system interact and do not interact with each other. 

3. Describe the plane motion. 

4. Does the angular velocity depend on the position of the point to which the 

motion is related? 

5. What form does the dependence v = f(t) have for the points lying on the 

instantaneous axis of rotation? 

6. Formulate Euler's theorem. 

7. Describe the Euler angles and indicate the limits of their change. 

8. Write down the equation of motion of a solid. 

9. Indicate the ratio between the moment of inertia and the angular momentum of 

a homogeneous body. 

10. Write down the basic equation of the dynamics of rotational motion. 

11. Calculate the moment of inertia of the steel disk with a radius of 30 cm and a 

thickness of 0.2 cm. 

12. Formulate the Huygens – Steiner theorem. 

13. Give a comparative description of the axial and centrifugal moments of inertia. 

14. What characteristics of a solid determine the roots of the secular equation? 

15. Write down the formula for the work of external forces when turning the body 

at a finite angle. 
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16. Describe the dependence of the kinetic energy of a rotating body on its angular 

velocity. 

17. Formulate the Euler equations in Cartesian coordinates, which describe the 

motion of a body fixed at one point. 

18. Indicate the axes with respect to which free rotation of the solid is possible. 

19. Indicate the factors on which the amplitude and frequency of nutation depend. 

20. Write down the formula for the period of motion of the gyroscopic pendulum. 

 

 

Problem-solving examples 
 

Problem 3.1  

 

Problem description. The physical pendulum is a rod with a length of l = 0.5 m  and a 

mass of m1 = 1 kg. A disk of mass m2 = 0.5m1 is attached to one of the ends of the 

rod. Determine the moment of inertia of such a pendulum about the axis Oz, passing 

through a point O on the rod perpendicular to the plane of the drawing. 

 

Known quantities: l = 0.5 m, m1 = 1 kg, m2 = 0.5m1. 

 

Quantities to be calculated: Iz. 

 

Problem solution. The total moment of inertia of the pendulum is equal to the sum of 

the moments of inertia of the rod Iz1 and disk Iz2 

21 zzz III  .                                                 (P.3.1.1) 

To calculate the moments of inertia Iz1 and Iz2 we use the Steiner theorem 

2maII C  .                                               (P.3.1.2) 

Express the moment of inertia of the rod through its length l 

2
11

2
11

12

1
amlmI z  ,                                    (P.3.1.3) 

where a1 is the distance between the axis Oz and the parallel axis passing through 

the center of mass C1 of the rod; m1 is the mass of the rod. 
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We write the relation for the quantity a1 

632
1

lll
a  .                                             (P.3.1.4) 

Therefore, the moment of inertia of the rod is 

2
1

2
1

2

1

2
1

1 111.0
36

1

12

1

612
lmlm

l
m

lm
I z 

















 .         (P.3.1.5) 

The moment of inertia of the disk, taking into account the Steiner theorem, is 

2
21

2
2

2
2

am
Rm

I z  ,                                        (3.1.6) 

where a2 is the distance between the axis Oz and the parallel axis passing through the 

center of mass of the disk; R = l/4 is the radius of the disk. 

We write the relation for the quantity a2 

l
ll

a
12

11

43

2
2  .                                           (P.3.1.7) 

The moment of inertia of the disk, taking into account formula (P.3.1.7), is 

2
2

2

2

2

2
2 871.0

12

11

42
lmlm

lm
I z 

















 .                       (P.3.1.8) 

We substitute formulas (P.3.1.5) and (P.3.1.8) into the formula (P.3.1.1) 

2
2

2
1 871.0111.0 lmlmI z  .                                 (P.3.1.9) 

According to the condition of the problem m2 = 0.5m1. We rewrite formula 

(P.3.1.9) with this relation 

2
1547.0 lmI z  .                                           (P.3.1.10) 

We substitute the numerical relations in the formula (P.3.1.10) 

137.05.01547.0 2 zI kg·m2. 

Answer. The moment of inertia of the physical pendulum is Iz ≈ 0.137 kg·m2. 
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Problem 3.2  

 

Problem description. Flat disk has mass m = 80 g. A thin flexible thread is thrown 

through the block, to the ends of which weights of masses m1 = 100 g and m2 = 200 g 

are suspended. Determine the acceleration with which the weights will move. The 

friction between the thread and the disc is neglected. 

 

Known quantities: m = 80 g, m1 = 100 g, m2 = 200 g. 

 

Quantities to be calculated: a. 

 

Problem solution. We use the basic laws of translational and rotational motion to 

solve the problem. Two forces act on each of the weights: gravity mg, directed 

downward, and the force of tension of the thread, directed upward. 

Suppose that the acceleration vector a


 of the weight m1 is directed upwards. In 

this case, we can write  

gmT 11  ,                                                      (P.3.2.1) 

where T1 is the thread tension force acting on a weight with mass m1; g is the 

acceleration of gravity.  

The resultant force causes uniformly accelerated movement of the weight. 

According to Newton’s second law 

amgmT 111                                                (P.3.2.2) 

or 

amgmT 111  .                                             (P.3.2.3) 

The vector of acceleration a


 of the weight m2 is directed downward, therefore 

T1 < m2g. We write Newton’s second law for this weight 

amTgm 222                                             (P.3.2.4) 

or 

amgmT 222  .                                          (P.3.2.5) 

According to the basic law of the dynamics of rotational motion, the torque M 

applied to the disk is equal to the product of the moment of inertia J of the disk and 

its angular acceleration ε 
JM  .                                                 (P.3.2.6) 

Define the torque. The forces of the tension of the threads act not only on the 

weights, but also on the disk. According to Newton’s third law, the forces 1T   and 2T   

applied to the rim of the disk are equal, respectively, to forces T1 and T2, but opposite 
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in direction. The disk rotates with acceleration when moving weights. According to 

the earlier assumption, we can conclude that 12 TT  . 

The torque applied to the disk is equal to the product of the difference of these 

forces by the force arm equal to the radius r of the disk, i.e.  

 rTTM 12
 .                                         (P.3.2.7) 

The moment of inertia of the disk is  

2

2mr
J  .                                                 (P.3.2.8) 

The angular acceleration of the disc is related to linear acceleration by the ratio  

r

a
 .                                                  (P.3.2.9) 

We substitute formulas (P.3.2.7), (P.3.2.8), (P.3.2.9) into formula (P.3.2.6) 

 
r

amr
rTT

2

2

12  .                                 (P.3.2.10) 

We rewrite equation (P.3.2.10) 

2
2

ma
TT  .                                     (P.3.2.11) 

Due to the following relations 11 TT   and 22 TT  , we can replace the forces 

1T  , 2T   with formulas (P.3.2.3), (P.3.2.5), then 

2
1122

ma
amgmamgm                        (P.3.2.12) 

or 

  a
m

mmgmm 



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2
1212 .                    (P.3.2.13) 

We express the acceleration from the equation (P.3.2.13) 

g
m

mm

mm
a

2
12

12




 .                             (P.3.2.14) 

We substitute the numerical values in the formula (P.3.2.14)  

88.28.9

2

1080
1010010200

1010010200
3

33

33



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







a m/s2 . 
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Answer. The acceleration with which the loads will move is equal to a = 2.88 m/s2. 

 

Problem 3.3 

 

Problem description. A disk of mass m = 50 kg and radius r = 20 cm had an initial 

rotation frequency n = 480 min–1. After some time, under the action of friction, the 

disk stopped. Find the moment M of friction. The moment of friction forces shall be 

considered constant in magnitude. Consider two cases: 1) disk stopped after a time 

t = 50 s; 2) the disk made N = 200 turns to a complete stop. 

 

Known quantities: m = 50 kg, r = 20 cm, n = 480 min–1, t = 50 s, N = 200. 

 

Quantities to be calculated: M. 

 

Problem solution. 1. According to the law of the dynamics of rotational motion, the 

change in the angular momentum of a rotating body is equal to the product of the 

angular momentum M acting on the body and the duration of this moment 

12  JJtM  ,                                   (P.3.3.1) 

where J is the moment of inertia of the disk; ω1, ω2 are the initial and final angular 

velocities of the disk. 

As ω2 = 0 and Δt = t, then Mt = –Jω1, whence follows 

t

J
M 1 .                                           (P.3.3.2) 

The moment of inertia of the disk relative to its geometric axis is 

2/2mrJ  ,                                          (P.3.3.3) 

were m is the mass of the disk; r is the radius of the disk. 

We substitute the formula (P.3.3.3) into the formula (P.3.3.2) 

t

mr
M

2

1
2

 .                                        (P.3.3.4) 

We rewrite formula (P.3.3.4) taking into account the relation ω1 = 2πn  

t

nmr
M

2

22 
 .                                        (P.3.3.5) 
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Substitute the numerical values in the formula (P.3.3.5) 

 
mN1

502

60

480
14.32102050

22


















M . 

2. We write a formula that expresses the relationship of work with a change in 

kinetic energy 

22

2
1

2
2  JJ

A  .                                        (P.3.3.6) 

We take into account that the final angular velocity is zero ω2 = 0, then 

2

2
1JA  .                                            (P.3.3.7) 

Work during rotational motion is determined by the formula A = Mφ. 

Substituting the relations for the work and the moment of inertia of the disk into the 

formula (P.3.3.7), we get 

4

2
1

2


mr
M  .                                      (P.3.3.8)                         

We rewrite the formula in order to obtain an explicit expression for the 

moment of friction 

N

mrmr
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
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


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2
1
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
 .                          (P.3.3.9) 

We substitute the numerical values in the formula (P.3.3.9) 

 
mN1

20014.324
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14.32102050

2

2222
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
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
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
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

M .  

Answer. The moment of friction forces is M = – 1 N·m. 
 

 

Problems 

Problem A  

 

Problem description. Determine the moment of inertia J of a thin uniform rod with a 

length of l = 30 cm and a mass of m = 100 g relative to the axis perpendicular to the 

rod and passing through its middle.  

 

Answer. J = 7.5 kg·m2. 
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Problem B  

 

Problem description. Determine the moment of inertia J of a flat homogeneous 

rectangular plate with a mass m = 800 g relative to the axis coinciding with one of its 

sides if the length of the other side is 40 cm. 

 

Answer. J = 4.27 kg·m2. 

 

Problem C  

 

Problem description. A thin uniform rod with a length of l = 50 cm and a mass of 

m = 400 g rotates with an angular acceleration ε = 3 rad/s2 about an axis passing 

perpendicular to the rod through its middle. Determine the torque M. 

 

Answer. M= 0.025 N·m. 

 

Problem D  

 

Problem description. A platform in the form of a disk of radius R = 1 m rotates by 

inertia with a frequency of n1 = 6 min–1. At the edge of the platform is a man whose 

mass is 80 kg. Calculate the rotation frequency of the platform if a man moves to its 

centre. The moment of inertia of the platform is J = 120 kg·m2. The moment of 

inertia of a man is considered as the moment of inertia of a material point. 

 

Answer. n2 = 0.1 min–1. 

 

Problem E  

 

Problem description. A thin straight rod of length l = 1 m is attached to a horizontal 

axis passing through its end. The rod was rejected at an angle φ = 60° and released. 

Determine the linear velocity v of the lower end of the rod at the time of passage 

through the equilibrium position. 

 

Answer. v = 3.84 m/s. 
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CHAPTER 4. MECHANICAL OSCILLATIONS  
 

4.1. Harmonic Oscillations 
 

Many physical processes are reduced to the study of the behaviour of the 

system with small deviations from the equilibrium position. In most practically 

important cases, researchers are interested in the behaviour of the system not with 

possible deviations from the equilibrium position, but only with small deviations. No 

matter how complex the dependence of the force f (x) acting on the system on the 

coordinate is, this dependence can be represented in the form of a Taylor series 

          ...0
3

0
2

00
32

 f
x

f
x

fxfxf            (4.1.1) 

The laws of action of forces f (x) encountered in physics usually satisfy the 

expansion of this function in a Taylor series. This subject was formulated by James 

Gregory (11.1638 – 10.1675) and Brook Taylor (18.08.1685 – 29.12.1731) in 1715. 

Obviously f (x) = 0, since point x = 0 is an equilibrium point and, therefore, the 

force at this point is zero. There are two possible cases: 1) f ′(0) ≠ 0, and 2) f ′(0) = 0.  

In the first case, the term xf ′(0) is the main member of the Taylor series 

(4.1.1). All subsequent terms of the series are proportional to x2, x3, …, and for 

sufficiently small values of x they are arbitrarily small compared to the first term. 

Therefore, with a sufficiently small deviation x  from the equilibrium position, we 

can assume that the force acting on the system is xf ′(0). Point x = 0 is an equilibrium 

point, so the force xf ′(0) should always be directed to this point. It means that 

f ′(0) < 0.  

For the second case, when f ′(0) = 0, it is necessary to consider the third term, 

proportional to x2. This term (x2/2)f ″(0) must be zero, because x = 0 is an 

equilibrium point. This statement follows from the fact that this term has the same 

sign, both for positive and negative values x. Finally we get that f ″(0) = 0. Thus, the 

next non-zero term can be a term proportional to x3. When analyzing small deviations 

in case f ′(0) = 0, term (x3/3)f ‴ (0) must be used as an expression for force.  

Usually, in real physical systems, the term xf ′(0) is nonzero, and the equation 

of motion for small deviations x from the equilibrium position has the form 

  xkfx
dt

xd
m 








0

2

2

,                                   (4.1.2) 

where f ′(0) < 0; k = – f ′(0) > 0. 

Equation (4.1.2) is called the equation of harmonic oscillations. A system that 

implements such small oscillations is called a harmonic oscillator. Examples of a 

harmonic oscillator are mathematical and physical pendulums with sufficiently small 

angles of deviation from the equilibrium position.  
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Consider the system on which the force f (x) acts and in the expansion for this 

force, along with the term proportional to x, it is also necessary to consider the terms 

proportional to x2, x3, … In this case, nonlinear oscillations occur. A system that 

performs such oscillations is called an anharmonic oscillator.  

Equation (4.1.2) of the motion of a harmonic oscillator can be represented in 

the form of 

02  xx  ,                                                      (4.1.3) 

where 02 
m

k
 . 

A direct check can verify that the quantities sin(ωt) and cos(ωt) are solutions 

of (4.1.3). The differential equation (4.1.3) is linear. The sum of the solutions of the 

linear equation and the multiplication of any solution by an arbitrary constant value 

also makes up the solution. Therefore, the general solution of equation (4.1.3) has the 

form 

     tAtAtx  cossin 21  ,                              (4.1.4) 

where A1 and A2 are constant values. A function of type x(t)  is called a harmonic 

function.  

Expression (4.1.4) is often converted to another form 

     tAtA  cossin 21  

    


















 t

AA

A
t

AA

A
AA  cossin

2
2

2
1

2

2
2

2
1

12
2

2
1   

        tAttA sincossinsincos ,            (4.1.5) 

where
2
2

2
1 AAA  ; 

2
2

2
1

1cos
AA

A


 ; 

2
2

2
1

2sin
AA

A


 .  

Therefore, equation (4.1.4) can be represented as 

   tAx sin     or      tAx cos .                  (4.1.6) 

The value A is called the amplitude. The value ω is called the harmonic 

frequency. The value (ωt + φ) in the argument of sine or cosine in expression (4.1.6) 

is called the oscillation phase. The phase value at the initial time t = 0, i.e. 

   
0t

t  is called the initial phase. The value 


2
T  is called the period 

of harmonic oscillation. 
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The description of the processes associated with the addition of harmonic 

oscillations is simplified if the oscillations are depicted graphically as vectors in the 

plane, or the vibrations are presented in complex form. The graphic oscillation 

diagram is called a vector diagram.  

Consider x axis, which contains point O. We will build a vector from a point 

O. The vector has a length A and makes an angle φ with the x axis. We bring the 

vector into rotation with an angular velocity ω. The projection of the end of the 

vector will move along the x axis from – A to + A. The coordinate of this projection 

will change over time according to the law x = Acos(ωt + φ). Consequently, the 

projection of the end of the vector onto x axis will perform harmonic oscillation with 

amplitude, equal to the length of the vector, with a circular frequency equal to the 

angular velocity of rotation of the vector, and with an initial phase equal to the angle 

formed by the vector with the axis at the initial time.  

Consider the addition of two harmonic oscillations of the same direction and 

the same frequency 

 111 cos   tAx  

 222 cos   tAx .                                     (4.1.7) 

We represent both vibrations using vectors 1А


 and 2A


. We construct the 

resulting vector 21 AAA


  using the rules of addition of vectors. The resulting 

vector will rotate at the same angular velocity ω as the vector 1А


 and 2A


. Using the 

cosine theorem, for the modules of vectors  AA 


,  11 AA 


, 22 AA 


, as well as 

the initial phase φ of the resulting vector, we can write 

 
2/1

1221

2

2

2

1 cos2




  AAAAAA


 

2211

2211

coscos

sinsin
tan






AA

AA




 .                                    (4.1.8) 

So, the resulting oscillation is also harmonic with amplitude A, frequency ω 

and initial phase φ.  

Consider the addition of two equally directed oscillations, which vary slightly 

in frequency: ω and ω + Δω (Δω << ω).This difference allows you to choose the 

point in time when the initial phases of the oscillations are equal to zero. Consider 

case A1 = A2 = A for simplicity. The equation of these oscillations will have the form 

 tAx cos1   

  tAx   cos2 .                                     (4.1.9) 
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We use the formula for the sum of cosines 

 ttAxxx 


cos
2

cos221 














 
 .                     (4.1.10) 

The first factor in square brackets changes much more slowly than the second 

factor. Consequently, the first factor will hardly change in the time it takes the second 

factor to complete several complete oscillations. This gives us reason to consider the 

oscillation (4.1.10) as a harmonic oscillation of the frequency ω, the amplitude of 

which varies according to some periodic law. Oscillations of this type are called 

beats.  

Consider a system with two degrees of freedom. Two quantities are needed to 

uniquely specify the position of such a system in space. Such a system can be 

considered as a system that performs two mutually perpendicular vibrations.  

Consider the addition of two mutually perpendicular harmonic oscillations of 

the same frequency ω, which occur along the coordinate axes x and y. We choose the 

time reference so that the initial phase of the first oscillation is equal to zero, and the 

initial phase of the second oscillation is equal to φ. Then the equations of mutually 

perpendicular vibrations will have the form 

 tAx cos  

   tBy cos .                                     (4.1.11) 

Equations (4.1.11) is the equation of the trajectory specified in the parametric 

form along which the body participating in both vibrations moves. We exclude time 

from these equations.  

Let's make preliminary transformations:   Axt /cos  ; 

   2/1sin Axt  . Using these transformations, we rewrite (4.1.11): 

2

1sincos 









A

x

A

x

b

y
  

or 

 2

2

2

2

2

sincos
2


AB

xy

B

y

A

x
.                              (4.1.12) 

Equation (4.1.12) is the equation of an ellipse whose axes are arbitrarily 

oriented relative to the coordinate axes x and y.  

We study the shape of the trajectory in some special cases. 
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1. Phase difference φ is zero. In this case (4.1.12) takes the form 

0









B

y

A

x
.                                               (4.1.13) 

We get a straight line equation 

x
A

B
y  .                                                      (4.1.14) 

The point during vibrations moves along this straight line, and its distance from 

the origin is 
22 yxr  . We take into account that φ = 0, then for dependence 

φ = φ(t) we get 

 tBAr cos22  .                                     (4.1.15) 

Therefore, the resulting movement is harmonic oscillation along a straight line.  

2. The phase difference φ is ± π. In this case (4.1.12) takes the form 

0

2











B

y

A

x
.                                     (4.1.16) 

Analysis of the equation leads to the conclusion that the resulting movement is 

a harmonic oscillation along a straight line 

x
A

B
y  .                                             (4.1.17) 

3. The phase difference φ is ± π/2. In this case (4.1.12) takes the form 

1
2

2

2

2


B

y

A

x
.                                        (4.1.18) 

Equation (4.1.18) is the equation of an ellipse reduced to coordinate axes x and 

y. The semiaxes of the ellipse are equal to the corresponding amplitudes of the 

oscillations. The ellipse turns into a circle with equal amplitudes A = B.The cases 

φ = + π/2 and φ = – π/2 differ in the direction of movement along the ellipse (or 

around the circumference). Consider mutually perpendicular vibrations whose 

frequencies differ by a small amount. The resulting movement in this case occurs 

along a slowly changing curve, which will sequentially take the form corresponding 

to all the values of the phase difference from – π to + π.  

Consider the case when the frequencies of mutually perpendicular vibrations 

differ by a significant amount. In this case, the trajectory of the resulting movement 

has the form of rather complex curves, which are called Lissajous figures or 

Bowditch curve. This family of curves was investigated by Nathaniel Bowditch 
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(26.03.1773 – 16.03.1838) and Jules Antoine Lissajous (4.03.1822 –  24.06.1880). 

For example, with a frequency ratio of 1 : 2 and phase differences φ = π/2 and φ =0, 

the motion paths are a closed and an open curve, respectively.  

 

4.2. Natural Oscillations 

 

Oscillations that occur under the action of only internal forces without external 

influences are called natural oscillations. Natural oscillations may not be harmonic. 

But with sufficiently small deviations from the equilibrium position, these 

oscillations can be considered as harmonic oscillations.  

Harmonic oscillation is completely characterized by frequency, amplitude and 

initial phase. The oscillation frequency depends on the physical properties of the 

system. For example, in the case of a harmonic oscillator in the form of a material 

point oscillating under the action of the spring’s elastic forces, the elastic properties 

of the spring are taken into account by the elastic coefficient k, and the properties of 

the point are taken into account by its mass m. In this case, for the frequency we get 

the expression ω = k/m.  

The calculation of the amplitude and initial phase of the oscillations requires 

knowledge of the position and velocity of the material point at some point in time. If 

the oscillation of the material point is expressed by equation x = Acos(ωt + φ), and 

the coordinate and velocity at the time t = 0 are equal, respectively x0 and v0, then we 

can write the corresponding relationship 

cos0 Ax  ,  sin
0

00 A
dt

dx
vx

t




 .                 (4.2.1) 

Formulas (4.2.1) allow us to calculate unknown values of the amplitude and 

initial phase 

2

2
02

0


v
xA  ,    

 


0

0tan
x

v
 .                            (4.2.2) 

Thus, the known initial conditions make it possible to completely describe the 

harmonic oscillation. 

The idea of potential oscillation energy makes sense only when the acting 

forces are potential. Consider a harmonic oscillator. In this case, it is convenient to 

assume that the potential energy of the point is zero in the equilibrium position. We 

take into account that the restoring force can be represented in the form F = – kx. The 

relationship between potential energy and potential force has the form 

xWF p  / . Consequently, the potential energy of a harmonic oscillator can be 

represented as 

 
22

222 xmxk
xWp


 .                                    (4.2.3) 



 102 

The law of conservation of mechanical energy for an oscillating system in 

which only potential forces act has the form 

const
22

222


xmxm 

.                               (4.2.4) 

The law of conservation of mechanical energy of the considered oscillating 

system allows us to draw two important conclusions.  

1. The maximum kinetic energy of a harmonic oscillator is equal to its 

maximum potential energy. The harmonic oscillator has the maximum kinetic energy 

at the moment of its passage, the equilibrium position point x = 0. The potential 

energy at this moment is zero. Therefore, denoting the maximum speed as vm, we can 

write 

22

222
Ammvm 

 .                                      (4.2.5) 

2. The average kinetic energy of a harmonic oscillator is equal to its average 

potential energy. The law of motion for a harmonic oscillator corresponds to formula 

x(t) = Acos(ωt + φ), and the velocity in harmonic oscillations is 

   tAx sin . Therefore, the time dependences for the kinetic and potential 

energy have the form 

   


 t
Amxm

tWk
2

222

sin
22


 

   


 t
Am

tWp
2

22

cos
2

.                              (4.2.6) 

Consider the period of one oscillation as a period of time on which the average 

value is determined. The calculation of the average values of kW  and pW  is 

reduced to finding the average values   t2cos  and   t2sin . We can 

write the following relations 

    
T

dtt
T

t
0

22

2

1
cos

1
cos   

    
T

dtt
T

t
0

22

2

1
sin

1
sin  .                     (4.2.7) 

An analysis of the formulas (4.2.6) and (4.2.7) allows us to write the following 

relation 

   tWtW pk  .                                           (4.2.8) 
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The dependence of deviation, velocity and acceleration during harmonic 

oscillations on time are represented by completely identical curves, but shifted 

relative to each other in the direction of the axis ωt. The phase of velocity in 

harmonic oscillations is greater than the displacement phase by an amount of π/2. 

The phase of acceleration in harmonic oscillations is greater than the phase of 

velocity by a value of π/2. Thus, the acceleration phase is greater than the 

displacement phase by an amount of π.  

Consider the case when, in the expansion for the force, along with the linear 

term xf ′(0), the next term is also significant, for example x2f ″(0)/2! In this case, the 

Taylor series for the force will have the form 

   0
!2

0
2

2

2

f
x

fx
dt

xd
m  .                           (4.2.9) 

It was previously noted that if the system oscillates around the position of 

stable equilibrium x = 0, then when condition f ′(0) = 0 is fulfilled, condition 

f ″(0) = 0 must also be fulfilled. Otherwise, point x = 0 cannot be a point of stable 

equilibrium. Obviously, if condition f ′(0) ≠ 0 is satisfied, then condition f ′(0) < 0 

must also be fulfilled, and in addition, derivative f ″(0) need not be equal to zero and 

can have any sign. In addition, it is assumed that the value of f ″(0) is a sufficiently 

small value.  

We divide both sides of equation (4.2.9) by mass m 

22
0

2
0 xxx   ,                                        (4.2.10) 

where 
 

m

f 02
0


 ; 

   
 02

0

2

0
2
0 f

f

m

f










 . 

The value of ε is a parameter of the smallness of the term proportional to the 

square of the displacement. This value has a dimension inversely proportional to the 

length, and therefore can be represented in the form ε = 1/L, where L is a large 

quantity having a length dimension.  

If the displacement x is sufficiently small x << L = ε–1, then the term on the 

right-hand side of (4.2.10) can be considered small. In this case, this term is called a 

perturbation. The method by which an approximate solution of equation (4.2.10) is 

found is called the perturbation theory method.  

The oscillation that occurs when condition ε = 0 is satisfied is called 

unperturbed motion 

  tAtx 000 sin .                                     (4.2.11) 

The condition under which the right-hand side of equation (4.2.10) can be 

considered as a perturbation has the form εA0 << 1 (the amplitude A0 is not very 
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large). The solution of the equation of oscillation motion in the presence of a 

disturbance (ε ≠ 0) can be represented as 

 txtAx 100 sin   ,                                 (4.2.12) 

where x1(t) is a correction to the unperturbed motion.  

If ε → 0, then the value x1(t) should also tend to zero. Therefore, x1(t) should 

also be a small value |x1| << A0. We substitute equation (4.2.12) into equation 

(4.2.10) 

 2
10100

22
0

2
01

2
01 sin2sin xtxAtAxx   .             (4.2.13) 

The second and third terms in brackets on the right side of equation (4.2.13) are 

much smaller than the first term, therefore, these terms can be neglected. Using these 

considerations, we rewrite equation (4.2.13) in the form 

 tAxx 0
2
0

2
0

1
2
01 2cos1

2



  .                         (4.2.14) 

The solution to equation (4.2.14) should be sought in the form  

tbax 0111 2cos  ,                                        (4.2.15) 

where a1 and b1 are constant values. 

The simultaneous solution of equations (4.2.14) and (4.2.15) with subsequent 

analysis leads to the following relations for a1 and b1 

2

2
0

1

A
a


 ,    

6

2
0

1

A
b


 .                                      (4.2.16) 

Therefore, the solution of equation (4.2.12), taking into account the first 

correction, can be written in the form 

tAAtAx 0
2
0

2
000 2cos

6

1

2

1
sin   .                    (4.2.17) 

The most significant feature of this decision is the presence of a member 

proportional to cos2ω0t. Therefore, due to the presence in the expansion for the force 

of a nonlinear term proportional to x2, a term with a doubled frequency 2ω0 appears 

in the vibrations. This term is called the second harmonic of oscillations. If we 

continue the solution of equation (4.2.10) and find the following smaller corrections, 

we can make sure that they contain frequencies nω0, which are multiples of the 

fundamental frequency ω0. In this case, it can be argued that the oscillation has 

higher harmonics. We can say that the most characteristic consequence of the 

presence of nonlinearity in the Taylor series for a force is the appearance of higher 

harmonics in the oscillations.  
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An analysis of equation (4.2.17) allows us to state that both components of the 

oscillations with frequencies ω0 and 2ω0 do not occur near point x = 0, but in the 

vicinity of point x = εA0/2. Consequently, the presence of a nonlinear term 

proportional to x2 shifts the equilibrium point, near which oscillations occur. This 

result is understandable if we take into account that a force proportional to x2 is 

directed all the time in the same direction and, therefore, must inevitably shift the 

point near which the oscillations occur.  

 

4.3. Damped Oscillations 

 

The presence of friction, which is an external force, leads to a decrease in the 

energy of the harmonic oscillator. A decrease in energy leads to a decrease in the 

amplitude of the oscillations. Fluctuations in the presence of friction become damped 

oscillations. Friction acts against speed. Therefore, for a harmonic oscillator, the 

action of the friction force is equivalent to a decrease in the returning force. For a 

spring pendulum, this is equivalent to a decrease in spring elasticity, i.e. quantities k. 

The oscillation frequency is ω = k/m. This means that the oscillation frequency 

should decrease, and the oscillation period should increase.  

Consider the force of liquid friction. It is necessary to add the force of liquid 

friction to the right side of the equation of motion 

xbxkxm   ,                                        (4.3.1) 

where b is the coefficient of friction. 

It is convenient to rewrite equation (4.3.1) as follows 

02 2
0  xxx   ,                                        (4.3.2) 

where 
m

b

2
 ; 

m

k
2

0 . 

The solution to equation (4.3.2) is conveniently sought in the form 

 tiAx exp0 .                                         (4.3.3) 

Considering that  

   tiiti
dt

d
 expexp  ,         titi

dt

d
 expexp 2

2

2

         (4.3.4) 

and substituting (4.3.3) in (4.3.2), we find 

    02exp 2
0

2
0   itiA .                          (4.3.5) 

The factor A0exp(iβt) is not equal to zero. Therefore, another factor must be 

equal to zero 
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02 2
0

2   i .                                          (4.3.6) 

Equation (4.3.6) is a quadratic equation with respect to β. The solutions of this 

equation have the form 

  ii 22
0 ,   

22
0   .                     (4.3.7) 

Substituting these values for quantity β into equation (4.3.3), we obtain 

   titAx  expexp0  .                                    (4.3.8) 

The presence of the signs “” in equation (4.3.8) reflects the fact that equation 

(4.3.2) is a second-order equation and, therefore, must have two independent 

solutions that are obtained with different signs.  

Considering the case of not very large coefficients of friction, we can write the 

following relation 

0
2

 
m

b
.                                                  (4.3.9) 

In this case, 022
0   and, therefore, Ω is a real quantity. Therefore, 

exp(iΩt) is a harmonic function. The oscillation described by equality (4.3.8) is 

represented in real form by formula 

  ttAx  cosexp0  .                            (4.3.10) 

This oscillation is not harmonic and is not periodic. Nevertheless, it is 

convenient to talk about the period T of such oscillations, meaning by the period the 

time intervals through which the displacement vanishes. In the same sense, we can 

speak of the oscillation frequency 
T

2
 . The amplitude of the oscillations in this 

case is A = A0exp(–γt). The amplitude of damped oscillations depends on time and 

can be represented as maximum deviations during successive oscillations. The time 

during which the amplitude of the damped oscillations decrease by e times 




1
d                                                  (4.3.11) 

is called the decay time. The value γ is called the damping decrement. 

The attenuation value must be attributed to the natural decay time scale, i.e. to 

the period of oscillation. The attenuation intensity is characterized by the attenuation 

of the amplitude in one oscillation period, and therefore, instead of the attenuation 

decrement γ, it is convenient to use the so-called logarithmic attenuation decrement.  

We calculate the oscillation amplitudes in two consecutive time intervals 

separated by the oscillation period 
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 101 exp tAA  ,   202 exp tAA  .              (4.3.12) 

It follows that  

 t
A

A
exp

2

1  .                                              (4.3.13) 

Therefore, the change in the amplitude of oscillations for period T is 

characterized by a value 

T  ,                                                      (4.3.14) 

The value θ is called the logarithmic damping decrement. 

Formula (4.3.13) can be transformed as follows 











2

1ln
A

A
 .                                            (4.3.15) 

The logarithmic decrement of attenuation is the logarithm of the ratio of the 

amplitudes of the oscillations in one period.  

A different interpretation can be given to the logarithmic decrement of 

attenuation. Consider a decrease in the amplitude of oscillations over N periods, i.e. 

in time NT. Instead of formulas (4.3.12), we can write the following formulas 

 101 exp tAA  ,    NTtAAN  101 exp  .           (4.3.16) 

Therefore, the ratio of amplitudes separated by a time interval containing N 

periods is 

    NNT
A

AN expexp
1

1  .                            (4.3.17) 

The fulfillment of condition Nθ = 1 corresponds to a decrease in amplitude by 

e times. Consequently, we can say that the logarithmic damping decrement 

N

1
 .                                                  (4.3.18) 

is the inverse of the number of periods during which the amplitude decays e times.  

Let's look at two examples.  

1. Assume that θ = 10–2. The oscillations decay only after about 102 oscillations. 

During N1 = 10 oscillations, the amplitude changes insignificantly, approximately 

by one tenth of its initial value. Consequently, during this small number of periods 

the oscillations can be considered as undamped oscillations.  

2. Assume that θ = 0.1. In this case, after N2 = 10 oscillations, complete attenuation 

will occur. The attenuation is significant even after several fluctuations. Therefore, 
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in this case, when considering processes that occur even over several periods, it is 

impossible to consider fluctuations as undamped as an approximation. 

 

4.4. Forced Oscillations 

 

Along with friction, some other external force can act on the harmonic 

oscillator. The most important from an applied point of view is the case of harmonic 

external force. We assume that an external force acts on a harmonic oscillator 

according to the following law 

tFF cos0 ,                                             (4.4.1) 

where F0 is the amplitude of the force; ω is the frequency with which an external 

force acts on a harmonic oscillator.  

Instead of equation (4.3.2), motion is described by the following equation 

tFxbxkxm cos0  .                                (4.4.2) 

Dividing both sides of this equation by mass m, we obtain the canonical form 

of the equation of forced oscillations 

t
m

F
xxx  cos2 02

0   .                               (4.4.3) 

The influence of the initial conditions weakens over time, and the oscillator 

moves into steady harmonic oscillations. The process of establishing oscillations is 

called transient regime.  

When considering a transitional regime, the most important is the question of 

its duration. This duration is determined by the decay time of the oscillations τd = 1/γ 

that existed at the time the external force started. Consequently, the value of τd is the 

period of time after which one can forget about the initially existing oscillations and 

consider only the oscillations that are established under the action of an external 

force. It can be shown that the time to establish the stationary regime of forced 

oscillations after the onset of an external force is also τd.  

Consider the steady forced oscillations. In this case, it is necessary to consider 

that the oscillations were established at the infinitely distant past moment of time. 

Therefore, equation (4.4.3) can be considered for all instants of time. To solve this 

equation, it is convenient to use the complex form of harmonic oscillations 

 ti
m

F
xxx  exp2 02

0   .                             (4.4.4) 

The solution to the equation will be sought in the form 

 tiAx exp .                                           (4.4.5) 
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We substitute (4.4.5) into (4.4.4) 

     ti
m

F
itiA  exp2exp 02

0
2  .                  (4.4.6) 

This equality should be valid for all moments of time, i.e. time t should not 

ultimately enter it. From this condition it follows that β = ω0. We will find amplitude 

A from equation (4.4.6) 
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A .           (4.4.7) 

The complex number (4.4.7) is more convenient to represent in exponential 

form 

 iAA exp0  

  22222
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
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






 .                               (4.4.8) 

Therefore, the solution (4.4.5) can be represented in complex form 

    tiAx exp0 .                                (4.4.9) 

The real part of the expression (4.4.9) is equal to 

   tAx cos0 ,                                (4.4.10) 

where quantities A0 and φ are determined by equations (4.4.8).  

Thus, under the influence of an external harmonic force, the oscillator performs 

forced harmonic oscillations with the frequency of this force. The phase and 

amplitude of these oscillations are determined by both the properties of the force and 

the characteristics of the oscillator.  

Consider the change in the phase and amplitude of the forced oscillations.  

A curve describing the dependence of the amplitude of steady-state forced 

oscillations on the frequency of an external force is called the amplitude phase curve. 

An analytical expression of such a curve is given by dependence (4.4.8). The 

amplitude reaches its maximum value at a frequency of external force close to the 

frequency of natural oscillations of the harmonic oscillator (ω ≈ ω0).Oscillations 

with a resonant frequency are called resonant oscillations. The phenomenon of 

increasing the amplitude of oscillations to a maximum value at a frequency of ω ≈ ω0 
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is called resonance. The frequency ω0 in this case is called the resonant frequency. 

When the frequency deviates from ω0, the amplitude decreases sharply. 

Forced vibrations with low friction are of the greatest interest. Therefore, we 

assume that γ << ω0.  

Consider the case of low frequencies ω << ω0 (static case). We write the 

expression for the amplitude from equation (4.4.8) 

2
0

0
,0

m

F
A s  .                                           (4.4.11) 

An external force at a low frequency acts on the system as a constant static 

force. Therefore, the maximum displacement (amplitude) is equal to the displacement 

under the influence of static force F0 

2
0

00

m

F

k

F
xm  ,                                    (4.4.12) 

where 
2
0mk   is the coefficient of elasticity of the restoring force.  

From condition ω << ω0 it follows that in equation (4.4.3), the terms x  

(acceleration) and x2  (speed) are much smaller than the term x2
0  (in proportion 

to the elastic force). In this case, equation (4.4.3) can be represented as 

t
m

F
x  cos02

0  .                                    (4.4.13) 

The solution to this equation has the form 

t
m

F
x 


cos

2
0

0 .                                       (4.4.14) 

This means that at each moment of time the displacement is what it should be 

if the force did not change with time. Friction forces do not play a role in these 

processes.  

Consider the case of high frequencies ω >> ω0. We write the expression for 

the amplitude from equation (4.4.8) 

2
0

m

F
A  .                                              (4.4.15) 

The term x  in equation (4.4.8), which is proportional to the external force, is 

much larger than each of the terms associated with speed and elastic 

force: xxx 2
0

2   ; xxxx  222   . Therefore, equation (4.4.3) 

can be written as 

t
m

F
x cos0 .                                    (4.4.16) 
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The solution to this equation has the form 

t
m

F
x 


cos

2
0 .                                   (4.4.17) 

An analysis of equation (4.4.17) shows that elastic forces and friction forces in 

comparison with an external force do not play any role in forced oscillations. An 

external force acts on the harmonic oscillator as if there were no elastic and friction 

forces.  

Let us consider forced oscillations at a frequency close to the natural frequency 

of a harmonic oscillator ω ≈ ω0. Such an oscillation can be considered as a resonant 

oscillation. The amplitude has a maximum value at resonance 

0

0
,0

2

1




m

F
A r .                                      (4.4.18) 

The term of equation (4.4.3) associated with acceleration is equal to the term 

due to elastic force, hence xxx 2
0

2   . This means that the acceleration of 

the harmonic oscillator is due to the action of the elastic force, and the external force 

and the elastic force are mutually compensated. Equation (4.4.3) in this case can be 

rewritten in the form 

t
m

F
x 0

0 cos2   .                                       (4.4.19) 

The solution of equation (4.4.19) has the form 

t
m

F
x 0

0

0 sin
2




 .                                       (4.4.20) 

The maximum amplitude is reached not exactly at ω = ω0, but near this value 

ω = ω1. However, with not very large friction, when γ << ω0, the displacement of 

the position of the maximum at ω = ω1 from the position of the maximum at ω = ω0 

is insignificant and can not be taken into account.  

An important characteristic of the properties of a harmonic oscillator is the 

increase in the amplitude of its oscillations at resonance in comparison with the 

amplitude value for the static case. A consequence of formulas (4.4.11) and (4.4.18) 

is the equation 


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
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


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A
Q

s

r

2

2

2
0

,0

,0
,                                (4.4.21) 

where θ is the logarithmic damping decrement.  

The value Q is called the quality factor (Q-factor) of the oscillating system.   
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It follows from equation (4.4.21) that the smaller the oscillator attenuation, the 

more vigorously the oscillator increases its amplitude in resonance: 

  /,0,0,0 ssr AQAA  .  

 

4.5. Self-Oscillations and Parametric Oscillations 

 

Maintaining undamped natural oscillations in the system requires an energy 

source. This energy source replenishes the energy loss associated with attenuation. 

The oscillations will be stationary provided that in one period exactly as much energy 

enters the oscillation system as it is spent on the damping process during the same 

time.  

Oscillating systems, which provide special circuits for receiving from a special 

energy source to compensate for energy losses due to attenuation, are called  

self-oscillating systems. In contrast to forced oscillations, the frequency of self-

oscillations coincides with the natural frequency of the system. In phase space, a 

periodic self-oscillation corresponds to a closed trajectory, to which all middle 

trajectories tend.  

If the friction in the system is small, then in one period a small part of the total 

energy of the oscillator enters the system. In this case, self-oscillations are harmonic 

with great accuracy and their frequency is close to the frequency of natural 

vibrations. In the case of large friction forces in a single period, a significant part of 

the oscillator energy is supplied to the system and therefore the oscillations are very 

different from harmonic oscillations.  

Consider the oscillations of a pendulum suspended on an axis in a rotating 

sleeve. Let the pendulum initially rest. Then the rotating sleeve as a result of sliding 

about the axis does the work to overcome the friction force. This work is completely 

converted into internal energy, and as a result, the axis and the sleeve are heated.  

Now let the pendulum oscillate. In that half-period of oscillations of the 

pendulum, when the directions of rotation of the axis of the pendulum and the sleeve 

coincide, the friction forces coincide in the direction with the motion of the points of 

the axis surface. Therefore, these forces cause an increase in the amplitude of 

oscillations of the pendulum. On the other hand, the energy converted into internal 

energy decreases during the half-cycle of oscillations in comparison with the case of 

a resting pendulum. Therefore, only part of the energy from the machine, which 

rotates the sleeve, is converted into internal energy. Another part of the energy goes 

to increase the energy of the pendulum.  

If the friction forces are independent of speed, then the energy acquired by the 

pendulum in the half-cycle of oscillations, when the directions of rotation of its axis 

and shaft coincide, is equal to the energy lost by this pendulum to work against the 

forces of friction in another half-period.  

Self-oscillations are widely used in technology. A well-known example is a 

pendulum clock. In this watch, energy is transferred to the pendulum by the jerks as a 

result of the force exerted on the pendulum by the spring. Another example is an 

electric bell. The oscillations of the electric bell hammer turn on and off the electric 



 113 

current, which, in turn, transfers energy to the bell system, due to which the 

oscillations of the hammer are supported.  

A special case of self-oscillations are resonant vibrations. A system that makes 

resonant oscillations accumulates energy for a fairly long time. At a certain point in 

time, sharp changes occur in the system, and it returns to its original state.  

Undamped oscillations can be excited with a periodic change in the parameters 

of the oscillating system. Such excitation of oscillations is called parametric 

resonance. An example of a system that performs such oscillations is a pendulum 

whose length varies periodically. Suppose that at any time when the pendulum thread 

passes through a vertical (equilibrium) position, its length L decreases by ΔL. During 

each period, a decrease in the length L of the pendulum by ΔL will occur twice.  

Consider the simplest case when the decrease in length L will occur according 

to the law  

00 cosLLL  ,                                      (4.5.1) 

where α0 is the angular amplitude of the oscillations of the pendulum.  

One change in the length of the pendulum corresponds to the performance of 

work against gravity 

 
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

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
                        (4.5.2) 

and works against centrifugal force 

L

mv
A

2
0

2  ,                                                  (4.5.3) 

where v0 = Lωα0  is the maximum speed of the pendulum. 

The total work performed by an external force in one period with a decrease in 

the length of the pendulum is  

2
021 3 mv

L

L
AAA


 .                                  (4.5.4) 

This work is proportional to the oscillation energy of the pendulum. Thus, the 

energy of the pendulum with a parametric resonance systematically increases, and the 

amplitude of the oscillations in the case of low friction in the system increases 

exponentially. 

An example of parametric resonance is a person swinging a swing. A person 

periodically crouches at a time when the swing is deflected to the maximum angle, 

and straightens when they pass the equilibrium position. Parametric resonance also 

occurs in an electric oscillatory circuit with variable reactive parameters.  
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4.6. Waves in Elastic Medium 

 

An elastic medium is a large number of interconnected particles. The action of 

external forces in an elastic medium can lead to oscillatory processes or mechanical 

waves. The kinematic sign of wave motion is the propagation of the oscillation phase, 

and the dynamic sign is energy transfer.  

The wave process is characterized by a phase velocity (wave propagation 

velocity v), a wavelength of λ, a frequency of f, or a period T = 1/f of oscillations. 

There is a simple relation between these quantities 

T
fv


  .                                            (4.6.1)   

The wavelength λ is the distance between particles that oscillate with the same 

phase. The wavelength is independent of coordinates and time. The propagation 

velocity of an elastic shear wave in solids is 

S

F
v


 ,                                              (4.6.2) 

where F is the tension force of a solid (strings, wires, etc.); ρ is the density of the 

material from which the oscillating body is made; S is the cross-sectional area of a 

solid. 

The phase velocity of an elastic longitudinal wave in a solid is 



E
v  ,                                                   (4.6.3) 

where E is Young's modulus. 

The propagation velocity of a longitudinal wave in liquids is 



1


K
v ,                                          (4.6.4) 

where K = 1/κ is a compression module; ρ is fluid density. 

The propagation velocity of a longitudinal wave in a gas is 

RT
P

v 



 ,                                       (4.6.5) 

where ρ is gas density; P is pressure; γ is an adiabatic index; T is the thermodynamic 

temperature; R is a gas constant.  

Transverse waves are called waves in which the direction of particle velocity is 

perpendicular to the direction of phase velocity. Longitudinal waves are waves in 

which the directions of particle velocity and phase velocity coincide.  
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Depending on the nature of propagation, one can consider linear (in one 

dimension), surface (in two dimensions), and spatial (in three dimensions) waves. 

The direction of wave propagation is called the beam. The wave front is the 

geometrical location of all particles oscillating with the same phase. The wave front 

is perpendicular to the beam. The distance between adjacent wave fronts is equal to 

the wavelength. Important examples of waves are spherical and plane waves. 

Spherical waves arise from a point source in space. The rays of spherical waves are 

directed along the radius, and the wave fronts are spheres. Spherical waves in the 

plane will be circular, and their wave fronts will be circles. Plane waves arise from a 

plane or remote source. The rays of plane waves are parallel to each other, and the 

wave fronts are planes. 

The motion of particles of a medium oscillates with the transfer of energy due 

to the transfer of this energy from one particle to another. Energy density is the 

amount of energy per unit volume of the medium. The energy density of the medium 

is  

2

22A

dV

dE
u  ,                                      (4.6.6.) 

where dE is energy in volume dV; A is the amplitude of the particle’s oscillations;  

ω is the cyclic oscillation frequency; ρ = dm/dV is the density of the medium; dm is 

mass in volume dV.  

The flux of energy W is the energy passing through a surface of S in time t. 
The flux of energy equals 

2

22 tSvA
tuSvW


 .                               (4.6.7) 

Power can be expressed as 

2

22 SvA
uSv

dt

dW
P


 .                          (4.6.8) 

A value of I = P/S is called intensity. The intensity of the wave processes is 

equal to 

vAuvI 22

2

1
 .                                       (4.6.9) 

The dependence of the energy density on the distance r to the source has the 

form u ~ 1/r for circular waves and u ~ 1/r2 for spherical waves.  

Consider a medium that contains a sufficiently large number of particles. The 

displacement of these particles during wave motion can be described by a continuous 

function ψ(x,y,z,t). Displacements along the selected z axis are called longitudinal 

displacements, and along the axes x and y are called transverse displacements.  

Oscillations are called linearly polarized oscillations along the x axis or y axis if 

these oscillations occur only along one of these axes.  
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Let us consider the case when the quantity ψ(z,t) is the instantaneous 

transverse displacement of particles in a linearly polarized oscillation with an 

equilibrium position z. In this case, the velocity and acceleration are described, 

respectively, by the relations   ttz  /,  and   22 /, ttz   . The equation of 

motion of such oscillations has the form 
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.                                      (4.6.10)  

Equation (4.6.10) is called the wave equation. The general solution of the wave 

equation has the form  

  


















v

z
tfA

v

z
tfAtz 2211, ,                      (4.6.11) 

where f1 and f2 are arbitrary twice differentiable functions in z and t, which determine 

the wave profile.  

In particular, the solution to equation (4.6.10) are plane monochromatic waves 
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where v = dz/dt  is the speed of wave propagation; rnz


 ; n


 is the unit normal to 

the wave front (along the z axis); r


 is the radius vector of any point on the surface of 

the wave front; ω = 2π/T is the circular frequency; T is a period of oscillation.  

The value k = ω/v is called the wave number, and the vector nkk


  is called 

the wave vector. Waves ψ1 and ψ2 correspond to increasing and decreasing values  

of z.  

In the general case, for waves that arise in a certain small region and propagate 

in a homogeneous isotropic medium, the d'Alembert’s formula is valid 
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where 
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


  is the Laplace operator (Laplacian).  

d'Alembert’s formula is named after Jean-Baptiste le Rond d'Alembert 

(16.11.1717 – 29.10.1783), who derived it in 1747. The Laplace operator is named 

after Pierre-Simon de Laplace (23.03.1749 – 5.03.1827). 

The general solution of equation (4.6.13) for components ψi of vector 


 in the 

presence of spherical symmetry has the form 
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 ,   zyxi ,, ,                (4.6.14) 



 117 

where f1 and f2 are arbitrary doubly differentiable functions in x, y, z, t; r is the 

distance from the points where the wave source is located to a given material point.  

The first term in equation (4.6.14) describes the diverging wave, and the 

second term describes the converging wave.  

 

Test questions 

 

1. Is it possible to consider a mathematical pendulum, with an angle α ~ π/4 of 

deviation from the equilibrium position, as a harmonic oscillator? 

2. Write down the solution of the equation of motion of the harmonic oscillator in 

general form. 

3. What restrictions are imposed on the frequency of oscillations that form the 

beats? 

4. Give an example of the conditions necessary for the appearance of closed 

figures of Lissajous. 

5. What parameters of the spring pendulum affect the oscillation frequency? 

6. Indicate the conditions under which the harmonic oscillator has maximum 

kinetic energy. 

7. Record the numerical values of the phase difference between displacement, 

velocity and acceleration during harmonic oscillations. 

8. Describe the causes of higher harmonics in the oscillating system. 

9. Can the law of conservation of mechanical energy be used for damped 

oscillations? 

10. Write down the equation of damped oscillations. 

11. Define the logarithmic attenuation decrement. 

12. Write down the equation of forced oscillations in a general form. 

13. Give a formula that determines the time of the transition period of forced 

oscillations. 

14. Describe the dependence of the amplitude of the forced oscillations on the 

frequency. 

15. Write down the formula for the initial phase of forced oscillations. 

16. Define the amplitude phase curve. 

17. Under what conditions does a resonance of forced oscillations occur? 

18. Record the relationship between the Q factor and the logarithmic attenuation 

decrement. 

19. Write down the formula for the phase velocity of an elastic longitudinal wave. 

20. What properties should a medium have in order for the D'Alembert equation to 

be applied to it? 
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Problem-solving examples 

 

Problem 4.1 

 

Problem description. A material point of mass m = 5 g performs harmonic 

oscillations with a frequency of f = 0.5 Hz. The amplitude of the oscillations is 

A = 3 cm. Calculate the following values: 1) point speed v at the time when the 

displacement is x = 1.5 cm; 2) maximum force Fm, acting on a point; 3) full energy E 

of the oscillating point. 

 

Known quantities: m = 5 g, f = 0.5 Hz, A = 3 cm, x = 1.5 cm. 

 

Quantities to be calculated: v, Fm, E. 

 

Problem solution. The displacement of the material point, which performs harmonic 

oscillation, at time t is 

   tAx cos ,                                                (P.4.1.1) 

where A is the amplitude of the oscillation; ω is the cyclic oscillation frequency; φ is 

the initial phase. 

The speed of the material point is 

   tA
dt

dx
v sin .                                     (P.4.1.2) 

We transform equations (P.4.1.1) and (P.4.1.2). To do this, we square both 

equations, divide the first by A2, and divide the second equation by A2ω2 and add 

1
22

2

2

2


A

v

A

x
                                                   (P.4.1.3) 

or 

1
4 222

2

2

2


Af

v

A

x


,                                               (P.4.1.4) 

where f is the oscillation frequency. 

We determine the speed v from equation (P.4.1.4) 

222 xAfv   .                                             (P.4.1.5) 
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Substitute the numerical values in the formula (P.4.1.5) 

    m/s1016.8105.11035.014.32 22222  v . 

The plus sign corresponds to the case when the direction of speed coincides 

with the positive direction of the x axis. The minus sign corresponds to the case when 

the direction of speed coincides with the negative direction of the x axis. 

We find the force F acting on the point based on Newton’s second law 

maF  ,                                                    (P.4.1.6) 

where m is the point  mass; a  is the point acceleration. 

Find the acceleration point 

   tA
dt

dv
a cos22

,                             (P.4.1.7) 

or 

   tAfa cos4 22
.                               (P.4.1.8) 

We substitute the acceleration from the formula (P.4.1.8) into the formula 

(P.4.1.6) 

   tmAfF cos4 22
.                            (P.4.1.9) 

An analysis of formula (P.4.1.9) shows that the maximum value of the force is 

mAfFm
224 .                                   (P.4.1.10) 

We substitute the numerical values in the formula (P.4.1.10) 

32322 1049.11031055.014.34  mF  N. 

The total energy of the oscillating point is equal to the sum of the kinetic and 

potential energies. We calculate the total energy at the time when the kinetic energy 

reaches its maximum value. At this point in time, the potential energy is zero. 

Therefore, the total energy E of the oscillating point is equal to the maximum kinetic 

energy Wk,m  

2

2

,
m

mk

mv
WE  ,                                         (P.4.1.11) 

where m is the mass of the material point; vm is the maximum speed of the material 

point. 

The maximum velocity of the material point is determined from formula 

(P.4.1.2), provided that (ωt + φ) = 1 
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fAvm 2 .                                              (P.4.1.12) 

We substitute the quantity vm determined from the formula (P.4.1.12) into the 

formula (P.4.1.11), we find the total energy of harmonic vibrations 

2222 AmfE  .                                          (P.4.1.13) 

We substitute the numerical values in the formula (P.4.1.13) 

  J1021.21035.0)105(14.32 522232  E . 

Answer. Point speed is v = 8.16×10–2 m/s. The maximum force acting on a point is 

Fm = 1.49×10–3 N. The total energy harmonic oscillations is E = 2.21×10–5 J. 

 

Problem 4.2 

 

Problem description. The system performs two harmonic oscillations 

x1 = A1cos ω(t + τ1) and x2 = A2cos ω(t + τ2) simultaneously. The notation used in 

the formulas: A1 = 1 cm, A2 = 2 cm, τ1 = 1/6 s, τ2 = 1/2 s, ω = π s–1. Determine the 

initial phases φ1 and φ2 of these oscillations. Find the amplitude A and the initial 

phase φ of the resulting oscillation.  

 

Known quantities: x1 = A1cos ω(t + τ1), x2 = A2cos ω(t + τ2), A1 = 1 cm, A2 = 2 cm, 

τ1 = 1/6 s, τ2 = 1/2 s. 

 

Quantities to be calculated: φ1, φ2, A, φ. 

 

Problem solution. The displacement during harmonic oscillation at time t is 

   tAx cos ,                                           (P.4.2.1) 

where A is the amplitude of the oscillation; ω is the cyclic frequency of oscillation;  

φ is the initial phase of oscillation. 

We transform the equations given in the condition of the problem to the form 

(P.4.2.1) 

 111 cos   tAx ,                                           (P.4.2.2) 

 222 cos   tAx ,                                          (P.4.2.3) 

where τ1 and τ2 are initial time shifts of harmonic oscillations. 

We determine the initial phases of oscillations φ1 and φ2 from a comparison of 

equations (P.4.2.1), (P.4.2.2), and (P.4.2.3) 
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rad6/11   , 

rad2/22   . 

The cosine theorem indicates the relationship of oscillations amplitudes A, A1, 

and A2  

 1221
2
2

2
1 cos2   AAAAA .                      (P.4.2.4) 

Substitute the numerical values in the formula (P.4.2.4) 

      m1065.22/6/cos02.001.0202.001.0 222  A .  

The initial phase of resulting oscillations in one direction can be determined 

from the formula 















2211

2211

coscos

sinsin
arctan






AA

AA
.                           (P.4.2.7) 

Substitute the numerical values in the formula (P.4.2.7) 

   
   

24.1
2/cos02.06/cos01.0

2/sin02.06/sin01.0
arctan 

















 rad. 

Answer. The initial phases of oscillations are equal φ1 = π/6 rad, φ2 = π/2 rad. The 

amplitude of the resulting oscillation is equal to A = 2.65×10–2 m. The initial phase of 

the resulting oscillation is φ = 1.24 rad. 

 

Problem 4.3  

 

Problem description. At a distance of l = 4 m from a plane wave source with a 

frequency of f = 440 Hz, a wall is laid out. The wall plane is perpendicular to the 

direction of wave propagation. Determine the distance from the source to the points 

at which the first three nodes of the standing wave arise. A standing wave occurs as a 

result of the addition of a travelling wave and a wave that is reflected from the wall. 

The speed of the wave is v = 440 m/s. 

 

Known quantities: l = 4 m, f = 440 Hz, v = 440 m/s. 

 

Quantities to be calculated: x0, x1, x2. 
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Problem solution. The equation of the travelling wave at time t has the form 

 

 kxtA   cos1 ,                                        (P.4.3.1)   

where A is the amplitude of the wave; ω is the cyclic frequency of the wave; k is the 

wave number; x is the coordinate of the wave. 

The reflected wave arrives at the point with coordinate x, having twice passed 

the path (l – x), where l is the distance from the source of plane waves to the wall. In 

addition, reflection from the wall is accompanied by a change in the phase of the 

wave by a value of π. Therefore, the equation of the reflected wave can be written as 

     xlxktA 2cos2 .                      (P.4.3.2) 

We transform the formula (4.3.2) 

  xlktA  2cos2  .                             (P.4.3.3) 

The standing wave equation can be determined by adding equations (P.4.3.1) 

and (P.4.3.2) 

    xlktAkxtA  2coscos21  .        (P.4.3.4) 

We apply the relation of cosines to the relation (P.4.3.4) 

    kltxlkA   sinsin2 .                            (P.4.3.5) 

Expression Asin [k(l – x)] is time independent. Therefore, the modulus of this 

expression can be considered as the amplitude of a standing wave 

  xlkAAs  sin .                                    (P.4.3.6) 

Nodes arise at those points where the amplitude of the standing wave is zero 

   0sin  xlkA .                                   (P.4.3.7) 

Equality (P.4.3.7) holds for those points whose coordinates xn are included in 

the relation 

  nxlk n  ,   ...,1,0n                              (P.4.3.8) 

The wave number is 

v

f
k

2
 ,                                              (P.4.3.9) 

where f is the frequency of the wave; v is the speed of the wave. 
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Solving formulas (P.4.3.8) and (P.4.3.9) together, we obtain 

  nvxlf n  2 .                                   (P.4.3.10) 

The coordinates of the nodes can be determined from equation (P.4.3.10) 

f

nv
lxn

2
 .                                           (P.4.3.11) 

We substitute the numerical values in the formula (P.4.3.11), given that the 

value n takes three values: 0, 1, and 2 

x0 = 4 m,    x1 = 3.5 m,    x2 = 3 m. 

Answer. The distances from the source to the points at which the first three nodes of 

the standing wave arise are x0 = 4 m, x1 = 3.5 m, x2 = 3 m. 

 

Problems 

 

Problem A 

Problem description. A point oscillates according to the following law 

x = Acos (ωt). At some moment of time, the point displacement is x1 = 5 cm. Then 

the phase of the oscillations doubled, and the displacement of the point became 

x2 = 8 cm. Calculate the amplitude A of the oscillations.  

 

Answer. A = 8.33×10–2 m. 

 

Problem B  

Problem description. The point moves evenly around the circle counter clockwise. 

The period of movement of the point is T = 6 s. The diameter of the circle is 

d = 20 cm. Determine the projection of the acceleration of the point on x axis at time 

t = 1 s. 

 

Answer. a = 9.5×10–2 m/s2.  

 

Problem C  

Problem description. The point movement is given by the equations x = A1sin(ωt) 

and y = A2sin(ωt + τ), where A1 = 10 cm, A2 = 5 cm, ω = 2 s–1, τ = π/4 s. Determine 

the speed of a point at time t = 0.5 s. 

 

Answer. v = 13.7 m/s. 
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Problem D  

Problem description. The wave propagates with speed v = 15 m/s. The wave period is 

T = 1.2 s. The amplitude of the oscillations is A = 2 cm. Determine the displacement 

of a point that is at a distance of x = 45 cm from the wave source at time t = 4 s, 

counted from the start of the oscillations 

 

Answer. x = – 1.73×10–2 m. 

 

Problem E  

Problem description. Two points of the medium are at a distance of Δx = 10 cm. The 

phase difference of the oscillations at these points is Δφ = π/3. The oscillation 

frequency is 25 Hz. Determine the speed of wave propagation in an elastic medium. 

 

Answer. v = 15 m/s. 
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CHAPTER 5. CLASSICAL RELATIVISTIC MECHANICS  
 

5.1. Galilean Transformation 

 

The position of the points relative to the material body, taken as a reference 

frame, is described using a coordinate system. In each coordinate system, the spatial 

position of a point is defined by three numbers called coordinates. Formulas that 

relate these numbers in one coordinate system to the corresponding numbers in 

another coordinate system are called a coordinate transformation (or simply a 

transformation).  

The simplest motion of a rigid body is translational uniform rectilinear motion. 

A similar statement can be applied to the relative motion of reference systems. All 

mechanical phenomena occur exactly the same in all reference frames moving 

uniformly and rectilinearly with respect to the system of fixed stars. In this case, it is 

assumed that the gravitational fields are negligible. Such reference frames are called 

inertial, since Newton’s law of inertia operates in them. Newton’s law of inertia can 

be formulated as follows: a body far enough away from other bodies moves with 

respect to coordinate systems in a straight-line and uniform manner.  

The statement, first made by Galileo, that mechanical phenomena occur in 

exactly the same way in all inertial reference frames, is called the Galilean principle 

of relativity. Galileo's principle of relativity is a postulate that goes beyond 

experimental verification. 

Let's consider two coordinate systems: moving and motionless. Suppose, for 

simplicity, that the possible movement of reference systems can occur only along the 

abscissa (x axis). A moving coordinate system at each moment in time occupies a 

certain position relative to a fixed coordinate system. In the future, we will denote all 

characteristics of fixed coordinate system K by symbols without a prime (for 

example, x, y, z, t), and we will denote all characteristics of moving coordinate 

system K′ by primed symbols (e.g. x′, y′, z′, t′). Suppose that at time t = 0, the 

beginnings of the moving and fixed coordinate systems coincide. At time t, the origin 

of the moving coordinate system is at point x = vt of the fixed system. It is assumed 

that the time flows in both coordinate systems equally t = t′. Galileo's 

transformation in this case have the form 

tvxx  ,    yy  ,     zz  ,     tt  .                          (5.1.1) 

Obviously, as a fixed coordinate system one could take a system with primed 

symbols. The coordinate system K moves relative to K′ system at a speed of v in the 

direction of negative values x′, i.e. with a negative speed. In this case, the Galilean 

transformation will have the form 

tvxx  ,    yy  ,     zz  ,     tt  .                          (5.1.2) 
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Various physical and geometric quantities change their values during 

coordinate transformations. If a value does not change its numerical value during 

coordinate transformation, then this means that it has an objective value, independent 

of the choice of a particular coordinate system. Values whose numerical value does 

not change during coordinate transformation are called transformation invariants. 

Transformation invariants are of primary importance in physical theory. Galileo 

Galilei (02.15.1564 – 8.01.1642) in his work Letter to Francesco Ingoli (1624) 

proclaimed the homogeneity of space (the absence of a center of the world) and the 

equality of inertial reference systems. 

Consider the invariants of the Galileo transformation. 

Assume that there is a rod in the hatched coordinate systems. The coordinates 

of the ends of the rod are ( 1x , 1y , 1z ) and ( 2x , 2y , 2z ), respectively. The length of 

the rod in the hatched coordinate system is 

     212

2

12

2

12 zzyyxxL  . In the coordinate system K, the rod has 

translational motion, and all its points have a speed v. To measure the length of a 

moving rod, it is necessary to simultaneously measure the position of the ends of the 

rod. Simultaneity in this case means measuring with the same clock readings of a 

fixed coordinate system. Suppose that the coordinates of the ends of the rod in a fixed 

coordinate system at time t0 are equal to (x1, y1, z1) and (x2, y2, z2), respectively. We 

use for this case the formula (5.1.1) 

011 tvxx  ,                    022 tvxx  , 

11 yy  ,                            22 yy  , 

11 zz  ,                             22 zz  , 

01 tt  ,                              02 tt  .                             (5.1.3) 

This implies 

121212121212 ,, zzzzyyyyxxxx       (5.1.4) 

The length of the rod is 

      
2

12

2

12

2

12 zzyyxxL  

      Lzzyyxx 
2

12

2

12

2

12 .               (5.1.5) 

From the formula (5.1.5) it follows that the length of the rod in both reference 

frames is the same. Therefore, length is an invariant of the Galileo transformation.  

An analysis of equations (5.1.3) shows that events that are simultaneous in one 

frame of reference ( 01 tt  ) are simultaneous in another frame of reference ( 02 tt  ). 

The statement about the simultaneity of two events from the point of view of the 

Galileo transformation is absolute in nature, independent of the choice of the 
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coordinate system. Consider the events that occurred at time points 1t  and 2t  in a 

moving coordinate system. The time interval between these events is 

tttttt  1212 .                               (5.1.6) 

A consequence of equation (5.1.6) is the assertion that the time interval is an 

invariant of Galilean transformation.  

Consider the motion of a material point in a hatched coordinate system. The 

dependence of the coordinates of this point on time has the form 

 txx  ,   tyy  ,   tzz  .                           (5.1.7) 

The components of the velocity u of a point in a moving coordinate system are 

td

xd
ux




 ,  

td

yd
u y




 ,  

td

zd
uz




 .                           (5.1.8) 

In a fixed system, the coordinates of the point change according to the law 

    tvtxtx  ,     tyty  ,     tztz  ,  tt  .         (5.1.9) 

The components of the velocity of a point in a fixed coordinate system are 

vu
td

td
v

td

xd

dt

td
v

td
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dt

dx
u xx 




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
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yy u
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





 , 

zz u
td

zd

dt

zd

dt

dz
u 







 .                                (5.1.10) 

Formulas (5.1.10) are the formulas for the addition of velocities in classical 

non relativistic mechanics. 

We differentiate equalities (5.1.10), taking into account the fact that dt = dt′  

2

2

2

2

td

xd

dt

xd




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2
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2

td

yd
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yd




 ,  
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2

2

2

td

zd

dt

zd




 .                  (5.1.11) 

Formulas (5.1.11) show that acceleration is invariant with respect to the 

Galilean transformation.  
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5.2. Speed of Light 

 

The validity of Galileo's transformation can be verified by comparing the 

consequences of them with experiment. The most important consequence of the 

Galilean transformations is the formula for the addition of velocities. Verification of 

this formula showed its approximate nature. Deviations from the formula are 

especially large when the velocities of bodies approach the speed of light. Consider 

the features of physical processes associated with the speed of light c. 

The speed of light was first measured in 1676 by Ole Christensen Rømer 

(25.09.1644 – 19.09.1710). Observations of the eclipses of the moons of Jupiter 

showed that the apparent period of their revolution decreases when the Earth in its 

annual motion approaches Jupiter. The removal of the Earth from Jupiter leads to an 

increase in the period of revolution of the moons of Jupiter. Roemer realized that this 

effect is associated with a finite speed of light propagation, and from the results of 

observations he calculated this speed. The calculation received the value of the speed 

of light with c = 214 300 000 m/s. It was the first reliable measurement of the speed 

of light with satisfactory accuracy for those times. It should be noted that it is 

currently believed that the speed of light in vacuum is a fundamental physical 

constant, by definition exactly equal to 299 792 458 m/s.  

When considering the issue of the speed of light, mention should be made of a 

phenomenon such as aberration of light. As a result of light aberration, the apparent 

direction of the star differs from the true direction by the angle β = (π / 2) – α. The 

angle β is called the angle of aberration. The following relation holds for the 

aberration angle 

c

v
tg  ,                                                 (5.2.1) 

where v  is a component of the speed of the Earth, perpendicular to the direction of 

the star. The speed of light can be calculated from known values α and v .The 

results of calculations lead to approximately the same values that were obtained by 

Roemer. 

After measuring the speed of light, the question arises of what parameters this 

speed depends on. The answer to this question within the framework of the ideas that 

existed at that time is due to a look at the nature of light. 

Under the assumption that light is a wave-like motion of a homogeneous 

medium, the speed of light relative to this medium is a certain constant value 

determined by the properties of this medium. In this case, the speed of light relative 

to the source and observer is a variable that depends on the speed of the source or 

observer relative to this medium. In this case, the speed of light is found by the rule 

of addition of velocities of classical non relativistic mechanics.  

Assuming that light is a stream of fast corpuscles flying from a source, it can 

be argued that the speed of these corpuscles relative to the source has some constant 

value. The speed of light relative to the observer is added to the speed of the observer 

according to the rule of addition of velocities of classical non relativistic mechanics.  
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Augustin-Jean Fresnel (10.05.1788 – 14.07.1827) in 1818 developed the theory 

of diffraction based on the wave theory. One of the results of this was the 

replacement of the corpuscular theory of light by wave theory. The point of view on 

light as a wave process in some medium has become generally accepted. This 

medium, which fills the entire Universe, is called the ether. The speed of light relative 

to the ether was considered a constant value, depending on the properties of the ether. 

The speed of light relative to the world ether was called absolute. The absolute speed 

of a given material body does not depend on the movement of other bodies.  

Since the speed of light relative to the ether is constant, the speed of light 

relative to material bodies moving in the ether is variable and depends on the speed of 

these bodies relative to the ether.  

Albert Abraham Michelson (19.12.1852 – 9.05.1931) and Edward Williams 

Morley (29.01.1838 – 24.02.1923) in 1887 attempted to measure the speed of light in 

this way (Michelson–Morley experiment). The idea of the experience is to compare 

the passage of light in two ways. One of the paths coincides with the direction of 

movement of the body in the ether, and the second path is perpendicular to this 

direction. A beam of monochromatic light is divided (transmitted beam and reflected 

beam) into two coherent rays on a translucent plate. Two coherent rays after passing 

through two different paths are found in the interferometer. If these paths are 

traversed by rays in the same time, then at the meeting point between the oscillations 

of the rays there will be the same phase difference as at the separation point. 

Observing the interference of the rays, we can draw a conclusion about the phase 

difference of the coherent waves that came into the interferometer and then calculate 

the delay time of one wave relative to the other.  

Michelson and Morley measured a lag time of Δt(1) and Δt(2) for the position of 

the instrument before and after turning through an angle of 90°, respectively. The 

analytical expressions for the delay times were 
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where L1, L2 are the lengths of the arms of the device along which the movement of 

light rays occurred; v is the orbital velocity of the Earth.  

The linear velocity of points on the surface when the Earth rotates around its 

own axis is approximately 60 times less than the orbital velocity and was not taken 

into account in the calculations. 

Thus, a complete change in time, which corresponds to the difference in the 

path of the rays when the device is rotated through an angle equal to 90°, is 
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 .                           (5.2.3) 

To increase the effective distance, Michelson and Morley used multiple 

reflection of light rays from the mirrors and achieved an increase in (L1 + L2) to about 

11 m. The wavelengths of visible light are within (0.4  0.75)10–6 m. The delay 

value calculated by the formula (5.2.3), and expressed as a displacement along the 

wavelength, is  

    8
21212
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10 LLLL
c

v
ct ,                    (5.2.4) 

where it is taken into account that the relation v2/c2  10–8 is valid for the orbital 

velocity of the Earth.  

Therefore, for a wavelength of  = 510–7 m, the relative displacement of 

interference fringes is equal  /  = (L1 + L2)210–2. Considering that  

L1 + L2  11 m, we obtain for the displacement  /   1/5, which is much larger 

than those quantities that can be easily observed. In fact, in the experiment of 

Michelson and Morley it was possible to observe displacements that correspond to 

the velocities of the device relative to the ether of only 3 km/s. However, no effect 

was found. At present, it can be considered proven that the speed of the ether wind, in 

any case, is less than 10 m/s.  

As part of the concept of broadcasting, two ways out of this predicament were 

proposed. 

1. It could be assumed that the ether near massive bodies moves with these 

bodies. Then, naturally, no etheric wind should be observed near these 

bodies. 

2. It could be assumed that the sizes of material bodies moving in the ether do 

not remain constant, but change in such a way that the expected difference 

in the path of light rays according to formula (5.2.3) does not work. 

The first assumption of the movement of ether near massive bodies cannot be 

reconciled with the phenomenon of light aberration. The second assumption, 

supplemented by the statement of the constancy of the speed of light relative to 

bodies moving in the ether, is logically truthful. However, strictly speaking, the 

results of the experiments of Michelson and Morley indicate only the constancy of 

the average speed of light in various directions in an inertial reference frame.  

To explain the results of the experiments of Michelson and Morley, a ballistic 

hypothesis was put forward, according to which light is a stream of material 

corpuscles. The speed of these corpuscles relative to the source is constant and is 

added to the speed of the source according to the parallelogram rule. However, 

astronomical observations of the motion of binary stars disproved the ballistic 

hypothesis.  

The failure of the ballistic hypothesis forces us to admit that the speed of light 

does not depend on the speed of the light source. The results of the Michelson and 

Morley experiment show that the speed of light does not depend on the speed of the 
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observer. Therefore, it is concluded that the speed of light is a constant value that 

does not depend on either the speed of the source or the speed of the observer.  

Armand Hippolyte Louis Fizeau (23.09.1819 – 18.09.1896) in 1860 made an 

experiment (Fizeau experiment) on measuring the speed of light in a moving 

medium (in water). Fizeau discovered that the speed of light in a liquid and the speed 

of the liquid itself do not add up according to the formula for adding the velocities of 

classical non relativistic mechanics.  

The constancy of the speed of light is in deep contradiction with the usual 

notions of everyday experience and with the formula for adding the velocities of 

classical non relativistic mechanics, which are the result of Galileo's transformations. 

Thus, we can say that the Galilean transformations contradict the experimental fact of 

the constancy of the speed of light. However, this contradiction becomes noticeable 

only for sufficiently high speeds. At speeds much lower than the speed of light in 

vacuum, deviations from the formula for the addition of speeds in classical non 

relativistic mechanics are extremely small. 

The statement about the constancy of the speed of light in a vacuum, i.e. the 

independence of the speed of light from the speed of the source and the speed of the 

observer is a natural conclusion from many experimental facts. The main 

confirmation of the hypothesis of the constancy of the speed of light is the agreement 

with experiment of all those conclusions that follow from this hypothesis. All modern 

physics of high speeds and high energies is based on the postulate of the constancy of 

the speed of light.  

Nevertheless, in its absolute form, the statement about the constancy of the 

speed of light is a postulate, i.e. an assumption that goes beyond direct experimental 

verification. This is due to the finite accuracy of all experimental tests, as was 

explained earlier in connection with the postulate nature of the principle of relativity. 

 

5.3. Lorentz Transformation 

 

Galilean transformation for sufficiently high speeds lead to conclusions that 

contradict experiments. Therefore, it is necessary to find other transformations that 

correctly describe the experimental facts and, in particular, lead to a constant speed of 

light. These transformations are called Lorentz transformation. Lorentz 

transformations can be derived on the basis of two principles, the justification of 

which will be given in the future: 

1) the principle of relativity;  

2) the principle of constancy of the speed of light. 

Both of these principles, although confirmed by numerous experiments, have the 

character of postulates and are therefore sometimes called the postulate of relativity 

and the postulate of the constancy of the speed of light. 

Consider the features of coordinate transformation at high speeds. Since the 

speeds do not add up according to the classical formula, it can be expected that the 

time of one coordinate system is not expressed only through the time of another 

coordinate system, but also depends on the coordinates. Therefore, in the general 

case, the transformations have the following form 
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 tzyxx ,,,1 ,              tzyxy ,,,2  

 tzyxz ,,,3 ,              tzyxt ,,,4 ,                      (5.3.1) 

where θ1, θ2, θ3, θ4 are some functions whose explicit form is to be clarified. 

The general form of functions θ1, θ2, θ3, θ4 is determined by the properties of 

space and time. Consideration of geometric relationships in the selected reference 

frame was carried out under the assumption that each point is no different from any 

other point. The homogeneity and isotropy of space is its main properties in inertial 

coordinate systems. 

Time also has the property of homogeneity. Consider this property. Let some 

physical process begin at some point in time. At subsequent times, this process will 

evolve in some way. Suppose that the same situation arises at any other moment in 

time. If the second situation in subsequent moments of time develops in the same way 

as the first situation, then they say that time is uniform. Homogeneity of time is the 

same development of a given physical situation, regardless of at what point in time 

this situation began to develop.  

It follows from the homogeneity of space and time that the transformations 

(5.3.1) must be linear. We calculate the total infinitesimal change of coordinates dx′ 
from (5.3.1) by the formula of the full differential 
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Due to the homogeneity of space and time, relations of the type (5.3.2) should 

be the same for all points of space and for any time moments. This means that the 

values of 
x

 1
, 

y

 1
, 

z

 1
, 

t

 1
  should not depend on coordinates and time, i.e. are 

constant values. Therefore, function θ1 has the following form 

  543211 ,,, AtAzAyAxAtzyx  ,                        (5.3.3) 

where A1, A2, A3, A4 are constant values. 

Thus, function θ1 is a linear function of its arguments. It is proved in a similar 

way that, due to the homogeneity of space and time, functions θ2, θ3, θ4 in 

transformations (5.3.1) will also be linear functions of arguments x, y, z, t  

  543212 ,,, BtBzByBxBtzyx   

  543213 ,,, CtCzCyCxCtzyx   

  543214 ,,, DtDzDyDxDtzyx  .                  (5.3.4) 
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Suppose that the direction of the abscissa and the axis of the moving (system 

K′) and fixed (system K) reference systems coincide. In addition, suppose for 

simplicity that these frames can only move along the x-axis and x′-axis.  

Consider in this case, the transformation for the coordinates y and z. The origin 

point in each coordinate system is given by the equalities x = y = z = 0, 

x′ = y′ = z′ = 0. We assume that at time t = 0, the origin of the coordinate systems 

coincide. Then the terms B5 and C5 in the linear transformation (5.3.4) must be equal 

to zero. The transformations for y and z will be as follows 

tBzByBxBy 4321  , 

tCzCyCxCz 4321  .                           (5.3.5) 

It is assumed that the directions of the axes y and y′ coincide. The same can be 

said for axes z and z′, as well as x and x′. Therefore, from condition y = 0 equality 

y′ = 0 always follows, and from condition z = 0 equality z′ = 0 follows.  

These relations lead to the equalities 

tBzBxB 4310  , 

tCyCxC 4210  .                                 (5.3.6)   

Equalities (5.3.6) are possible only under condition B1 = B3 = B4 = 0 and 

C1 = C2 = C4 = 0. In this case, we can write 

yBy 2 ,          zCz 3 .                                 (5.3.7) 

We take into account that the axes y and z are equal in rights when the 

reference systems move along the axes x and x′. In addition, the moving coordinate 

system (system K′) and the fixed coordinate system (system K) are also equally 

valid. As a consequence, the relations B2 = C3 = 1 are valid. Consequently, the 

transformations for coordinates y and z have the form 

yy  ,   zz  .                                        (5.3.8) 

Now consider the transformations for coordinate x and time t. Since variables  

y and z are converted separately, variables x and t can only be connected by linear 

transformations to each other. The origin of a moving coordinate system in a fixed 

system has a coordinate x = vt (i.e. x – vt = 0), and in a moving system, this same 

point has a coordinate x′ = 0. Therefore, in view of the linearity of the transformation, 

there should be 
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 tvxx   ,                                        (5.3.9) 

where α is a coefficient of proportionality.  

Similar considerations can be made if the moving and fixed systems are 

interchanged. Then the origin of the coordinates of the unprimed system has a 

coordinate x = – vt (i.e. x + vt = 0), since the system K moves in the direction of 

negative axis values relative to the system K′. The origin of the coordinates of the 

system K relative to the system K′ is characterized by equality x = 0. As a result, we 

can write the following transformation 

 tvxx  .                                         (5.3.10) 

According to the principle of relativity, system K and system K′ are equivalent, 

hence α = α′.  
We use the postulate of the constancy of the speed of light. Suppose that at the 

point in time when the origin coincides and when the clock at the origin shows time 

t = t′ = 0, a light signal is emitted from them. The propagation of light in the hatched 

and unshaded frames of reference is described by equalities 

tcx  ,              ctx  ,                                   (5.3.11) 

in which it is taken into account that in both reference frames the speed of light has 

the same value. In this case, we rewrite the transformations (5.3.9) and (5.3.10) 

 vcttc   ,              vctct  .                    (5.3.12) 

Multiplying the right and left sides of equations (5.3.2) allows us to find an 

explicit expression for the quantity α 

22 /1
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cv
 .                                         (5.3.13) 

The transformation of equations (5.3.9) and (5.3.10) allows us to obtain the 

relationship between the quantities t and t′ 
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Transformations (5.3.8), (5.3.9), (5.3.13) and (5.3.14) relate the coordinates 

and time of reference systems moving relative to each other with speed v 
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Inverse transformations have the same form, but only the sign of speed changes 
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Formulas (5.3.15) and (5.3.16) are called Lorentz transformation. The 

transformation is named after Hendrik Antoon Lorentz (18.07.1853 – 4.12.1928). 

We consider the limiting case of velocities much lower than the speed of light 

in vacuum. In this case, values of the order of v/c  can be neglected in the Lorentz 

transformations, i.e. quantities v2/c2 and v/c2 can be equated to zero. Then the 

Lorentz transformation are reduced to the Galilean transformation. At low speeds, the 

difference between the Galileo and Lorentz transformations is insignificant, and 

therefore the inaccuracy of the Galileo transformation has long gone unnoticed.  

 

5.4. Consequences of Lorentz Transformation 

 

The difference in the Galileo and Lorentz transformations requires careful 

consideration of the consequences of the Lorentz transformation. First of all, we 

consider the concept of simultaneity of events. Two events that occurred at different 

points x1 and x2 of the reference system are called simultaneous events if they occur 

at the same time t0 by the clock of this coordinate system.    

These events would occur at points 1x  and 2x  of the moving coordinate 

system at points in time 1t  and 2t . The relationship between the kinematic quantities 

in the system K and the system K′ is given by the Lorentz transformation 
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Since events occur at points on the x axis , the coordinates y and z in both 

systems are zero. An analysis of equations (5.4.1) shows that in a moving coordinate 

system the events in question do not occur simultaneously ( 21 tt  ).Events are 

separated by a time interval 
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Thus, events that are simultaneous in one coordinate system are not 

simultaneous in another system. Consequently, the concept of simultaneity does not 

have an absolute meaning.  

The length of the bodies and the time interval are invariants in the Galilean 

transformations and are not invariants in the Lorentz transformations. Consider the 

invariant in the Lorentz transforms, which is important. Suppose that two events 

occurred at time points t1 and t2 at points with coordinates x1, y1, z1 and x2, y2, z2, 

respectively. The interval between these events is called the quantity s  
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22

12

2

12

2

12 ttczzyyxxs  .            (5.4.3) 

This value has the same value in all reference frames, i.e. is an invariant of 

Lorentz transformation. The invariance of the square of the interval for infinitely 

close points can be expressed as follows 

inv222222  dtcdzdydxds .                      (5.4.4) 

We denote the distance between the points at which the events occurred by the 

symbol l, and the time interval between them by the symbol t. Suppose that in some 

reference system events cannot have a causal relationship. In this case, the following 

relations are valid l > ct and s2 > 0. The invariance of the interval means that in all 

other reference systems these events also do not have a causal relationship.  

The interval is called space-like interval if the relation s2 > 0 is true, and time-

like interval in the case when s2 < 0. If the interval is space-like, then we can choose 

a frame of reference in which two events occur simultaneously at different spatial 

points (s2 = l 
2 > 0, t = 0). There is no such frame of reference in which these events 

take place at the same point.  

The property of an interval to be space-like or time-like does not depend on the 

coordinate system, but is an invariant property of the events themselves. 

Consider the concept of the length of a moving body. We choose the rod as 

such a body. The length of a moving rod is the distance between the points of the 

resting reference system, with which the beginning and end of the moving rod at 

some point in time according to the clock of the resting reference system coincide.  

Suppose that a rod with a length of L is resting in reference frame K′. The rod 

is located along the axis x′. The coordinates of the ends of such a rod are denoted by 

1x  and 2x . Consequently, the ratio 12 xxL   is valid for the reference frame K′. 

Since the rod rests in reference frame K′, its length is indicated by a symbol without a 

stroke. Using formulas (5.4.1), we can write the following expression for the length 

of the rod 
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where 12 xxL   is the length of the moving rod.  

We rewrite equality (5.4.5) 

22 /1 cvLL  .                                        (5.4.5) 

An analysis of equation (5.4.5) indicates that the length of the moving rod 

located in the direction of motion is less than the length of the resting one. If the rod 

is placed perpendicular to the direction of motion, for example, along y′ axis or z′ 
axis, then, as can be seen from formulas (5.3.15), its length does not change 

Typically, the speed of bodies is much less than the speed of light in a vacuum, 

i.e. v/c < 1. Therefore, up to a first-order value in v2/c2, formula (5.4.5) for the case 

of low velocities can be represented as 
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Therefore, the relative change in the length of the rod is 

   22 2/// cvLLLLL  .                       (5.4.7) 

The reduction in the diameter of the Earth during orbital motion is only 6 cm. 

However, at high speeds, the relativistic contraction is significant. For example, at a 

body speed of 0.85с, its length will be reduced by half.  

Consider the time interval in the Lorentz transforms. Suppose that at a point 0x  

in a moving frame of reference two events occur consecutively at time 1t  and 2t . 

These events occur at time moments t1 and t2 at different points of the fixed (K 

system) frame of reference. The time intervals in the moving reference frame and in 

the fixed reference frame are equal 12 ttt   and Δt = t2 – t1, respectively. Using 

formulas (5.3.15) and (5.3.16), we can write  
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Thus, the time interval Δt′ between events measured by the moving clock,  

22 /1 cvtt  .                                    (5.4.9) 

is less than the time interval Δt between the same events measured by the resting 

clock. This means that the pace of the moving clock is slowed down relative to the 

fixed clock.  

The time, which is measured by the clock associated with a moving point, is 

called the proper time of this point. We rewrite equation (5.4.9) for the differentials 



 138 

22 /1 cvdtdtd   ,                              (5.4.10) 

where dτ is the differential of the proper time of a moving point; dt is the time 

differential of that inertial coordinate system in which the point has a current speed v.  

We use the fact that the square of the differential of the distance between two 

points is equal
2222 dzdydxdr  , and we rewrite the formula (5.4.4) (5.4.4) 

2

22

2
1

1
1

c

v
cdt

dt

dr

c
cdt

i

ds









 ,                       (5.4.11) 

where 1i .  

A comparison of formulas (5.4.10) and (5.4.11) shows that the relationship 

between the quantities dτ and ds  has the form 

ic

ds
d  ,                                              (5.4.12) 

therefore, proper time is also an invariant of  Lorentz transformation.  

Let us consider how the velocities add up taking into account the Lorentz 

transformation. The position of the material point will be determined by functions 

x′ = x′(t), y′ = y′(t), z′ = z′(t) in the moving frame of reference and functions 

x = x(t), y = y(t), z = z(t) in the fixed frame of reference. Speed components u are 

equal 

tdxdux
 / , tdyduy

 / , tdzduz
 / , 

dtdxux / , dtdyuy / , dtdzuz / .                      (5.4.13) 

Using the Lorentz transformations, we obtain 
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Performing a joint transformation of formulas (5.4.13) and (5.4.14), we get 
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Equations (5.4.15) are relativistic formulas for velocity addition. 



 139 

An analysis of formula (5.4.15) shows that the addition of speeds never leads 

to speeds greater than the speed of light. Consider, for example, the case when 

0 zy uu , cux  . Then from formula (5.4.15) we find  

c
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,       0yu ,       0zu .                      (5.4.16) 

 

5.5. Relativistic Dynamics 

 

The momentum in relativistic dynamics is the quantity p


, which is 

transformed in accordance with the Lorentz transformation 
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Value 
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can be considered as the relativistic mass of a material point (particle) moving with 

speed relative to a motionless reference frame. Relativistic mass is a function of 

speed m = m(v). Therefore, the quantity m0 = m(0) is the mass of the particle at rest, 

called the rest mass. Consider examples of changes in mass Δm = m – m0 for 

different systems that move at different speeds. The spacecraft has a mass of 

m0 = 5103 kg and a speed of v = 8103 m/s. In this case, the change in mass of the 

spacecraft is m = 3.510–6 kg, those is 0.00000007 % of the rest mass of the 

spacecraft. The electron has mass m0 = 9.110–31 kg and speed v = 0.5c = 1.5108 m/s. 

In this case, the change in electron mass is m = 1.410–31 kg, i.e. makes up 15.4% of 

the rest mass of the electron. 

In relativistic mechanics, the law of conservation of momentum of a closed 

system of particles in all reference frames is fulfilled in accordance with the idea of 

the homogeneity of space. 

The mathematical expression of the momentum conservation law of an isolated 

system consisting, for example, of two interacting relativistic particles with rest 

masses m01 and m02 only formally coincides with the mathematical form of the 

momentum conservation law in classical mechanics 

const
/1/1 22

2

202

22
1

101 



 cv

vm

cv

vm


,                        (5.5.3) 

where 1v


 and 2v


 these are the speeds of the first and second particles. 
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According to the laws of relativistic mechanics, the work A12 of the force F


 

acting on the particle when moving it from position 1 to position 2 along a curved 

path L is determined by the expression 

   
2

1

2
)2(

)1(
12

m

mL

dmcpdrd
dt

pd
rdFdAA





 ,                (5.5.4) 

where F


, p


, and v


 are invariant quantities of force, momentum and speed; m1 and 

m2 are masses of particles in the initial and final positions. 

An analysis of equation (5.5.4) shows that in relativistic mechanics the work is 

determined by the increment of the mass of particles 

dmcdA 2 , 

  mcmmсA  2
12

2
12 .                                  (5.5.5) 

The total energy or relativistic energy of a free particle is the quantity 

2mcW  .                                                      (5.5.6) 

The quantity 
2

00 cmW  ,                                                    (5.5.7) 

that is determined for a free particle is called the rest energy of the particle.  

Kinetic energy Wk is part of the relativistic energy W due to particle motion. By 

definition, the kinetic energy of a particle is 

  










 1

/1

1
22

2
0

2
00

cv
cmcmmWWWk .         (5.5.8) 

By analogy with classical mechanics, work can be written as an increment of 

the kinetic energy of a particle 

1,2,12 kk WWA  ,                                            (5.5.9) 

where Wk,1 = (m1 – m0)·c2 and Wk,2 = (m2 – m0)·c2 is the kinetic energy of a particle 

in positions (1) and (2).  

The consequence of formulas (5.5.1) and (5.5.2) is the expression for the total 

energy 
42

0
22 cmcpW  .                                       (5.5.10) 

The expression (5.5.10) is invariant under the Lorentz transformations. 

Formula (5.5.10) is valid both for elementary (structureless) particles and for systems 

consisting of a large number of particles. Momentum p


, energy W, and velocity v


 

for a free particle are related by 
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2c

W
vp


 .                                                       (5.5.11)  

Consider the case when a particle has potential energy Wp. Then the total 

energy of the particle is 

pkp WcmWWmcW  2
0

2
.                              (5.5.12) 

The law of conservation of the total energy of a closed system of particles is 

performed in relativistic mechanics. For the case of a system of two particles, we can 

write 

constWW  21 ,                                                 (5.5.13) 

where W1 and W2 are the relativistic energies of the first and second particles.  

The total energy W and speed v of the particle with a rest mass equal to zero 

m0 = 0 is 

pcE  ,              cv  .                                          (5.5.14) 

Consequently, a particle with a rest mass equal to zero always moves at the 

speed of light, and its momentum is nonzero and equal 

cEp / .                                              (5.5.15) 

The components of the particle momentum and the particle energy in a fixed 

(system K) reference frame and a moving (system K′) frame of reference are related 

by the following relations 
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


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zz pp  ,  zz pp  , 

22 /1 сu

upW
W x




 ,          

22 /1 сu

upW
W x




 ,                 (5.5.16) 

where u is the speed of the moving reference system relative to the fixed reference 

system. The speed u is directed along the x axis.  

The basic equation of relativistic dynamics, generalizing Newton’s second law 

to the case of the motion of a material point with a speed comparable to the speed of 

light in a vacuum, has the form formally coinciding with a similar equation for 

classical mechanics  
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F
dt

pd 
 ,                                             (5.5.17) 

where F


 is the resultant of all forces applied to the material point; p


 is a relativistic 

momentum defined by equation (5.5.1).  

In explicit form, the basic equation of relativistic dynamics can be written as 

follows 

 

F
cvdt

d
m
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




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



 220
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


 , 

 
F

cv

am 



2/322

0

/1
,                                    (5.5.18) 

where dtda /


  is an acceleration of a material point. 

 

Test questions 

 

1. State the Galilean principle of relativity. 

2. Write down the Galilean transformation in the Cartesian coordinate system. 

3. Is speed an invariant of Galilean transformations? 

4. Give the formulas for the addition of velocities in classical non relativistic 

mechanics. 

5. Describe the phenomenon of light aberration. 

6. Specify the limits of angle of aberration change. 

7. Describe the methodology and results of the experiments of Michelson and 

Morley. 

8. Describe the methodology and results of the Fizeau experiments. 

9. List the principles that underlie the Lorentz transformations. 

10. Write down the Lorentz transformation for the Cartesian coordinates. 

11. Show that in the limiting case, the Lorentz transformation are reduced to 

Galileo transformation. 

12. Define simultaneous events. 

13. Write down the formula for the time interval that follows from the Lorentz 

transformation. 
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14. Can two events occur simultaneously at different spatial points if the interval 

between events is time-like? 

15. Show, using the formula for the length of the rod, which follows from the 

Lorentz transformation, that in the limiting case  << c, the length of the rod is 

the same for all inertial reference systems. 

16. List the invariants of the Lorentz transformation. 

17. Write down the relativistic velocity addition formula. 

18. Calculate the change in mass of an electron if it has changed its speed from 0 

to 1.2108 m/s. 

19. Give the formula for the rest energy of a free particle. 

20. Write down the relations that connect the components of the momentum and 

the energy of the particle in a fixed and moving coordinate system. 

 

Problem-solving examples 

 

Problem 5.1  

 

Problem description. The kinetic energy of an electron is Wk = 1 MeV. Determine 

the speed of an electron.  

 

Known quantities: Wk = 1 MeV. 

 

Quantities to be calculated: v. 

 

Problem solution. The relativistic formula for kinetic energy Wk has the form 

















 1

1

1
20


WWk ,                                       (P.5.1.1) 

where W0 is the rest energy of an electron; 
c

v
  is a relativistic factor; c is the 

speed of light in a vacuum. 

We transform the formula (5.1.1) with respect to the quantity β 

 

k

kk

WW

WWW






0

02
 .                                         (P.5.1.2) 

Calculations by the formula (P.5.1.2) can be made in any energy units, since 

the unit names on the right side of the formula will be reduced, and as a result of the 
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calculation, a dimensionless quantity will be obtained. The rest energy of an electron 

is W0 = 0.511 MeV.  

Substitute the numerical data in the formula (P.5.1.2) 

 
941.0

1511.0

11511.02





 . 

 The electron velocity can be expressed as follows 

cv  .                                                    (P.5.1.3) 

Substitute the numerical data in the formula (P.5.1.3) 

m/s1082.2103941.0 88 v . 

Answer. Electron speed is v = 2.82×108 m/s. 

 

Problem 5.2  

 

Problem description. Calculate the relativistic momentum p and kinetic energy Wk of 

an electron moving at a speed of v = 0.9c (c is the speed of light in a vacuum). 

 

Known quantities: v = 0.9c. 

 

Quantities to be calculated: p, Wk. 

 

Problem solution. The relativistic momentum of an electron is 

20
1 




 cmp ,                                            (P.5.2.1) 

where m0 is the rest mass of the electron; β is a relativistic factor. 

Relativistic factor is determined by the ratio β = v/c. By the condition of the 

problem, the electron velocity is v = 0.9c. Hence β = 0.9c/c = 0.9. The rest mass of 

an electron is m0 = 9.1×10–31 kg. Substituting these values in the formula (P.5.2.1), 

we obtain 

m/skg1064.5
9.01

9.0
103101.9 22

2

831 


 p . 

Kinetic energy Wk in relativistic mechanics is defined as the difference 

between the total energy W and the rest energy W0 

0WWWk  .                                             (P.5.2.2) 
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The total energy and the rest energy are determined using the following 

relations 
2mcW  ,                                                  (P.5.2.3) 

2

00 cmW  .                                                 (P.5.2.4) 

In this case, taking into account the dependence of mass on speed, we can write 

2
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2
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or 
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cmWk  .                                   (P.5.2.6) 

We substitute the numerical values in the formula (P.5.2.6) 

  J1006.11
9.01

1
103101.9 13

2

2831  










kW . 

Answer. The momentum of an electron is p = 5.64×10–22 kg·m/s . The kinetic energy 

of an electron is Wk = 1.06×10–13 J. 

 

Problem 5.3 

 

Problem description. A relativistic particle with kinetic energy of Wk = m0c2 (m0 is 

the rest mass of the particle; c is the speed of light in vacuum) experiences an 

inelastic collision with the same resting particle in the laboratory reference frame. As 

a result of the collision, a composite particle is formed. Define the following 

quantities: 1) relativistic mass m of a moving particle; 2) relativistic mass m′ and rest 

mass 0m  of the composite particle; 3) kinetic energy kW   of a composite particle. 

 

Known quantities: Wk = m0c2. 

 

Quantities to be calculated: m, m′, 0m , kW  . 

 

Problem solution. The total relativistic mass of particles remains constant 

mmm  0 ,                                            (P.5.3.1) 

where m + m0 is the total relativistic mass of particles before the collision; m is the 

mass of a moving particle; m′ is the relativistic mass of a composite particle. 
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Since Wk = m0c2 = W0, then relativistic energy of moving particle 

W = Wk + W0 = 2m0c2, therefore m = 2m0, and we can write  

00 3mmmm  .                                  (P.5.3.2) 

The rest mass 0m  of a composite particle can be found from the relation 

2

0

1 



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

 





c

v

m
m ,                                      (P.5.3.3) 

The velocity v of a composite particle can be determined from the law of 

conservation of momentum p = p′ (p is the momentum of a relativistic particle before 

a collision; p′ is the momentum of a composite relativistic particle). 

We will express momentum p through kinetic energy Wk 

  kk WWW
c

p  02
1

.                                    (P.5.3.4) 

Since Wk = W0 = m0c2, then  

  32
1

0
2

0
2

0
2

0 cmcmcmcm
c

p  .                   (P.5.3.5) 

The relativistic momentum of a compound particle is p′ = m′v′. Using relation 

m′ = 3m0, the law of conservation of momentum can be written as 

vmcm  00 33 .                                          (P.5.3.6) 

Express the speed v′ from the formula (5.3.6) 

3

c
v  .                                                  (P.5.3.7) 

We substitute the expressions for the velocity v′ and mass m′ into the formula 

(5.3.3). The result of the substitution is the formula for the rest mass of a composite 

particle 

2

00
3

1
13 








 mm                                    (P.5.3.8) 

or 

600 mm  .                                             (P.5.3.9) 

The kinetic energy of a composite particle is equal to the difference between 

the total energy m′c2 and the rest energy 
2

0cm of the composite particle 
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  2
0 cmmWk
 .                                   (P.5.3.10) 

Substituting the expressions for the quantities m′ and 0m , we obtain 

  2
0

2
00 55.063 cmcmmWk  .                   (P.5.3.11) 

Answer. The relativistic mass of a moving particle is m = 2m0. The relativistic mass 

of a composite particle is m′ = 3m0. The rest mass of a composite particle is 

600 mm  . The kinetic energy of a compound particle is 
2

055.0 cmWk  . 

 

Problems 

 

Problem A 

Problem description. A photon rocket moves relative to the Earth at a speed of 

v = 0.6c (c is the speed of light in a vacuum). Determine how many times the course 

of time in a rocket will slow down from the point of view of an earth observer. 

 

Answer. 1.25 times. 

 

Problem B  

Problem description. Two particles are removed from each other in a laboratory 

reference system. Particle velocities are the same in absolute value. The relative 

particle velocity in the laboratory reference system is 0.5c (c is the speed of light in a 

vacuum). Determine the particle velocity. 

 

Answer. v = 8.04×107 m/s.  

 

Problem C  

Problem description. Calculate the speed at which a particle moves if its relativistic 

mass is three times the rest mass. 

 

Answer. v = 2.83×108 m/s. 

 

Problem D  

Problem description. The solar constant is defined as the energy flux density of the 

electromagnetic radiation of the sun at a distance equal to the average distance from 

the Earth to the Sun. The value of the solar constant is 1.4 kW/m2. Determine the 

mass that the Sun loses in one year. 

 

Answer. Δm = 1.37×1017 kg. 
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Problem E  

Problem description. The kinetic energy of a relativistic particle is equal to its rest 

energy. Determine how many times the particle momentum will increase if the 

kinetic energy of the particle quadruples.  

 

Answer. 2.82 times. 
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APPENDICES 
 

 

Table A1. Greek alphabet 

Name Capital Lower-case Name Capital Lower-case 

Alpha A  Nu N  

Beta B  Xi   

Gamma Г  Omicron O  

Delta   Pi П  

Epsilon E  Rho P  

Zeta Z  Sigma   

Eta H  Tau T  
Theta   Upsilon ϒ  

Iota I  Phi Ф  

Kappa K  Chi X  

Lambda   Psi   

Mu M  Omega   

 

 

Table A2. SI prefixes 

Prefix Representation Prefix Representation 

Name Symbol Base 10 Name Symbol Base 10 

yotta Y 1024 deci d 10–1 

zeta Z 1021 centi c 10–2 

exa E 1018 milli m 10–3 

peta P 1015 micro   or u 10–6 

tera T 1012 nano n 10–9 

giga G 109 pico p 10–12 

mega M 106 femto f 10–15 

kilo k 103 atto a 10–18 

hecto h 102 zepto z 10–21 

deca da 101 yocto y 10–24 
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Table A3. SI base units  

Unit 

name 

Unit 

symbol 

Quantity 

name 
Definition 

metre m length 
The distance travelled by light in vacuum in 

1/299792458 second. 

kilogram kg mass 

The kilogram is defined by taking the fixed 

numerical value of the Plank constant h to be 

6.6260701510–34 when expressed in the unit 

Js, which is equal to kgm2s–1 , where the 

metre and the second are defined in terms of 

c and Cs. 

second s time 

The second is define by taking the fixed 

numerical value of the caesium frequency 

Cs, the unperturbed ground-state hyperfine 

transition frequency of the 133C atom, to be 

9192631770 when expressed in the unit Hz, 

which is equal to s–1. 

ampere A 
electric 

current 

The ampere is defined by taking the fixed 

numerical value of the elementary charge e to 

be 1.60217663410–19 when expressed in unit 

C, which is equal to As, where the second is 

defined in terms of Cs. 

kelvin K 

thermodyna

mic 

temperature 

The kelvin is defined by taking the fixed 

numerical value of the Boltzmann constant k 

to be 1.38064910–23 JK–1 (J=kgm2s–2), 

given the definition of the kilogram, the 

metre, and the second. 

mole mol 
amount of  

substance 

The amount of substance of exactly 

6.022140761023 elementary entities. This 

number is the fixed numerical value of the 

Avogadro constant, NA, when expressed in 

the unit mol–1 and is called the Avogadro 

number. 

candela cd 
luminous  

intensity 

The luminous intensity, in a given direction, 

of a source that emits monochromatic 

radiation of frequency 5.41014 Hz and that 

has a radiant intensity in that direction of 

1/683 watt per steradian. 
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Table A4. SI derived units 

Unit name 
Unit 

symbol 
Unit Equivalents Quantity name 

hertz Hz s–1 frequency 

radian rad 

One radian is the angle 

subtended at the center of a 

circle by an arc that is 

equal in length to the 

radius of the circle. 

angle 

steradian sr 

The solid angle subtended 

at the center of a unit 

sphere by a unit area on its 

surface 

solid angle 

newton N kg×m×s–2 force, weight 

pascal Pa N/m2 = kg×m–1×s–2 pressure, stress 

joule J N×m = kg×m2×s–2 energy, work, heat 

watt W J/s = kg×m2×s–3 power, radiant flux 

coulomb C A×s electric charge 

volt V J/C = kg×m2×s–3×A–1 
voltage,  

electromotive force 

farad F C/V = A2×s4× kg–1×m–2 electrical capacitance 

ohm  or Ohm V/A = kg×m2×s–3×A–2 
electrical resistance, 

impedance 

siemens S 1/Ohm = A2×s3× kg–1×m–2 electrical conductance 

weber Wb V×s = kg×m2×s−2×A−1 magnetic flux 

tesla T Wb/m2 = kg× s−2×A−1 magnetic field strength 

henry H Wb/A = kg×m2×s−2×A−2 electrical inductance 

degree 

Celsius 
°C K 

temperature relative to 

273.15 K 

lumen lm cd×sr = cd luminous flux 

lux lx lm/m2 = cd×m–2 illuminance 

becquerel Bq s–1 radioactivity 

gray Gy J/kg = m2×s–2 absorbed dose 

sievert Sv J/kg = m2×s–2 equivalent dose 

katal kat mol/s = mol×s−1 catalytic activity 
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Table A5. Physical constants 

Quantity Symbol Value 

Avogadro constant AN  6.0221415(10)×1023 mol–1  

Boltzmann constant k  1.3806505(24)×10–23 J / K 

Electric constant 0  8.854187817×10–12 F×m–1  

Faraday constant F  96485.3383(83) C×mol–1  

Fine-structure constant   7.297352568(24) ×10–3  

Gravitational constant G  6.6742(10)×10–11 N×m2 / kg2 

Magnetic constant 0  4×10–7 T×m /A (exact) 

Molar gas constant R  8.314472(15) J/(mol×K) 

Planck constant h  6.6260693(11)×10–34 J×s 

Rydberg constant HR  1.0973731568525(73)×107 m–1  

Stefan-Boltzmann constant   5.670400(40)×10–8 W×m–2×K–4  

Wien displacement law constant b  2.8977685(51)×10–3 m×K 

Atomic mass unit u  1.66053886(28)×10–27 kg 

Electron mass em  9.1093826(16)×10–31 kg 

Neutron mass nm  1.67492728(29)×10–27 kg 

Proton mass pm  1.67262171(29)×10–27 kg 

Elementary charge e  1.60217653(14)×10–19 C 

Speed of light in vacuum c  2.99792458×108 m /s 

Bohr magnetron B  9.27400949(80)×10–24 J/T 

Bohr radius 0a  5.291772108(18)×10–11 m 

Compton wavelength C  2.426310238(16)×10–12 m 
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Table A6. Astronomical data 

Body Mass, kg 
Equatorial 

radius, m 

Perihelion/ 

Aphelion, m 

Sidereal 

period 

Orbital 

speed, 

km/s 

Sun 1.9981030  6.955108  2.51020(*) 2.3108 y(*) 2.2102(*) 

Moon 7.3421022  1.738106  (3.63/4.05)108  27.321661 d 1.002 

Mercury 3.3011023  2.440106  (4.60/6.98)1010  87.9691 d 47.362 

Venus 4.8671024  6.052106  (1.08/1.09)1011  224.698 d 35.02 

Earth 5.9731024  6.378106  (1.47/1.52)1011  365.25636 d 29.783 

Mars 6.4171023  3.396106  (2.07/2.49)1011  686.971 d 24.007 

Jupiter 1.8981027  7.149107  (7.40/7.78)1011  11.862 y 13.07 

Saturn 5.6831026  6.027107  (1.35/1.51)1012  29.4571 y 9.68 

Uranus 8.6831025  2.556107  (2.75/3.00)1012  84.01 y 6.81 

Neptune 1.0241026  2.476107  (4.45/4.55)1012  164.79 y 5.4349 

(*) – Milky Way 

 

 

Table A7. Periodic table of elements 

Name 
ANSymbol 

(AN – atomic 

number) 

Standard 

atomic 

weight 

Name 
ANSymbol 

(AN – atomic 

number) 

Standard 

atomic 

weight 

1 2 3 1 2 3 

Actinium 89Ac 227 Californium 98Cf 251 

Aluminium 13Al 26.9815384 Carbon 6C 12.011 

Americium 95Am 243 Caesium  55Cs 132.905452 

Antimony 51Sb 121.760 Cerium 58Ce 140.116 

Argon 18Ar 39.948 Chlorine 17Cl 35.45 

Arsenic 33As 74.921595 Chromium 24Cr 51.9961 

Astatine 85At 210 Cobalt 27Co 58.933194 

Barium 56Ba 137.327 Copernicium 112Cn 285 

Berkelium 97Bk 247 Copper 29Cu 63.546 

Beryllium 4Be 9.0121831 Curium 96Cm 247 

Bismuth 83Bi 208.98040 Darmstadtium 110Ds 281 

Bohrium 107Bh 270 Dubnium 105Db 268 

Boron 5B 10.81 Dysprosium 66Dy 162.500 

Bromine 35Br 79.904 Einsteinium 99Es 252 

Cadmium 48Cd 112.414 Erbium 68Er 167.259 

Calcium 20Ca 40.078 Europium 63Eu 151.964 
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1 2 3 1 2 3 

Fermium 100Fm 257 Phosphorus 15P 30.9737620 

Flerovium 114Fl 289 Platinum 78Pt 195.084 

Fluorine 9F 18.9984032 Plutonium 94Pu 244 

Francium 87Fr 223 Polonium 84Po 209 

Gadolinium 64Gd 157.25 Potassium 19K 39.0983 

Gallium 31Ga 69.723 Praseodymium 59Pr 140.90766 

Germanium 32Ge 72.630 Promethium 61Pm 145 

Gold 79Au 196.966570 Protactinium 91Pa 231.03588 

Hafnium 72Hf 178.49 Radium 88Ra 226 

Hassium 108Hs 270 Radon 86Rn 222 

Helium 2He 4.002602 Rhenium 75Re 186.207 

Holmium 67Ho 164.930328 Rhodium 45Rh 102.90549 

Hydrogen 1H 1.008 Roentgenuim 111Rg 282 

Indium 49In 114.818 Rubidium 37Rb 85.4678 

Iodine 53I 126.90447 Ruthenium 44Ru 101.07 

Iridium 77Ir 192.217 Rutherfordium 104Rf 267 

Iron 26Fe 55.845 Samarium 62Sm 150.36 

Krypton 36Kr 83.798 Scandium 21Sc 44.955908 

Lanthanum 57La 138.90547 Seaborgium 106Sg 269 

Lawrencium 103Lr 266 Selenium 34Se 78.971 

Lead 82Pb 207.2 Silicon 14Si 28.085 

Lithium 3Li 6.94 Silver 47Ag 107.8682 

Livermorium 116Lv 293 Sodium 11Na 22.9897693 

Lutetium 71Lu 174.9668 Strontium 38Sr 87.62 

Magnesium 12Mg 24.305 Sulfur 16S 32.06 

Manganese 25Mn 54.938043 Tantalum 73Ta 180.94788 

Meitnerium 109Mt 278 Technetium 43Tc 98 

Mendelevium 101Md 258 Tellurium 52Te 127.60 

Mercury 80Hg 200.592 Tennessine 117Ts 294 

Molybdenum 42Mo 95.95 Terbium 65Tb 158.925354 

Moscovium 115Mc 290 Thallium 81Tl 204.38 

Neodymium 60Nd 144.242 Thorium 90Th 232.0377 

Neon 10Ne 20.1797 Thulium 69Tm 168.934218 

Neptunium 93Np 237 Tin 50Sn 118.710 

Nickel 28Ni 58.6934 Titanium 22Ti 47.867 

Nihonium 113Nh 286 Tungsten 74W 183.84 

Niobium 41Nb 92.90637 Uranium 92U 238.02891 

Nitrogen 7N 14.007 Vanadium 23V 50.9415 

Nobelium 102No 259 Xenon 54Xe 131.293 

Oganesson 118Og 294 Ytterbium 70Yb 173.045 

Osmium 76Os 190.23 Yttrium 39Y 88.90584 

Oxygen 8O 15.999 Zinc 30Zn 65.38 

Palladium 46Pd 106.42 Zirconium 40Zr 91.224 
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SUBJECT INDEX 
 

aberration of light. 128 displacement 16 

absolute movement 34 dry friction 35 

Amontons’ first law 36 dynamics 12 

amplitude 97 efficiency 57 

amplitude phase curve 109 elastic deformation 36 

angle of aberration 128 elastic force 37 

angle of nutation 74 elastic medium 114 

angle of precession 74 energy 63 

angle of pure rotation 74 energy density 115 

angular acceleration 27 equation of body motion 31 

angular displacement 27 equation of harmonic oscillations 96 

angular momentum 52 Euler equations 62 

angular velocity 26 external force 50 

anharmonic oscillator 97 finite motion 61 

arm of force 53 Fizeau experiment 131 

average acceleration 18 flux of energy 115 

average power 56 force of inertia 35 

average speed 16 free axis of the body 81 

axial moments of inertia 80 free fall 22 

axis of rotation 72 friction force 35 

beam 115 Galilean principle of relativity 125 

beats 99 Galileo’s law 40 

Bowditch curve 100 Galileo's transformation 125 

central force 59 general theory of relativity 10 

centre of inertia 50 gravity 40 

centrifugal acceleration 34 gyroscope 86 

centrifugal moments of inertia 80 gyroscopic pendulum 88 

classical mechanics 9 Hamilton operator 59 

closed system 50 Hamilton principle 62 

coefficient of rest friction 35 harmonic frequency 97 

coefficient of sliding friction 36 harmonic function 97 

compliance principle 11 harmonic oscillator 96 

conservative force 59 homogeneity of space 63 

coordinate system 14 homogeneity of time 132 

coordinate transformation 125 homogeneous body 30 

Coriolis acceleration 34 Hooke’s law 37 

Coriolis force 35 Huygens-Steiner theorem 79 

d'Alembert’s formula 116 inert mass 29 

damped oscillations 105 inertia 29 

damping decrement 106 inertia tensor 80 

decay time 106 inertial reference frame 30 

density 30 infinite motion 61 
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initial phase 97 Newton’s third law 33 

instantaneous acceleration 18 non-conservative force 59 

instantaneous power 56 non-inertial reference frame 35 

instantaneous speed 16 normal acceleration 19 

integrals of motion 63 normal reaction force 36 

intensity 115 nutation 86 

internal force 50 nutation velocity 86 

interval 136 oscillation phase 97 

isotropic body 37 path 16 

isotropy of space  64 period of harmonic oscillation 97 

kinematic equation of motion 16 perturbation 103 

kinematics 11 Planck constant 9 

kinetic energy 57 plane monochromatic wave 116 

Koenig's theorem 58 plastic deformation 37 

Lagrange equations 62 Poisson's ratio 38 

Lagrange function 62 portable acceleration 34 

Laplace operator 116 portable speed 34 

law of conservation of 

mechanical energy 

60 potential energy 59 

law of gravity 39 power centre 59 

length 12 principle of least action 62 

linear velocity 26 property of additivity 63 

linearly polarized oscillation 115 Q-factor 111 

Lissajous figure 100 quantum mechanics 10 

logarithmic damping decrement 107 radius of curvature 19 

longitudinal displacement 115 rectilinear motion 20 

Lorentz transformation 135 reduced length of the gyroscopic 

pendulum 

88 

main axes of inertia 80 reference frame 14 

main moments of inertia 80 relative motion 34 

mass 13 relativistic energy 110 

material point 14 relativistic quantum mechanics 11 

mechanical energy 60 relativistic quantum theory of 

gravitation 

11 

mechanical waves 114 resonance 110 

Michelson–Morley experiment 129 resonant frequency 110 

moment of inertia 76 resonant oscillations 109 

momentum 32 rest energy 140 

momentum of force 32 rest friction force 35 

natural oscillations 101 rest friction 35 

Newton’s first law 29 rest mass 139 

Newton’s law of inertia 125 rigid body 72 

Newton’s second law 31 rolling friction  35 
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rolling friction coefficient 36 total energy 140 

rolling friction force 36 trajectory 16 

rotational movement 14 transformation invariants 126 

second 13 transient regime 108 

second harmonic 104 translational motion 14 

secular equation 80 transverse displacement 115 

self-oscillating systems 112 transverse wave 114 

shear 38 uniform circular motion 28 

shear modulus 38 uniform movement 20 

sliding friction 35 uniform rectilinear movement 20 

sliding friction force 36 uniformity of time 63 

solid deformation 36 uniformly accelerated motion 21 

space-like interval 136 unit vector 15 

special theory of relativity 9 vector diagram 98 

statics 12 velocity hodograph 19 

stress 37 wave equation 116 

tangential acceleration 19 wave front 115 

Taylor series 96 wave number 116 

tensor of elastic strains 37 wave vector 116 

time 13 wavelength 115 

time-like interval 136 weight 40 

torsion 38 Young's modulus 38 

torsion module 39   

 

 

NAME INDEX 
 

Albert of Saxony 26 Huygens 79 

Amontons 36 Kibble 13 

Bowditch 100 Lagrange 62 

Coriolis 35 Laplace 116 

Coulomb 36 Lissajous 101 

d'Alembert 116 Lorentz 131 

Descartes 15 Michelson 129 

Einstein 10 Morley 129 

Euler 62 Newton 29 

Fizeau 131 Planck 9 

Fresnel 129 Poisson 38 

Galilei 126 Rømer 128 

Gregory 96 Steiner 79 

Hamilton 59 Taylor 96 

Heisenberg 10 William of Heytesbury 16 

Hooke 37 Young 38 
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