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PREFACE 
 

The section "Electromagnetism" of the general physics course, which is 

studied by students of technical institutes in the second semester, requires special 

attention. Firstly, this section includes a fairly complex mathematical apparatus, in 

particular, integral and differential calculus, vector and operator algebra. Secondly, 

the historical features of understanding electromagnetic phenomena have led to 

different approaches in describing the quantitative parameters of electric and 

magnetic fields (meaning the SI and CGS systems). Legislation and standards in 

many countries recommend the use of the International System of Units (SI) in 

science and education, which, in relation to electrodynamics, goes back to the system 

of "absolute practical units of measurement". However, the use of the SI system in 

electrodynamics still raises objections. Among physicists, the positions of the 

Gaussian (symmetric) CGS system are traditionally strong, which better takes into 

account the symmetries of electrodynamics, and is the standard for scientific 

publications and textbooks in theoretical physics. The appearance of the sets of 

formulas used in these approaches often differ significantly from each other even 

when describing the same characteristics of these fields. Thirdly, the course of 

electromagnetism is the base for further consideration of the experimental and 

theoretical aspects of wave, optical and even quantum phenomena. 

Most of the educational material, which is associated with the ability to 

quantitatively and qualitatively solve problems in electromagnetism, falls on 

seminars.  The development of skills, abilities and methods for solving a huge 

number of typical problems, of course, cannot be realized only at the expense of the 

hours allotted for seminars, and implies a lot of independent work by the student. In 

this regard, the problem of developing a general methodology for solving problems 

in the electromagnetism section becomes extremely urgent, which, on the one hand, 

would streamline and unify the plans for conducting the seminars themselves, and 

on the other hand, would become a guide for independent work of students.  

It should be borne in mind that methodological recommendations for solving 

problems from different sections of the general physics course have both common, 

coinciding, and individual, differing points. A necessary condition for the successful 

solution of most of the problems related to the features of the quantitative and 

qualitative description of electric and magnetic fields is the strict observance of all 

methodological recommendations for their solution. 

A detailed analysis of the initial data of the problem is the first stage of its 

solution. It is necessary to establish whether all the initial data necessary to solve the 

problem are available. Most of the tasks involve the construction of a detailed 

drawing that displays both the details of the equipment used or the electrical circuit, 

and the directions of vector quantities that describe the electromagnetic field. Each 

problem must be approached creatively. For example, it is not always advisable to 

complete the solution in a general, analytical form. Sometimes it is convenient to 

divide the problem into several blocks that involve theoretical and numerical 

solutions. The analysis of the formula obtained for any physical quantity must 
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include a check of its dimension. An incorrect dimension is a sure sign of a wrong 

decision.  

When starting calculations, it must be remembered that the numerical values 

of physical quantities are approximate. Therefore, calculations must be performed 

based on the rules of operations with approximate numbers. In particular, for the 

calculated value, it is necessary to save the last sign, the unit of which still exceeds 

the error of this value. All the following figures must be discarded. Further, for the 

obtained numerical values, a plausibility check must also be carried out. For 

example, the calculated speed of an electron in a betatron should not exceed the 

speed of light in vacuum. 

The entire material of the manual is divided into six chapters. Qualitative and 

quantitative characteristics of the electric field are considered in the first three 

chapters. The tasks related to the calculation of the characteristics of magnetic fields 

are given in the last three chapters. Each chapter contains five paragraphs.  

The first paragraph is for reference and contains definitions of the basic 

concepts and quantities used in the chapter, formulations of fundamental laws, and 

frequently used formulas. The second paragraph is devoted to guidelines, the main 

purpose of which is to focus on the features and difficulties of solving problems of 

this type. In the third paragraph, solutions to problems that are typical for this chapter 

are considered. The solution itself contains the full condition of the problem, a brief 

condition, derivation of the necessary formulas and calculation of numerical values, 

as well as a short answer. The fourth paragraph is focused on consolidating the 

educational material and contains twenty tasks for independent solution. In this 

section, tasks of the main types with answers are selected, the solution of which 

allows students to conduct self-control of the depth and correctness of mastering all 

the previous material. Finally, the fifth paragraph consists of short answers to the 

problems of the previous paragraph. 

In addition, at the end of the tutorial, there are reference materials necessary 

for solving problems, as well as a list of references. 
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CHAPTER 1. ELECTROSTATICS  

1.1. Basic formulas 

 

The force of interaction of two point charges 1Q  and 2Q , placed at a distance  

r  in a medium with a relative permittivity   is determined using Coulomb's law 

(Charles-Augustin de Coulomb 1736 – 1806) 

 

2
21

04

1

r

QQ
F


 ,                                           (1.1.1) 

  

where 0  = 8.8541878128(13) Fm–1.  

A point charge is an electric charge placed on a body whose dimensions are 

small compared to the characteristic dimensions of this problem (for formula (1.1.1), 

the characteristic size is the value r ). The force F  has a positive sign in the case of 

repulsion (charges of the same sign) and a negative sign in the case of attraction 

(charges with opposite signs). The direction of vector F


 is directly away from the 

pdrticle if the value Q  ( 1Q  or 2Q ) is positive and directly toward it if Q  is negative 

[1, p. 619]. The value   shows how many times the force of interaction between 

electric charges in a given medium is less than the force of interaction of the same 

charges in vacuum.  

The electric field at a given point is numerically equal to the force F , which 

acts on a unit of positive charge Q  at this point 

 

Q

F
E  .                                                (1.1.2) 

 

The electric field Е


 is a vector quantity, the direction of which coincides with 

the direction of the force vector F


. The force that acts on a charge Q , can be 

determined using the formula 

 

EQF


 .                                              (1.1.3) 

 

 The electric field of a point charge and the field outside a uniformly charged 

sphere (for the case when r  is greater than the radius of the sphere) is equal to 

 

2
04 r

Q
E


 .                                        (1.1.4) 
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 The electric field of a plane that is uniformly charged with an electric charge 

with a surface density   at any distance from this plane is determined by the 

formula 

 

02


E .                                               (1.1.5) 

 

 The surface density of the electric charge of a uniformly charged conductor 

is numerically equal to the charge per unit surface of the conductor and is expressed 

by the ratio of the total charge to the surface area of the conductor S  

 

S

Q
 .                                                 (1.1.6) 

 

 The electric field of an infinitely long charged thin wire at a distance r  from 

it is 

 

r
E

02


 ,                                            (1.1.7) 

 

where   is the linear charge density. 

 The linear density of the electric charge is numerically equal to the ratio of 

the total charge to the length of the thread L , on which this charge is placed 

 

L

Q
 .                                                     (1.1.8) 

 

 The electric field of a dipole at a distance r  from it can be expressed by the 

formula 

 




2

2
0

31
4

cos
r

p
E  ,                                (1.1.9) 

 

where  

Qlp   is the dipole moment;  

l  is the arm of the dipole;  

  is the angle between the direction of the dipole axis and the direction of the radius 

vector drawn from the center of the dipole to the point where the value Е  is 

determined. 

 The electric field in flat, cylindrical and spherical capacitors is determined by 

the formulas 
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0


E ,      

r
E

02


 ,    

2
04 r

Q
E


 .             (1.1.10) 

 

 Electric potential   at a given point  М  is numerically equal to the work 

that the field forces do when moving a unit of positive charge Q  from infinity to a 

point М  

 

Q

A M .                                          (1.1.11) 

 

 The electric potential of a point charge and a uniformly charged sphere outside 

it is  

 

r

Q

04
  .                                           (1.1.12) 

 

 Consider the case when the electrostatic field is formed by a system of n  point 

charges. The electric potential of such a field at a fixed point М  can be expressed 

by formula 

 





n

i i

i

r

Q

1 04
 ,                                       (1.1.13) 

 

where ir  is the distance from the point М  to the charge iQ . 

 Electric induction D


 s an auxiliary quantity, which, along with the electric 

field E  (main quantity), describes the characteristics of the electric field. The 

relationship between electrical induction and electric field is described by the 

formula 

 

ED


0 .                                         (1.1.14) 

 

 The flux of the electric induction vector D


 through an arbitrary surface is 

given by formula 

 


S

ndSDN ,                                      (1.1.15) 

 

where nD  is the projection of the vector D


  onto the direction of the normal to the 

surface. 
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The integration is performed over the entire surface S . For the case of a closed 

surface, we can write 

 

 dSDN n ,                                      (1.1.16) 

 

Formula (1.2.16) assumes integration over the entire surface. 

 The flux of the electric induction vector through a closed surface that covers 

the charges 1Q , 2Q , … is determined according to the Ostrogradsky-Gauss 

theorem (Ostrogradsky М.V. 1801 – 1862; Johann Carl Friedrich Gauß 1777 – 

1855) 

 

 



n

i

in QdSDN
1

,                              (1.1.17) 

 

where n  is the number of charges (taking into account the sign) that are inside the 

closed surface).  

 The electric potential created by the dipole at a distance r  from the center of 

the dipole (provided that the value r  is much greater than the arm of the dipole) is 

equal to 

 




 cos
r

p
2

04
 .                                 (1.1.18) 

 

 The work done by the field when moving a point charge Q  from point 1 to 

point 2 is given by 

 

QUA  ,                                           (1.1.19) 

 

where 21  U  is the potential difference (voltage) between points 1 and 2. 

The electric potential difference in flat, cylindrical and spherical capacitors is 

given by equations 

 

0

 d
U  ,   

1

2

02 R

R
lnU




 ,     










210

11

4 RR

Q
U


,      (1.1.20) 

 

where  

d  is the distance between the plates of a flat capacitor;  

1R , 2R  are the inner and outer radii of cylindrical and spherical capacitors. 
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 The measure of the intensity of the potential change along the electric line of 

force of the field formed by a point charge is the derivative of the potential with 

respect to the distance to the field source. This value is called the potential gradient 

and is equal to the electric field with a negative sign. The gradient is a vector 

quantity, the direction of which coincides with the direction of increasing potential 

 

dl

d
El


 ,   or    

2

1

dlEU l ,                          (1.1.21) 

 

where  

lE  is the projection of the electric field E  on the direction of movement;  

dl  is the amount of displacement. 

 

1.2. Problem-solving framework  
 

The most characteristic tasks of this section can be divided into four groups: 1) 

calculation of the interaction force of charged bodies; 2) determination of the 

electrtic field; 3) determination of the electric potential; 4) the distribution of a given 

charge over the surface of an insulated conductor whose dimensions and shape are 

known.  

For each group of tasks, we can specify some general ways to solve them. These 

methods are based on certain physical concepts and laws.  

1. The force of interaction between charged bodies of any shape with any distribution 

of charges on them can be calculated using Coulomb's law. To do this, it is necessary 

to geometrically add the forces with which each point charge on one body acts on 

each point charge on the second body. Such a calculation is quite simple for small 

charged balls and for charged bodies whose linear dimensions are much smaller than 

the distance between them. In all other cases, such a calculation is rather 

complicated, and it is better to calculate the force of interaction between bodies using 

the formula 

 

EQF  ,                                               (1.2.1) 

 

where Е  – is the electric field created by all the charges (except the charge Q ) of 

the system in the place where the charge is located Q .  

2. The main physical quantities in this case are the electric field and the electric 

potential. Problems in which it is necessary to determine the electric field formed by 

a system of charges can be solved in two ways: а) using the Ostrogradsky-Gauss 

theorem; b) using the formula for the electric field of a point charge. 

 It is convenient to use the Ostrogradsky-Gauss theorem in integral form when, 

due to symmetry considerations, it is possible to indicate in advance the direction of 

the lines of force and choose a surface of the correct symmetrical shape (cylinder, 
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sphere), which covers all charges in the system. In this case, one must always 

remember that the magnitude of the electric field at each point of such a surface must 

be the same.  

 According to the second method, the electric charge located on the surface of 

the body or in a certain volume is divided into elementary charges of such a 

magnitude that the formula for the electric field of a point charge can be applied to 

each of them. In this case, we can use the superposition principle for the electric 

field. For example, the resulting electric field formed by charges 1Q  and 2Q  can be 

determined by adding the corresponding vectors 1E


 and 2E


 for the electric fields 

that are created by each charge separately 

 

21 EEE


 .                                                 (1.2.2)  

 

 The direction of the electric field vectors iE


 is determined by the directions 

of the corresponding radius vectors that connect the charges iQ  with a fixed point. 

Integration of the electric fields of a large number of elementary charges makes it 

possible to calculate the electric field created by a charged body. It should always 

be remembered that the electric field is a vector quantity. This means that it is 

necessary to take into account the sum of only those components of the electric field 

of elementary charges that coincide with the direction of the resulting electric field 

vector, which is created by all charges. 

3. The electric potential is another important characteristic of the electric field. 

Unlike electric induction D


  and electric field Е


, which are vector quantities, 

electric potential is defined by a scalar function  z,y,x , that depends only on the 

coordinates of a point. Consider the case of arbitrary placement of point charges 1Q

, 2Q … in some system. Select a point Р  in space. The distances from this point to 

the charges will be equal 1l , 2l … The electric potential at point Р ,  according to the 

principle of superposition, is equal to the algebraic sum of the electric potentials of 

individual charges 

 





n

i i

i

l

Q

104

1


 .                                       (1.2.3) 

 

 This method of calculating the potential can only be used in the case of a 

continuous potential distribution, for example, for a charged body. Consider the 

elementary volume dV  of the body. This volume contains an elementary charge 

 dVz,y,xdq  . Then the potential at the point Р  can be calculated by 

summing the potentials of elementary charges of all elements of the volume 
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 
 

 dV
l

z,y,x
P






04

1
.                         (1.2.4) 

 

 This method of calculating the potential for points in a field created by an 

infinitely long uniformly charged filament or an infinite uniformly charged plate 

leads to an electric potential equal to infinity. In practice, we are not dealing with an 

infinite thread or an infinite plate. Therefore, the result obtained will not have a 

physical meaning. However, by integrating the expression  dlEU l , after 

substituting the value of the electric field into it, one can calculate the potential 

difference between field points that are at finite distances from the field source, for 

which the formulas for the electric field lead to accuracy sufficient for practice. 

 For the case when the formula for the electric field created by any system of 

charges is known, the potential can be calculated by integrating this formula within 

certain limits. To do this, you can use the relationship between the potential gradient 

and the electric field 

 

dl

d
El


 .                                              (1.2.5) 

 

4. The condition of electrical equilibrium of charges on conductors can be 

formulated in the form of two points: 1) equality to zero of the electric field inside 

the conductor; 2) perpendicularity of the electric field vector to the surface of the 

body at any point. The mathematical expression for these conditions is 

 

const .                                               (1.2.6) 

 

 The value of the electric potential must be the same at all points of the 

conductor, while its surface must be equipotential.  

 The solution of problems concerning the calculation of the charge distribution 

on the surface of an insulated conductor with a given shape and dimensions is 

reduced to determining such a density   distribution on the elements dS  of the 

conductor surface, in which at all internal points M  it had the same value 

 



S
l

dS




04

1
.                                   (1.2.7) 

 

where l  is the distance from the point M  to the surface element dS .  
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1.3. Problem-solving examples 

 

Problem 1.3.1  

 

Problem description. Two electric charges CQ 8
1 102   and  CQ 8

1 10  are 

located in the air at a distance of  cmr 100   from each other. At the initial moment 

of time, the charges are fixed motionless, and then the charge 2Q  is released and 

under the action of the repulsive force it begins to move away from the charge 1Q . 

Calculate the work done by the repulsive forces for two cases: а) charge 2Q  moves 

a distance of cmr 30  from charge 1Q ; b) charge 2Q  moves to infinity. 

 

Known quantities:  CQ 8
1 102  , CQ 8

1 10 , cmr 100  , cmr 30 . 

 

Quantities to be calculated:  1А , 2А . 

 

Problem solution. We will assume that charge 2Q  is at a distance of  x  from charge 

1Q . The repulsive force on the length interval from  x  to  dxx   can be considered 

approximately constant. In this case, the work done by the force at a distance of dx  

is given by 

 

 dxxfdA  ,                                                    (1) 

 

where  xf  is the repulsive force, which, according to Coulomb's law, is equal to 

 

 
2

0

21

4 x

QQ
xf


 ,                                                 (2) 

 

where 

  is the relative permittivity (for the case of air 1 );  

0  is the electric constant. 

 Substitute (2) into (1) 

 

 
x

QQ
dx

x

QQ
A

1

44 0

21
2

0

21


.                                      (3) 

 

 The work done by the repulsive force in case a) is equal to 

 



14 

 

 











00

21
1

11

4 rr

QQ
A


.                                            (4) 

 

 The work done by the repulsive force in case b) is equal to 

 














00

21
1

11

4 r

QQ
A


.                                            (5) 

 

 We substitute numerical values in formulas (4) and (5) 

 

J.A 5
1 1021  ,                J.A 5

2 1081  .                        (6) 

 

Answer. The work done by the repulsive force in cases a) and b) is: 

J.A 5
1 1021  ,  J.A 5

2 1081   respectively. 

 

 

Problem 1.3.2  

 

Problem description. Two small balls are suspended on silk threads so that they are 

in contact. After the balls were charged, they repelled each other and their centers 

moved a distance of cmd 5 . Determine the charges of these balls, if the mass of 

each of them is g.m 10 , and the length of the suspension threads is cml 25 .   

 

Known quantities:  cmd 5 , g.m 10 , cml 25 . 

 

Quantities to be calculated: Q . 

 

Problem solution. Two forces act on the balls deviated from the vertical: the 

Coulomb repulsive force (directed horizontally) 

 

2
0

2

4 d

Q
F


 .                                                   (1) 

 

and gravity (directed vertically) 

 

mgP  ,                                                      (2) 

 

where 

m  is the mass of the ball;  
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g  is the free fall acceleration. 

 The silk thread is directed along the resultant of these forces at an angle of    

to the vertical. For a given angle, the following relations can be written 

 

 
sin

l

/d


2
,            tg

P

F
 .                               (3) 

 

 We consider the case of a small angle of deviation of the thread from the 

vertical. In this case, the following relations are valid 

 

 sin ,                 
l

d

P

F

2
 .                                (4) 

 

 We express the force F  from formula (4) 

 

l

mgd
P

l

d
F

22
 .                                          (5) 

 

 Let us substitute (5) into (1) and write down the mathematical expression for 

the electric charge 

 

l

mgd
d

l

mgd
dQ 00 2

2

4 
 .                           (6) 

 

 Substituting known values, we get 

 

C.Q 91025  .                                          (7) 

 

Answer. The electric charge of one ball is C.Q 91025  . 

 

 

Problem 1.3.3  

 

Problem description. The charge СQ 7
2 10  is uniformly distributed along a 

straight conductor with a length of cmL 6 . Calculate the force with which this 

charge acts on another point charge CQ 9
1 102  . The charge 1Q  is located on 

a straight line passing along the conductor, at a distance of  cml 5  from the 

middle of the conductor.  
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Known quantities: СQ 7
2 10 , cmL 6 , CQ 9

1 102  , cml 5 . 

 

Quantities to be calculated: F . 

 

Problem solution. Charge 2Q  is not concentrated at one point, so it is not possible to 

use Coulomb's law. We will divide the conductor into a large number of small 

segments dx . An elementary segment will have a charge 

 

dxdQ  ,                                                          (1) 

 

wherr 
L

Q2  is the linear charge density. 

 Coulomb's law can now be used to describe an elementary charge. The force 

dF , with which the charge dQ  acts on the charge 1Q , is given by 

 

2
0

1

4 x

dxQ
dF




 ,                                                (2) 

 

where x  is the distance between charges. 

 In order to calculate the total force of interaction of charges 1Q  and 2Q , it is 

necessary to add geometrically all elementary forces that act on charge 1Q  from 

charge 2Q . Since the direction of the force does not change when moving from one 

element of the conductor to another, the problem is reduced to integrating equation 

(2) 

 

 








2

2

2

2
0

1
2

0

1 1

44

/Ll

/Ll

/Ll

/Llx

Q

x

dxQ
F








 

 
















2

1

2

1

4 0

1

/Ll/Ll

Q




.                                  (3) 

 

 Next, we will substitute the mathematical expression for the quantity in 

equation (3) 

 

 44 22
0

21

/Ll

QQ
F





.                                     (4) 
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 Numerically 

N.F 3101251  .                                       (5) 

 

Answer.  The strength of interaction between charges is N.F 3101251  . 

 

 

Problem 1.3.4  

 

Problem description. A large vertical plate is uniformly charged with a surface 

charge density 
24105   mC . A thread is attached to the plate, on which a 

ball with a mass of gm 1  is suspended. The electric charge of the ball has the 

same sign as the electric sign of the plate. Calculate the charge of the ball for the 

case when the thread is deviated from the vertical by an angle of  30 . 

 

Known quantities: 
24105   mC , gm 1 ,  30 . 

 

Quantities to be calculated: Q .   

 

Problem solution. We will denote the gravity of the ball as P . The vector P


 can be 

represented as the sum of two components 1P


 and 2P


, directed along the thread and 

in the horizontal direction, respectively. Component 1P


 is balanced by the thread 

tension. Component 2P


 tends to deflect the ball towards the plate. However, this 

component is balanced by the force of electrostatic repulsion of the ball from the 

plate. For modules of vectors P


 and 2P


 we can write  

 

 tgmgPtgp 2 ,                                        (1) 

 

where 

m  is the mass of the ball;  

g  is the free fall acceleration. 

 The electric field of a charged plate can be approximately expressed by the 

formula 

 

02


E ,                                                   (2) 

 

where 

  is the surface charge density of the plate;  
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  is the relative permittivity of the medium (we assume that the plate and the ball 

are in the air, for which 1 );  

0  is the electric constant. 

 The repulsive force of the ball from the plate is numerically equal to the 

product of the magnitude of the electric field E  by the magnitude of the electric 

charge Q  

 

02

Q
EQF  .                                           (3) 

 

 Vectors 2P


 and F


 have the same modulus, so 

 





tgmg

Q


02
.                                          (4) 

 

 We write, using formula (4), the equation for the electric charge 

 



 tgmg
Q 02
 .                                     (5) 

 

 Substituting the given data, we find 

 

CQ 9102  .                                      (6) 

  

Answer. The electric charge of the ball is CQ 9102  . 

 

 

Problem 1.3.5  

 

Problem description. The diameter, density and electric charge of the ball are 

cmd 1 , 
331051  mkg.  and CQ 910 , respectively. The ball is 

immersed in oil, the density of which is 
32

0 108  mkg . The entire system 

is in an electric field that is directed vertically upwards. Calculate the strength of this 

electric field for the case when the ball floats in oil. 

 

Known quantities: cmd 1 , 
331051  mkg. , CQ 910 , 

32
0 108  mkg . 
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Quantities to be calculated: E .  

 

Problem solution. In order for a ball to float in oil, the resultant of all forces acting 

on it must be zero. We will consider the forces acting on the ball. Gravity is applied 

to the center of the ball and directed vertically downwards 

 

gdP  3

6

1
 ,                                                    (1) 

 

where 

d  is the diameter of the ball;  

  is the density of the ball;  

g  is the free fall acceleration. 

  The buoyant force is applied to the center of the ball and directed vertically 

upwards 

 

gdP 0
3

1
6

1
 ,                                               (2) 

 

where 0  is the density of the oil. 

 The force with which the electrostatic field acts on the ball is applied to the 

center of the ball and is directed vertically upwards 

 

EQF  ,                                                     (3) 

 

where 

Q  is the charge of the ball;  

E  is an electrostatic field. 

 The equilibrium condition for all these forces has the form 

 

EQgdgd  0
33

6

1

6

1
 .                               (4) 

 

 We determine the electric field using equation (4) 

 

 
Q

gd
E

6

0
3  

 .                                          (5) 

 

 Substituting known values, we get 
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141063  mV.E .                                         (6) 

 

Answer. The electric field is  
141063  mV.E .  

 

 

Problem 1.3.6  

 

Problem description. Calculate the work done when two plates of a flat capacitor are 

moved apart by a distance of cmd 3 . The area and charges of the capacitor plates 

are 
2200 cmS  , CQ 7

1 102  , CQ 7
2 102   ( QQQ  21 ).  

 

Known quantities: cmd 3 , 
2200 cmS  , CQ 7

1 102  , 

CQ 7
2 102  , QQQ  21 .  

 

Quantities to be calculated: А . 

 

Problem solution. The force of interaction between the plates of the capacitor is 

 

EQF  ,                                                    (1) 

 

where 

E  is the electric field that is created by the charge of one plate in the place where 

the other plate is located;  

Q  is the electric charge of one of the plates. 

  The uniform electric field between the plates of a capacitor is 

 

02


E ,                                                     (2) 

 

where 

  is the surface charge density on the plates;  

  is the relative permittivity of the medium in which the plates are located ( 1 );  

0  is the electric constant. 

 The surface charge density is given by 

 

S

Q
 ,                                                    (3) 

 

where S  is the area of one of the plates. 
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 Substitute (2) and (3) in (1) 

 

S

Q
F

0

2

2
 .                                              (4) 

 

 The magnitude of the force F  does not depend on time. In this case, the work 

done when pushing the two plates apart is  

 

S

dQ
FdA

0

2

2
 .                                      (5) 

 

 Numerically 

 

J.A 31043  .                                        (6) 

 

Answer. The work done when moving apart two plates of a flat capacitor is equal to 

J.A 31043  . 

 

 

Problem 1.3.7  

 

Problem description. Calculate the force of interaction of two water vapor 

molecules, the dipoles of which are placed along one straight line. The electric 

moment of the water dipole is mC.p  301026 . The distance between 

molecules is ml 710 . 

 

Known quantities:  mC.p  301026 , ml 710 . 

 

Quantities to be calculated: F .  

 

Problem solution. We will consider the case when molecules (dipoles) of water 

vapor are directed relative to each other with their ends charged with opposite signs. 

The distance l  is measured from the middle of the first molecule to the closest 

charge 2Q  of the second molecule. The electric field E , formed by the first 

molecule in the place where the charge 2Q  is located  (under the condition dl 

, where d  is the distance between the charges of one molecule) is equal to 

 



22 

 

 

3
0

1
2 l

p
E


 ,                                            (1) 

 

where р  is the electric moment of the water vapor molecule.  

 A force of 1F  acts on the charge 2Q  of the second molecule 

 

23
0

1
2

Q
l

p
F


 .                                       (2) 

 

 A force 2F  acts on the charge 2Q  of the second molecule 

 

 
23

0

2
2

Q
dl

p
F





.                                 (3) 

 

 The resulting force that acts on the second molecule is 

 

 



 23

0

23
0

21
22

Q
dl

p
Q

l

p
FFF


 

 






























33

0

2

1

1
1

2

l

dl

pQ


.                                    (4) 

 

 We will consider the condition dl  . For this condition, we can write 

 

l

d

l

d
31

1

1
3













.                                               (5) 

 

 Therefore, the force is 

 

4
0

2

2

3

l

pdQ
F


 .                                                (6) 

 

 The dipole moment of the second molecule is 
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dQp 2 .                                                    (7) 

 

 Substitute (7) in (6) 

4
0

2

2

3

l

p
F


 .                                             (8) 

 

 Numerically, 

 

N.F 1219152  .                                       (9) 

  

Answer. The force of interaction of two water vapor molecules is 

N.F 1219152  . 

 

 

Problem 1.3.8  

 

Problem description. Determine the electrostatic pressure on the surface of a charged 

ball whose surface charge density is 
27102   mС .  

 

Known quantities: 
27102   mС . 

 

Quantities to be calculated: Р . 

 

Problem solution. We will consider a ball with a radius of R , on which a charge of 

Q  is located. The surface charge density on this conductor will be  

 

24 R

Q


  .                                                     (1) 

 

 The electric field strength in the area near the surface of the ball will be 

determined by the formula 

 

0
2

04 






R

Q
E ,                                           (2) 

 

where 

  is the relative permittivity of the medium;  

0  is the electric constant. 
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 We select an infinitesimal area element dS  on the surface of the ball. The 

electric field 1E , formed by this charge near the selected element can be determined 

under the assumption that the surface element is flat. In this case, the electric field  

 

000
12

22 










 EEE                                 (3) 

 

formed by the remaining charges located on the surface of the ball. These charges 

collectively affect the charge dS  with a force 

 

0

2

0 22 






 dS
dSdf  .                                      (4) 

 

 This force is directed along the outer normal to the surface of the conductor. 

From equation (4) it follows that the surface of the charged ball is under electrostatic 

pressure 

 

0

2

2




dS

df
P .                                          (5) 

 

 Substituting known values, we find 

 
231032   mN.P .                                  (6) 

 

Answer. The electrostatic pressure acting on the ball is 
231032   mN.P .  

 

 

Problem 1.3.9  

 

Problem description. A thin straight conductor is uniformly charged with a charge 

of СQ 8102  . Calculate the field strength at a point that is at a distance of 

cml 20  from the ends of the conductor and at a distance of cml 50   from the 

middle of the conductor. 

 

Known quantities: СQ 8102  , cml 20 , cml 50  . 

 

Quantities to be calculated: Е . 
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Problem solution. We will denote the length of the conductor as L . At a distance of 

x  from the middle of the conductor, an infinitesimal element of length dx  an be 

distinguished. The charge of this element is 

 

dx
L

Q
dQ  ,                                                       (1) 

 

where 

Q  is the charge of the entire conductor;  

L  is the length of the conductor. 

 The electric field created by an elementary charge at the point indicated in the 

condition of the problem (we will refer to it as point C ), can be calculated using the 

formula for the strength of a point charge 

 

Ld

Qdx

d

dQ
dE

2
0

2
0 44 

 ,                                    (2) 

 

where 

d  is the distance from the elementary charge dQ  to the point С ;  

  is the relative permittivity;  

0  is the electric constant. 

 The resulting electric field at a point С  is equal to the algebraic sum of the 

components dE  per direction of the normal passing through the middle of the 

conductor 

 

 


cos
Ld

Qdx
E

2
04

,                                       (3) 

 

where   is the angle between the normal and the direction of the electric field 

component Ed


. 

 In this case, we can write the following geometric relations 

 

cos

l
d 0 ,            tglx 0 ,           




2

0

cos

dl
dx  ,                    (4) 

 

where 0l  is the distance from point С  to the edge of the conductor. 

 The resulting electric field, taking into account formulas (4), is equal to 
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  



 22
0

2
0

04 cosl

dcoscosl

L

Q
E  

 

 











dcos
Ll

Q

004
 

 




sin
Ll

Q
2

4 00

 .                                        (5) 

 

 The value sin  can be determined as a function of the ratio of the values L  

and l , namely  l/Lsin 2 . We use this functional relationship to calculate the 

resulting electric field  

 

ll

Q

lLl

QL
E

0000 424

2


 .                                (6) 

 

 Substituting known values, we find  

 
14102  mVE .                                         (7) 

 

Answer. The electric field at a point С  is 
14102  mVE . 

 

 

Problem 1.3.10  

 

Problem description. A ring of thin wire has a radius of cmR 10 . This ring is 

uniformly charged with a negative electric charge of CQ 9105  . Calculate 

the strength of the electrostatic field on the axis of the ring at point С , located at a 

distance of cml 10  from the center of the ring. Determine the distance 0l  from 

the center of the ring for which the electrostatic field strength will be maximum. 

 

Known quantities: cmR 10 , CQ 9105  , cml 10 . 

 

Quantities to be calculated: Е , 0l .  
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Problem solution. We will consider the element dx , of the ring, on which the electric 

charge dQ  is located. The electric field at point С , specified in the condition of the 

problem, created by the charge dQ , is equal to 

 

2
04 x

dQ
dE


 ,                                            (1) 

 

where 

  is the relative permittivity;  

0  is the electric constant;  

x  is the distance from point С  to element dx . 

 The electric field vector Ed


 is directed along the line x , that connects the 

ring element dx  with the point С . According to the principle of superposition, the 

electric field created by all the charge on the ring is equal to the vector sum of the 

vectors Ed


. The vector Ed


 can be decomposed into two components: dE  

(tangential component, parallel to the direction from the point С  to the center of the 

ring) and ndE  (normal component, perpendicular to the tangential component). 

Components ndE  from every two diametrically opposed elements dx  cancel each 

other out, therefore 

 

 dEE .                                                  (2) 

 

 The relationship between quantities dE  and dE  has the form 

 

 cosdEdE  ,                                          (3) 

 

where   is the angle between the direction from point С  to the center of the ring 

and to element dx .  

 The tangential component, taking into account (1) - (3), can be represented as 

 

3
04 x

ldQ
dE





 ,                                              (4) 

 

where 

  is the relative permittivity;  

0  is the electric constant;  
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l  is the distance from the point С  to the center of the ring (in addition, formula (4) 

takes into account that x/lcos  ). 

 We will rewrite equation (2) taking into account (4) 

 

 
3

0
3

0 44 x

Ql
dQ

x

l
E


.                                 (5) 

 

 The relationship between the radius R  of the ring and the quantities x  and l  

has the form 

 

22 lRx  .                                              (6) 

 

 Let us rewrite formula (5) taking into account formula (6) 

 

  2322
04

/
lR

Ql
E





.                                    (7) 

 

 Substituting known values, we get 

 
131061  mV.E .                                       (8) 

 

 We express explicitly the functional dependencies  ,xfR 1  and 

 ,xfl 2  

 

sinxR  ,                 cosxl  .                                 (9) 

 

 In this case, the resulting electric field represented by formula (7) can be 

rewritten as follow 

 




cossin
R

Q
E  2

2
04

.                                    (10) 

 

 In order to find the maximum value E , it is necessary to take the derivative 

with respect to the angle   and equate this derivative to zero 

 

  02
4

32

2
0

 


sinsincos
R

Q

d

dE
.               (11) 
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Formula (11) can be rewritten as 

 

22 tg .                                                 (12) 

 

 Therefore, the fulfillment of condition 2tg  leads to the fact that the 

distance 0l  between the point С  and the center of the ring, at which the electric field 

created by the ring will be maximum, is equal to 

 

2
0

R

tg

R
l 


.                                            (13) 

 

 Substituting known values, we obtain 

 

m.l 2
0 1017  .                                           (14) 

 

Answer. The electric field on the axis of the ring at a point С  is 
131061  mV.E . The distance between the point С  and the center of the ring, 

at which the electric field will be maximum, is m.l 2
0 1017  . 

 

 

Problem 1.3.11  

 

Problem description. A ring of thin wire is uniformly charged with a charge of 

CQ 8102  . The radius of the ring is cmR 5 . Determine the electric 

potential at the center of the ring and at a perpendicular to the plane of the ring at a 

point that is at a distance of cmh 10  from the plane of the ring. 

 

Known quantities:  CQ 8102  , cmR 5 , cmh 10 . 

 

Quantities to be calculated:  , 0 .  

 

Problem solution. A ring made of a conductor is charged, so there is an electric field 

around the ring, at each point of which the electric potential can be determined. We 

consider the point B , which is perpendicular to the plane of the ring at a distance h  

from its plane. The field of a charged ring can be considered as a field formed by the 

superposition of fields from the charges of individual points of the ring. In this case, 

the ring can be divided into infinitesimal segments dx . The ring is made of thin wire, 

so it makes sense to consider the linear charge density  . The ring is uniformly 

charged, so the linear charge density is 
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R

Q




2
 ,                                                         (1) 

 

where  

R  is the radius of the ring;  

Q  is an electrical charge placed on the ring. 

 The charge of an elementary segment dx  is equal to 

 

dxdQ  .                                                       (2) 

 

 Since the elementary charge is concentrated on a very small segment of the 

length dx , of the conductor, it can be considered as a point charge. We will denote 

the potential at point B  of the electric field formed by the the point charge dQ , with 

the symbol d . The elementary potential is 

 

l

dQ
d

04
  ,                                                (3) 

 

where 

l  s the distance from the point B  to the elementary segment dx ,  

  is the relative permittivity of the environment (for the conditions of the problem, 

we can write 1 );  

0  is the electric constant. 

 Joint consideration of equations (1) – (3) allows us to write 

 

lR

Qdx
d

0
28 

  .                                            (4) 

 

 Electric potential is a scalar quantity. According to the principle of 

superposition for potentials, the potential of the resulting electric field is equal to the 

algebraic sum of the potentials formed at a given point by individual point charges. 

Hence 

 



R

dx
lR

Q





2

00
28

.                                               (5) 

 

 After integrating and performing some algebraic transformations, we can 

write the following formula for the potential 
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l

Q

04
  .                                                    (6) 

 

 Functional dependency  h,Rfl   can be written in the following form 

 

22 hRl  .                                              (7) 

 

 Let's rewrite (6) taking into account (7) 

 

22
04 hR

Q





 .                                       (8) 

 

 Substituting known values, we have 

 

V. 3106081  .                                                 (9) 

 

 The electric potential 0  at a point O  (the center of the ring) can be calculated 

using formula (8), provided that the value h  is zero ( 0h ) 

 

R

Q

0
0

4
  .                                            (10) 

  

 Substituting known values, we get 

 

V. 3
0 1063  .                                      (11) 

 

 Answer. The electric potential at a point perpendicular to the plane of the ring and 

the electric potential at the center of the ring are equal, respectively 

V. 3106081   and V. 3
0 1063  . 

 

 

Problem 1.3.12  

 

Problem description. An electron without an initial velocity passed through a 

potential difference of kVU 100   and flew into the space between the plates of a 

flat capacitor charged to a potential difference of VU 100 ,  along a line parallel 

to the plates. The distance between the plates is cmd 2 . The length of the 
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capacitor plates in the direction of electron motion is cml 20 . Calculate the 

distance X , that the electron will move from its original direction when it hits the 

screen. The screen is located perpendicular to the initial direction of electron motion 

at a distance of mL 1  from the edge of the capacitor plates.  

 

Known quantities: kVU 100  , VU 100 , cmd 2 , cml 20 , mL 1 . 

 

Quantities to be calculated: X .  

 

Problem solution. The curvilinear motion of an electron inside a capacitor can be 

decomposed into two simple movements: 1) movement with a constant speed 0  by 

inertia along a line parallel to the plates of the capacitor (the electron received the 

speed 0  under the action of a potential difference 0U , having passed it to the 

capacitor); 2) accelerated movement in the vertical direction to a positively charged 

plate under the action of a constant force that acts on an electron in the electrostatic 

field of a capacitor.   

 Outside the capacitor, the electron moves uniformly at a constant speed  . 

For the desired distance X  we can write the following equality 

 

21 hhX  ,                                                     (1) 

 

where 

1h  this is the distance, counted in the vertical direction, by which the electron will 

move during its movement in the capacitor;  

2h  is the distance between the point on the screen where the electron would hit, 

moving in the direction of its original velocity 0 , after leaving the capacitor, and 

the point on the screen where the electron actually hits. 

 We use the uniformly accelerated path formula to calculate the magnitude 1h  

 

2

2

1

at
h  ,                                                   (2)  

 

where 

a  is the acceleration that an electron has received under the action of a force from 

an electrostatic field;  

t  is the flight time of an electron in a capacitor. 

 According to Newton's second law, we can write 

 

m

F
a  ,                                                      (3) 
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where 

F  is the force with which an electrostatic field acts on an electron;  

m  is the mass of the electron. 

 In addition, for a force F  we can write the following equation 

 

d

U
eeEF  ,                                              (4) 

 

where 

e  is the charge of the electron;  

U  is the potential difference between the plates of a capacitor;  

d  is the distance between the plates of the capacitor;  

E  is the electrostatic field strength of the capacitor.  

 We can calculate the flight time t  of an electron inside a capacitor using the 

uniform motion formula 

 

tl 0 ,                                                    (5) 

 

or 

 

0

l
t  ,                                                    (6) 

 

where l  is the length of the capacitor in the direction of the electron's initial motion. 

 We will determine the initial speed of the electron from the condition of 

equality of the work on moving the electron, performed by the electrostatic field of 

the capacitor, and the kinetic energy received by the electron 

 

2

2
0

0

m
eU  ,                                            (7) 

 

where 0U  is the accelerating potential difference. 

 In this case 

 

m

eU02 2
0
 .                                                 (8) 

 

 Substituting formulas (3), (4), (6) and (8) into formula (2), we obtain an 

equation for the quantity 1h  
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h  .                                                 (9) 

 

 The features of the electron trajectory can be described using the following 

geometric relation for the similarity of the triangle of velocities and the triangle of 

distances 

 

L

h2

0

1 



,                                                 (10) 

 

where 

1  is the velocity of the electron in the vertical direction at the moment of departure 

from the capacitor (perpendicular to the plates of the capacitor);  

L  is the distance from the edge of the capacitor plates to the screen. 

 We will rewrite equation (10) 

 

0

1
2



 L
h  .                                              (11) 

 

 Speed 1  can be calculated using equation 

 

at1 ,                                                 (12) 

 

then, using equations (4), (6) and (7), we obtain 

 

0
1



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eUl
 .                                            (13) 

 

 We will write the equation for 2h , using formulas (8), (11) and (13) 

 

0
2

2dU

lUL
h  .                                               (14) 

 

 Then equation (1) can be rewritten in the following form 

 









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2

.                    (15) 

 

 Let's substitute numerical values 
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m.X 21055  .                                      (16) 

 

 

Answer. The distance the electron will move from its original direction is 

m.X 21055  . 

 

1.4. Level 1 problems 

 

1.4.1. Two charged balls of the same radius and weight, suspended on threads of the 

same length, are lowered into kerosene. The angle of divergence of the balls 

in air and in kerosene is the same. Calculate the density of the material of the 

balls. 

 

1.4.2. Two spherical dust particles each have one extra electron. The electrostatic 

repulsion force of dust particles balances the force of their mutual 

gravitational attraction. The volume of one grain of dust is 4 times the volume 

of another grain of dust. The density of the dust particle material is 
32700  mkg . Determine the radii of the dust particles. 

 

1.4.3. Calculate the electric field strength at a point that is located in the middle 

between point charges Cq 9
1 108   and Cq 9

2 106  . The distance 

between charges is cmr 10 . The relative permittivity of the medium is 

1 .  

 

1.4.4. At the vertices of a square with a side equal to a  are the same charges q . A 

charge q  of opposite sign is placed in the center of the square so that the 

force acting on any charge would be equal to zero. Calculate the amount of 

charge q .  

 

1.4.5. In the elementary theory of the hydrogen atom, it is assumed that the electron 

revolves around the nucleus in a circular orbit. Determine the speed of the 

electron if the radius of its orbit is pmr 53 , as well as the frequency of 

rotation of the electron. 

 

1.4.6. Point charges q , q2 , q3 , q4 , q5 , q6  ( Cq 7101  ) are located at the 

vertices of a regular hexagon with a side of cma 10 . Calculate the force 

that acts on a charge q , located in the plane of the hexagon and equidistant 

from its vertices. 
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1.4.7. Two identical conducting charged balls are at a distance of  cmr 60 . The 

repulsion force of the balls is NF 701  . After the balls were brought into 

contact and moved away from each other by the same distance, the repulsive 

force increased and became equal to NF 1602  . Calculate the charges 

1q  and 2q , that were on the balls before they touched. Consider the diameter 

of the balls to be much smaller than the distance between them. 

 

1.4.8. A thin filament with a length of cml 20  is uniformly charged with a linear 

density of 
110  mCn . At a distance of cma 10  from the thread, 

against its middle, there is a point charge of nCq 1 . Calculate the force 

acting on this charge from the side of the charged thread. 

 

1.4.9. A thin endless thread is bent at an angle of 900. The electric charge is evenly 

distributed along the filament with a linear density of 
11  mC . 

Determine the force acting on a point charge C.q 10 , located on the 

continuation of one of the sides and removed from the top of the corner at a 

distance of cmа 50 . 

 

1.4.10. A thin ring with a radius of cmR 10  carries a uniformly distributed 

charge of C.q 10 . On the perpendicular to the plane of the ring, drawn 

from its middle, there is a point charge nCq 101  . Calculate the force that 

acts on a point charge q  from the side of a charged ring, provided that this 

point charge is removed from the center of the ring by a distance: 1) 

cml 201  ; ml 22  .  

 

1.4.11. A charge with a linear density of 
11  mnC  is uniformly distributed 

along a thin ring with a radius of cmR 10 . In the center of the ring is a 

charge equal to C.q 40 . Determine the force that stretches the ring. 

Ignore the interaction of the charges of the ring. 

 

1.4.12. The electric field is created by two point charges nCq 101   and 

Cnq 202  , located at a distance of cmd 20  from each other. 

Calculate the electric field at point A . Point A  is removed from the first 

charge at a distance of cmr 301   and from the second charge at a distance 

of cmr 502  .  
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1.4.13. A thin rod with a length of cml 12  is charged with a linear density of 

1200  mnC . Calculate the electric field at point C . Point C  is at a 

distance of  cmr 5  from the rod against its middle.  

 

1.4.14.  A charge with a linear density of 
110  mCn  is uniformly distributed 

on a segment of a thin straight conductor. Calculate the potential created by 

this charge at a point located on the axis of the conductor, and remote from 

the nearest end of the segment at a distance equal to the length of this segment. 

 

1.4.15. A metal ball with a radius of cmR 10  is charged to a potential of 

V3001  . Determine the potential of this ball in two cases: 1) after it is 

surrounded by a spherical conductive shell with a radius of cmR 152   and 

for a short time connected to it by a conductor; 2) after the ball is surrounded 

by a spherical conductive grounded shell with a radius of cmR 152  . 

 

1.4.16. Two infinite parallel planes are at a distance of cmd 1  from each other. 

The planes carry charges uniformly distributed over the surfaces with 

densities equal to 
2

1 20  mC.   and 
2

2 50  mC.  , 

respectively. Calculate the potential difference between these planes. 

 

1.4.17 A metal ball with a diameter of cmd 2  is negatively charged up to a 

potential of V150 . Determine how many electrons are on the surface of 

the ball. 

 

1.4.18 The electric field is created by an infinite uniformly charged plane with a 

surface charge density of 
22  mC . A point electric charge 

Cnq 10  moves in this field at a distance of cml 20  along a straight 

line making an angle of 
060   with the plane. Determine the work done 

by the field forces to move this charge.  

 

1.4.19 The potential difference between the cathode and anode of the electron tube 

is VU 90 . The distance between the cathode and the anode is mmr 1 . 

Determine the acceleration with which the electron moves from the cathode 

to the anode. Calculate the speed of the electron at the moment of impact on 

the anode. Calculate the time it takes for an electron to travel the distance from 

the cathode to the anode. The electric field between the cathode and the anode 

is considered to be approximately uniform. 

 

1.4.20 A positively charged particle, the charge of which is equal to the elementary 

charge, has passed the accelerating potential difference, which is equal to



38 

 

 

kVU 60 , and moves to the nucleus of the lithium atom, the charge of 

which is equal to three elementary charges. Calculate the minimum distance 

that an electron can approach the nucleus. The initial distance from the 

electron to the nucleus can be considered almost infinitely large, and the mass 

of the particle can be assumed to be negligible compared to the mass of the 

nucleus. 

 

1.5. Answers to problems 

 

1.4.1. 
331061  mkg. . 

 

1.4.2. mr 5
1 104  ; mr 5

2 109  . 

 

1.4.3. 
1410045  mV.Е . 

 

1.4.4. q.q 960 . 

 

1.4.5. 
1510192  sm. ; 

11410596  s.n . 

 

1.4.6. N.F 21045  . 

 

1.4.7. C.q 10411  ; Cq 8
2 102  . 

 

1.4.8. N.F 610271  . 

 

1.4.9. N.F 310034  . 

 

1.4.10. N.F 4
1 1061  ; N.F 6

2 10252  . 

 

1.4.11. N.F 51053  .  

 

1.4.12. 
121082  mV.E . 

 

1.4.13. 
1410575  mV.E . 

 

1.4.14. V. 110246  . 
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1.4.15. 1) V2
2 102  ; 2) V2

2 101 . 

 

1.4.16. V. 21071  . 

 

1.4.17. 
910041  .N . 

 

1.4.18. J.A 610961  . 

 

1.4.19. 
21610581  sm.a ; 

1610635  sm. ; s.t 1010563  . 

 

1.4.20. m.rmin
141027  . 
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CHAPTER 2. CONDUCTORS AND DIELECTRICS  

IN  ELECTROSTATIC FIELD 
 

2.1. Basic formulas 
 

  On the surface of an uncharged conductor placed in an electrostatic 

field, charges of both signs are induced in equal amounts, and the electric field inside 

the conductor is zero 

 

00 E .                                                          (2.1.1) 

 

 Boundary conditions on the conductor surface:  

а) tangential components of the electric field E  and electric induction D  are equal 

to zero 

 

00    ED ,                                              (2.1.2) 

 

where 

  is the relative permittivity of the medium in which the conductor is located;  

0  is the electric constant; 

b) the components of the electric field and electric induction normal to the surface 

of the conductor are equal to the surface charge density   

 

  nn ED 0 .                                         (2.1.3) 

 

 Dielectrics in an electrostatic field are polarized in this field. The electrical 

properties of a dielectric are characterized by relative permittivity   и and absolute 

dielectric susceptibility  . The concept of permittivity was introduced by the 

English experimental physicist and chemist Faraday (Michael Faraday 1791 – 1867). 

The relationship between these quantities is illustrated by the formula 

 

ek 1
0


,                                       (2.1.4) 

 

where 0 /ke   is the relative dielectric susceptibility. 

 The relationship between the surface density   of bound charges at the 

conductor-dielectric interface and the surface density   of free charges on the 

conductor has the form 

 






1
 .                                     (2.1.5) 
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 The surface density of bound charges at the interface between two dielectrics 

with relative permittivities 1  and 2  is 

 











12

11


 .                                    (2.1.6) 

 

 The law of refraction of field lines at the interface between two isotropic 

dielectrics has the form 

 

1

2

2

1

n

n

E

E

tg

tg









.                                     (2.1.7) 

 

 Relation (2.1.7) can be formulated as follows: the ratio of the tangents of the 

angles of incidence and refraction is equal to the ratio of the relative dielectric 

permittivities of the dielectric, from where the lines of force come out and the 

dielectric, where the lines of force enter.  

 The electric capacitance (capacitance) of conductor is a physical quantity 

that is measured by the amount of chargeQ  (in air without other conductors) that 

must be imparted to the conductor in order to change its potential per unit of 

potential. The term capacitance was introduced by the Italian physicist, chemist and 

physiologist Allesandro Volta (Alessandro Giuseppe Antonio Anastasio Volta 1745 

– 1827). Electric capacity С  can be expressed as the ratio of charge Q  to potential 

  



Q
C  .                                                  (2.1.8) 

 

 The electric capacitance of conductors does not depend on the type of 

substance from which the conductor is made, but significantly depends on the size 

and shape of the conductor. In addition, the electrical capacity depends on the 

electrical properties of the environment and the influence of other conductors that 

are nearby.  

 The capacitance of a ball with a radius R  hat is far from other conductors 

and is in a medium with a relative permittivity  , is equal to 

 

RC 04 .                                       (2.1.9) 
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 Capacitance of flat, cylindrical and spherical capacitors 

 

d

S
C 0
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,               (2.1.10) 

 

where 
S  is the area of the plate;  

d  is the distance between the plates of a flat capacitor;  

1R  is the radius of the inner wall of the spherical capacitor;  

2R  is the radius of the outer wall of the spherical capacitor;  

l  is the length of the cylindrical capacitor. 

 Practical capacitors, with values ranging from 10-2 F to 10+5 F, often consist 

of two long strips of metal foil, separated by long strips of dielectric, rolled up like 

a “Swiss roll”.  

 Batteries of parallel and series-connected capacitors have the electric 

capacity, respectivly  

 





n

i

iCC
1

;               





n

i
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1
.                       (2.1.11) 

 

 The energy W  of a point charge in electrostatic field, is equal to the product 

of the charge Q  and the field potential   at the point where the charge is located 

 

QW  .                                         (2.1.12) 

 

 The energy of the charge Q , which is in the field of other point charges 1Q , 

2Q , … , is equal to the product of the charge Q  and the potential of the resulting 

field of all other charges at the point where the charge Q  is located 

 









 ...

l

Q

l

Q
QW

20
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44 
,                      (2.1.13) 

 

where il  is the distance from charge Q  to charge iQ . 
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 The energy of n  charges is given by equation 

 





n

k

kWW
1

2

1
,                                        (2.1.14) 

 

where kW  is the energy of charge kQ  in the field of all other charges with indices:  

    n...,,k,k,...,,k 1121  . 

 Charged insulated conductor energy is  

 

222

22  QC

C

Q
W  ,                                 (2.1.15) 

 

where Q ,  , C  are the charge, potential and capacitance of the conductor, 

respectively. 

 Charged capacitor energy is [2, p. 654] 

 

222

22 QUCU

C

Q
W  ,                              (2.1.16) 

 

where Q , U , C  are the charge, voltage and capacitance of the capacitor, 

respectively. 

 Volumetric energy density  , i.e. the energy of the electrostatic field, which 

falls on a unit volume, is equal to 

 

0

22
0

22 




DE
 ,                                 (2.1.17) 

 

where 

Е  is the electric field in a medium with permittivity  ;  

D  is the electrical induction of the electrostatic field. 

 

2.2. Problem-solving framework 

 

 First of all, we will consider the case when a conductor is placed in the field 

formed by a charged body. Under the action of field forces, at the end of such a 

conductor, which is closer to the electrified body, a charge of the opposite sign will 

appear, and at the other end of the conductor, a charge of the same name will appear. 

The phenomenon of redistribution of charges in a conductor under the action of an 

external field is called electrostatic induction.  
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 The electric field inside an uncharged conductor placed in an electrostatic field 

is zero  

 
0E .                                                 (2.2.1) 

 

It follows that the potential of all points of the conductor and the space inside it, if 

the conductor is hollow, will be the same. The equality to zero of the electric field 

inside the conductor is used in solving problems to determine the distribution of the 

induced charge on the surface of the conductor.  

 Due to electrostatic induction, conductors attract free electric charges that are 

located nearby. In most problems where it is necessary to calculate the force of such 

an attraction, it is not necessary to determine the exact distribution of induced 

charges. The fact is that the charges induced on the conductor form outside the 

conductor the same field that would be formed by the "electric image" of the free 

charge in the conductor. 

 "Electric image" of a given system of charges А  relative to some conductive 

surface S  is called a system of charges B , which is located on the other side of the 

surface S . he action of the system B  is identical to the action of charges on the 

surface S , which are induced by the system A . The "electric image" of a charge or 

a system of charges in a conductor can be found by writing down the condition of 

equipotentiality of the conductor surface. However, to determine both the magnitude 

and position of the charge equivalent to the charge induced on the surface of the 

conductor, the equipotentiality condition alone is often not enough. Therefore, based 

on the specific conditions of the problem, it is necessary to use other additional 

conditions. 

 The solution of this type of problem should be accompanied by a separate 

consideration of two cases: a) the conductor is grounded; b) the conductor is 

insulated. 

 We will assume that in case a) the charge and potential of the conductor are 

Q  and 0 , respectively, and in case b) the charge of the conductor and its 

potential are: 0Q ,  . For the electrical capacity of the conductor, we will use the 

symbol C , and for the surface charge density in areas 1 and 2 – the symbols 1  and 

2 , respectively. Our goal is to determine the relationship between the problems of 

these types.  

 Suppose that the problem of type a) is solved and the values Q  and 1  are 

determined, in addition, the potential is equal to zero 0 . The solution of problem 

b) can be obtained in the case when the charge Q , distributed over the conductor 

according to condition  0 , is added to the charge Q , distributed over the 

conductor as if the conductor were isolated and an external electrostatic field would 

not act on it. In this case, the surface charge density in different areas of the 

conductor surface is  . Then the desired surface charge density is  
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  12 .                                         (2.2.2) 

 

 The total charge of the conductor in this case is equal to zero 0Q , and the 

potential of the conductor is equal to 

 

C

Q
 .                                                (2.2.3) 

 

 Now suppose that problem b) has been solved. In this case, the surface charge 

density 2  and potential   are known quantities, and the condition 

 

  0dS .                                           (2.2.4) 

 

 In this case, it is possible to determine the magnitude of the charge CQ   

and produce a conditional charge distribution Q . We assume that the surface 

charge density in this case will be equal to  . hen the potential is zero 0 , and 

for the surface charge density 1  we can write 

 

  21 .                                        (2.2.5) 

 

 When calculating the electrical capacity of a certain conductor А , which is 

located close to several other conductors В , С , D , …, the concept of partial 

electrical capacity is used. Partial capacitance between conductors А  and B  is the 

absolute value of the ratio of the charge on the conductor А  to the potential 

difference between the conductors А  and B  provided that all other conductors C , 

D , … have the same potential. Information on the partial capacitance of each pair 

of conductors of the entire system allows us to calculate the true capacitance of any 

conductor by solving a system of linear equations. 

 When calculating the capacitance of capacitors or a system formed by two 

conductors, it is convenient to use a formula that expresses the relationship between 

the potential gradient and the electric field at some point in space 

 

dl

d
E


 .                                              (2.2.6) 

 

 The electric field must be represented as a function of distance and charges, 

which are the sources of the field. After that, using formula (2.2.6), we can find the 

potential difference between the indicated conductors. Then the electrical capacity 

is equal to the ratio of the charge of the conductor to the potential difference. 
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2.3. Problem-solving examples 

 

Problem 2.3.1  

 

Problem description. The point charge CQ 9102   is located at a distance 

cml 3  from the metal plate, which is connected to the ground. Calculate the 

surface charge density on the plate at two points: 1) at the point that is located at the 

minimum distance from the charge Q ; 2) at a point that is located at a distance 

cml 51   from the charge Q . In addition, it is necessary to determine the total 

charge induced on the surface of the plate. 

 

Known quantities:  CQ 9102  , cml 3 , cml 51  . 

 

Quantities to be calculated: 1 , 2 , Q.  
 

Problem solution. The charge Q  induces negative charges on the surface of the 

conductor, the surface density of which decreases symmetrically, starting from the 

maximum value at a point as close as possible to a point charge Q . At any point 

near the surface of the plate, the field strength is equal to the sum of the field 

strengths formed by the charge Q  and the charge on the surface of the conductor 

near the point we have chosen. The electric field inside the conductor is zero. 

1) We will denote the surface density of the induced charge at the point closest 

to the charge Q , as 1 . In this case, the following equation can be written 

 

0
24 0

1
2

0






 l

Q
,                                    (1) 

 

where 
  is the relative permittivity;  

0  is the electric constant;  

l  is the distance from the charge Q  to the metal plate. 

 Let's rewrite equation (1) 

 

21
2 l

Q


  .                                              (2) 

 

 Numerically, 

 
26

1 103   mC .                                       (3) 
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 2) We will reason in the same way as in case 1) and for a point on the surface 

of the plate, located at a distance of  1l  from the charge Q  we write the equation 

 

0
2424 0

2
3
100

2
2
10











 l

Ql
cos

l

Q
,                     (4) 

 

where  

1l

l
cos  ;  

2  is the surface density of the induced charge at point А  (the distance between 

point А  and the charge Q  is 1l ).  

 Let's rewrite equation (4) 

 

3
1

2
2 l

Ql


  .                                               (5) 

 

 Substituting known values, we get 

 
28

2 10647   mC. .                                   (6) 

 

 Now we will calculate the total charge induced on the surface of the plate. To 

do this, we consider an infinitely narrow ring of radius x  and width dx  centered at 

a point on the surface of the plate, which is at a minimum distance from the charge 

Q . The area of this ring is  

 

xdxdS 2 .                                                 (7) 

 

 The induced charge distributed in this ring is 

 

 322 xl

Qlxdx
dSQd



  .                                     (8) 

 

 Then the total induced charge of the entire metal plate is determined by the 

equation 

 

 
Q

xl

xdxQl
Q 



 


0

322

2

2
.                                (9) 
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 Substituting known values, we find 

 

CQ 9102  .                                     (10) 

 

Answer.  The surface charge densities for cases 1) and 2) are, respectively 
26

1 103   mC  and 
28

2 10647   mC. . The total induced charge 

of the entire metal plate is CQ 9102  . 

 

 

Problem 2.3.2  

 

Problem description. Calculate the force with which the charge CQ 8103   is 

attracted to a conducting ball with radius cm.R 50 . The ball is connected to the 

ground. The charge Q  is located at a distance of  cml 70  from the center of the 

ball. 

 

Known quantities: CQ 8103  , cm.R 50 , cml 70 . 

 

Quantities to be calculated: F . 

 

Problem solution. Due to electrostatic induction, negative charges appear on the 

surface of the conducting ball. First of all, we will find the "electrical image" of the 

charge Q  in the conducting ball, i.e. we determine the magnitude and position of 

the charge equivalent to the charges induced on the surface of the ball. To do this, 

connect the point A , where the charge Q  is located with the center C  of the ball. 

The corresponding segment will be denoted by the symbol AC . A consequence of 

symmetry is the fact that the charge equivalent to the charges induced on the surface 

of the ball is located on a straight line AC , for example, at some point A . We will 

denote the magnitude of this charge by the symbol Q.  
 Since the surface of the ball is an equipotential surface with a potential that is 

zero (the ball is connected to the ground), then for any point B  on the surface of the 

ball the following relation is true 

 

0
44 00







r

Q

r

Q


,                                      (1) 

 

where ABr  ,  BAr  . 

 Due to the fact that the ball is connected to the ground, the potential at all 

points inside the ball (and, therefore, in the center) is equal to zero. This potential is 

equal to the algebraic sum of the potentials due to the free charge Q  and the charges 
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induced on the surface of the ball. Therefore, for the center of the ball, we can write 

the following relation 

 

  0
44 00 R

dS

l

Q






,                                  (2) 

 

where 
  is the relative permittivity;  

0  is the electric constant;  

  is the surface density of the induced charge on the surface element of the ball dS ;  

l  is the distance from the charge Q  to the center of the ball C ;  

R  is the radius of the sphere. 

 In this case, the magnitude of the induced charge  

 

 

Q
l

R
dS

S

                                            (3) 

 

equal to the equivalent charge Q 
 

Q
l

R
Q  .                                             (4) 

 

 Analysis of equations (1) and (4) allows us to write the following relationship 

 

0
44 00














r

Q
l

R

r

Q


                                      (5) 

 

or 

 

l

R

r

r



.                                               (6) 

 

A surface that satisfies this condition is the surface of a ball centered on a line АС . 

Indeed, we draw a certain plane through AC  and arrange the coordinate axes XY  

in it so that the origin coincides with the point А , and the axis X  is directed along 

the straight line АС . Then we can write the following system of equations 

 
222 yxr                                                  (7) 
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  222 yaxr  ,                                           (8) 

 

where  

x  and y  are the coordinates of the point В ;  

AAa  .  

 Substituting equations (7) and (8) into equation (6), we obtain 

 

 
2

2

22

22

l

R

yx

yax





.                                         (9) 

 

 And equation (9) is the equation of a circle centered on the axis Х .  

 If we choose a point A  so that l/Ra 2 , i.e. between points А  and C  at 

a distance of l/R2
 from the center of the ball, then equation (9) will be the equation 

of a circle with a radius R  centered at the point С . 

 Thus, the equipotential surface with a potential equal to zero, from the charges

Q  and l/RQQ  (which are placed at points А  and A , moreover

l/RCA 2 ),  coincides with the given surface of the ball. 

 Therefore, the value of the charge l/RQQ   at point А  will be the 

"electric image" of the free charge Q  in the conducting ball. Now the force of 

interaction between a free charge Q  and a conducting ball can be easily calculated 

using Coulomb's law 

 

 222
0

2

2
2

0

4
4

Rl

RlQ

l

R
l

Q
l

R
Q

F


































.                   (10) 

 

 If the radius of the ball satisfies the inequality lR  , then equation (10) can 

be simplified 

 

3
0

2

4 l

RQ
F


 .                                              (11) 

 

 Substituting known values, we have 

 

N.F 71021  .                                         (12) 
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Answer. The force with which the charge is attracted to the conducting ball is 

N.F 71021  . 

 

 

Problem 2.3.3  

 

Problem description. Near the glass surface ( 72  ) the electric field in air is 

14
1 102  mVE  and forms an angle of 

0
1 30  with the direction of the 

normal to the surface. Calculate: 1) angle between the electric field and the normal 

in the glass; 2) electric field vector modulus in glass; 3) density of bound charges at 

the interface between air and glass.  

 

Known quantities: 72  , 
14

1 102  mVE , 
0

1 30 . 

 

Quantities to be calculated: 2 , 2E , 2 .   

 

Problem solution. When passing from one dielectric to another, the electric field 

lines are refracted so that  

 

1

2

1

2










tg

tg
,                                                   (1) 

 

where 

1  and 2  are the relative permittivities of the first and second dielectric, 

respectively;  

1  and 2  are the angles that the vectors 1E


 and 2E


 of the electrostatic field in the 

first and second dielectrics, respectively, make with the normals to the interface. 

 Let us rewrite equation (1) in the form    212221  ,,ff   

 

1
1

2
2 




 tgtg  .                                               (2)  

 Numerically 

 

041842 .tg  ,                   60762  .                         (3) 

 

 The tangential components of the electrostatic field are the same on both sides 

of the dielectric interface. Therefore, the electrostatic field in the glass will be equal 

to 
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2

11

2

1

2

2
2








sin

sinE

sin

E

sin

E
E  ,                              (4) 

 

where 1E  and 2E  are the tangential components of the electrostatic field in the 

first and second dielectrics, respectively. 

 Substitute numerical values in equation (4) 

 
14

2 10031  mV.E .                                     (5) 

 

 The surface charge density is numerically equal to the normal component of 

the dielectric polarization. The polarization of the glass is 

 

  22022 1 EEP


  ,                                   (6) 

 

where 

  is the dielectric susceptibility of the second dielectric;  

0  is the electric constant;   

 The normal component of the polarization vector for the second dielectric is 

 

222 cosPP n  .                                             (7) 

 

 In this case, for the density of bound charges, we can write the following 

expression 

 

 
 





2

21120
222022

1
1






sin

cossinE
cosEP n  

 

   

2

11120

2

11120 11



 cosE

tga

costgE 



 .                    (8) 

 

   Substituting known values, we get 

 
27

2 1083   mC. .                                         (9) 

 

Answer. The angle between the electric field strength and the normal in the glass is 

60762  . The modulus of the electric field strength vector in glass is 

14
2 10031  mV.E . The density of bound charges at the interface between air 

and glass is 
27

2 1083   mC. . 

Problem 2.3.4  
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Problem description. In kerosene, at a depth of mh 3  below the free surface, 

there is a point charge CQ 8102  . Calculate the density of charges on the 

surface of kerosene in the following cases: 1) above the charge; 2) at a distance of 

cml 5  from the charge. Calculate the total charge on the entire surface of the 

kerosene. 
 

Known quantities: mh 3 , CQ 8102  , cml 5 . 

 

Quantities to be calculated:  1 , 2 , Q . 
 

Problem solution. First of all, we will write down the formula for the equality of the 

normal components of the electric displacement vector on both sides of the kerosene-

air interface 

 

nn EE 220110   ,                                            (1) 

 

where 

0  is the electric constant;  

1  and 2  are the relative permittivities of the first and second dielectric, 

respectively;  

nE1  and nE2  are the normal components of the electrostatic field strength in the 

first and second dielectric, respectively. 

 The electric field E


 is determined by both free and bound charges. 

 We will first consider the first case described in the problem statement. The 

electrostatic field 1E  created at point 1 on the surface of kerosene directly above the 

point charge Q , is 
2

04 h

Q


 (where h  is the distance from the charge Q  to point 1). 

1). The electric field vector 1E


 is directed perpendicular to the interface upwards. 

The electric field of bound charges (in fact, this is the electric field of a charged 

plane) is 

0

1

2


 (where 1  is the surface density of bound charges for the first case). 

The electric field of bound charges is also directed perpendicular to the interface: in 

kerosene - down, and in air - up. Therefore, for the moduli of the electrostatic field 

in the first dielectric ( 1E ) and in the second dielectric ( 2E ) we can write 

 

0

1
2

0

1
24 






h

Q
E ,         

0

1
2

0

2
24 






h

Q
E .                 (2) 
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 Due to the perpendicularity of the electrostatic field to the dielectric interface, 

we can write the following relationships 

 

11 EE n  ,       22 EE n  .                                          (3) 

 

 Therefore, the equality of the normal components of the electric displacement 

vector is described by the equation 

 

20
0

1
2

0

10
0

1
2

0 2424













 




























h

Q

h

Q
                   (4) 

 

or 

 











2

1
2

0

1211 1
422 







h

Q
.                                (5) 

 

 Then  

 

 

12

12
21

2 











h

Q
.                                           (6) 

 

   Substituting known values, we get 

 
26

1 10181   mC. .                                        (7) 

 

 Now we will consider the second case described in the problem statement. In 

this case, point 2 on the surface of kerosene is at a distance of  l  from the point 

charge Q . The strength of the electrostatic field at point 2 is 
2

04 l

Q


. This 

electrostatic field is not directed perpendicular to the interface, but at an angle of   

to the normal, and 
l

h
cos  . Therefore, the normal component of this electrostatic 

field is equal to 
3

04 l

Qh


. 
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 The electric field of bound charges in the second case is equal to 

0

2

2


 (where 

2  is the surface density of bound charges for the second case). In addition, the 

electric field of bound charges is perpendicular to the dielectric interface and is 

directed upwards in air, and downwards in kerosene. Therefore, for the normal 

components of the electrostatic field in the first and second dielectrics in this case, 

we can write 

 

0

2
3

0

1
24 






l

Qh
E n ,      

0

2
3

0

2
24 






l

Qh
E n .                      (8) 

 

 We write the equality of the normal components of the electric displacement 

vector as an equation 

 

20
0

2
3

0

10
0

2
3

0 2424













 




























l

Qh

l

Qh
                 (9) 

 

or 

 

 
3

12221

422 l

Qh



 
  .                                (10) 

 

 Then, for the surface density of bound charges in the second case, we can 

write 

 

 

 12
3

12
2

2 









l

Qh
.                                       (11) 

 

 Numerically 

 
27

2 108   mC .                                      (12) 

 

 In order to determine the total bound charge on the surface of kerosene, we 

consider an infinitely narrow ring with a radius of x , a width of dx  and centered at 

point 1. The area of this ring is  

 

xdxdS 2 .                                               (13) 

 

 The charge placed on this ring is 
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 
 
 12

12

322
2

2

2



















xh

xdxQh
dSQd .                   (14) 

 

 Then we will integrate equation (14) in the range from 0 to  

 

 
   

 
 














0
12

12

32212

12 2

2 






Q

xh

xdxQh
Q .                (15) 

 

 Substituting the given data, we find 

 

C.Q 91076  .                                           (16) 

 

Answer. The density of bound charges on the surface of kerosene in the first case is 
26

1 10181   mC. . The density of bound charges on the surface of kerosene 

in the second case is 
27

2 108   mC . The total bound charge on the surface 

of kerosene is C.Q 91076  .  

 

 

Problem 2.3.5  

 

Problem description. The space between the plates of a flat capacitor is filled with a 

dielectric ( 6 ). The distance between the plates of the capacitor is mmd 4 . 

A voltage of VU 1200  is applied to the plates. Calculate the following 

quantities: 1) field strength in a dielectric; 2) surface charge density on the capacitor 

plates; 3) surface density of bound charges on the dielectric; 4) dielectric 

susceptibility. 

 

Known quantities: 6 , mmd 4 , VU 1200 . 

 

Quantities to be calculated: E , d , z ,  . 

 

Problem solution. The electric field strength in the dielectric is determined only by 

the potential difference on the capacitor plates and the distance between them 

 

d

U
E  ,                                                       (1) 

 

where 
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U  is the potential difference between the plates of a capacitor;  

d  is the distance between the plates of the capacitor. 

   Substituting known values, we get 

 
15103  mVE .                                         (2) 

 

 To further solve the problem, we introduce the following notation: 0  is the 

surface charge density on the capacitor plates without a dielectric; d  is the surface 

density on the capacitor plates in the presence of a dielectric; z  is the surface 

density of bound charges on the dielectric. 

 The combined effect of charges with surface densities d  and z  can be 

described by a model according to which there are charges distributed at the interface 

between the conductor and the dielectric, with a density  

 

zd   ,                                                  (3)  

 

where   is the surface density of the "effective" charges that determine the 

resulting electric field in the dielectric. 

 Then the electric field in a capacitor without a dielectric is given by 

 

d

U
E 

0

0
0




,                                                 (4) 

 

where 0  is the electric constant. 

 In turn, the resulting electric field in the dielectric is 

 

d

U
E d 




00 






,                                         (5) 

 

where   is the relative permittivity of the dielectric. 

 From here we can write the following equation for the surface charge density 

on the capacitor plates 

 

d

U
d




 .                                                (6) 

 

 Substituting known values, we have 

 
251061   mC.d .                                  (7) 
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 Now we will rewrite equation (3) 

 

  dz .                                            (8) 

 

 Then, using equation (6), we obtain an expression for the surface density of 

bound charges on the dielectric 

 

   
d

U
EEEz 11 0000   .               (9) 

 

 Substituting known values, we get 

 
2510331   mC.z .                                   (10) 

 

 The normal component of the polarization vector P


 is numerically equal to 

the surface density z  of bound charges. In addition, the modulus of the polarization 

vector is proportional to the electric field in the dielectric 

 

zn PP  ,                 EP  ,                                   (11) 

 

where   is the absolute dielectric susceptibility. 

 The value   can be determined from equations (11) and (9) 

 

 
 1

1
0

0 


 



E

E

E

z .                              (12) 

 

 Numerically 

 
11110444   mF. .                                        (13) 

 

Answer. The electric field in a dielectric is 
15103  mVE . The surface charge 

density on the capacitor plates is 
251061   mC.d . The surface density of 

bound charges on a dielectric is 
2510331   mC.z . The dielectric 

susceptibility is 
11110444   mF. . 
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Problem 2.3.6  

 

Problem description. Two horizontal plates are charged with charges 

CQ 7102   and CQ 7102  . The plates are so close to each other that 

the electric field between them can be considered uniform. The lower plate is in a 

liquid dielectric ( 3 ). The area of the plate is 
2300 cmS  . Calculate the forces 

that act on each of the plates and on the surface of the liquid. 

 

Known quantities: CQ 7102  , CQ 7102  , 3 , 
2300 cmS  . 

 

Quantities to be calculated: 1F , 2F , 3F . 

 

Problem solution. The resulting force that acts on the top plate is equal to the sum 

of two forces: the first force is due to the interaction of charges on the top and bottom 

plates; the second force is determined by the interaction of charges on the upper plate 

and polarization charges on the surface of the liquid dielectric. 

 The density of polarization charges (problem 2.3.4) is  

 

 
 1

1
1











S

Q
,                                             (1) 

 

where 

Q  is the charge module on the capacitor plates;  

S  is the area of the capacitor plate;  
  is the relative permittivity of the liquid dielectric; 

1  is the relative permittivity of air. 

 The force of attraction between the charges on the plates is given by 

 

11 QEF  ,                                                 (2) 

 

where 1E  is the electric field formed by the charges of the lower plate in the place 

where the upper plate is located. 

 Therefore, for the quantity 1F  we can write 

 

S

Q
F

10

2

1
2 

 ,                                                  (3) 

 

where 0  is the electric constant. 
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 The force of interaction between the charges of the upper plate and the charges 

on the surface of the liquid dielectric is 

 

 
 1

1

10

2

2
2 



 




S

Q
F .                                           (4) 

 

 Therefore, the resulting force that acts on the top plate is given by 

 

 
   110

2

1

1
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2

10

2

211
22 







 







S

Q

S

Q

S

Q
FFF .          (5) 

 

   Substituting known values, we have 

 

N.F 11301  .                                                 (6) 

 

 Similarly, we define the force that acts on the bottom plate 

 

 
   1

1

0

2

1

1

0

2

0

2

2
22 







 







S

Q

S

Q

S

Q
F .             (7) 

 

 Numerically 

 

N.F 01302  .                                                (8) 

 

 The force that acts on the surface of the liquid dielectric is also equal to the 

sum of two forces, namely: the force of interaction of charges on the surface of the 

liquid dielectric with the charges of the upper plate, as well as the force of interaction 

of charges on the surface of the liquid dielectric with the charges of the lower plate 

 

 
 









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Q
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

0101

1
3  

 

 
  






























1111

10

2

11

1

0

2

S

Q

S

Q
.                            (9) 

 

 Substituting known values, we get 

 

N.F 103  .                                                    (10) 
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Answer. The force acting on the top plate is N.F 11301  . The force acting on the 

bottom plate is N.F 01302  . The force acting on the surface of a liquid dielectric 

is N.F 103  . 

 

 

Problem 2.3.7  

 

Problem description. The flat capacitor is filled with three layers of dielectrics: glass 

with a thickness of cm.d 3501   and relative dielectric permittivity 7 ; 

paraffin with a thickness of  cm.d 2102   and relative dielectric permittivity 

122 .  and porcelain with a thickness of cm.d 903   and relative dielectric 

permittivity 543 . . Calculate the electric field in each layer if a potential 

difference of  kVU 10  is applied to the capacitor . 

 

Known quantities: cm.d 3501  , 7 , cm.d 2102  , 122 . , 

cm.d 903  , 543 . ,  kVU 10 . 

 

Quantities to be calculated: 1Е , 2Е , 3Е . 

 

Problem solution. We will denote the electric field strength in the three layers by the 

symbols: 1E , 2E  and 3E . In addition, for the potential difference of these three 

layers, it is convenient to use the symbols: 1U , 2U , 3U .  

 The potential difference applied to the capacitor is 

 

321 UUUU  .                                         (1) 

 

 The functional dependences of the potential difference, the thicknesses of the 

dielectric layers, and the corresponding electric fields have the form 

 

111 dEU  ,   222 dEU  ,    333 dEU  ,                        (2) 

 

where 1d , 2d , 3d  are the thicknesses of the first, second and third dielectrics, 

respectively. 

 Let us rewrite formula (1) taking into account formula (2) 

 

332211 dEdEdEU  .                                      (3) 
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 The electric field 1E  can be represented as a function of the electric fields 2E  

and 3E . To do this, we take into account that the electrical displacement D  

(electrical induction) of the field in any dielectric layer is the same. Hence 

 

303202101 EEED   ,                                     (4) 

 

где  

0  is the electric constant;  

1 , 2 , 3  are the relative permittivities of the first, second, and third dielectrics, 

respectively.  

 Now we can write functional dependencies  1212 E,,fE   and 

 1313 E,,fE   

 

1
2

1
2 EE




 ,            1

3

1
3 EE




 .                            (5) 

 

 In order to determine E , it is necessary to substitute equation (5) into equation 

(3) 

 

31
3

1
21

2

1
11 dEdEdEU








 .                             (6) 

 

 Then 

 













3
3

1
2

2

1
1

1

ddd

U
E








.                                     (7) 

 

 Substituting known values, we get 

 

 
15

1 1014  mV.E .                                        (8) 

 

 The electrostatic field in the second dielectric is 

 













3
3

1
2

2

1
12

1
2

ddd

U
E











.                                     (9) 
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Numerically 

 
16

2 10351  mV.E .                                     (10) 

 

The electrostatic field in the third dielectric is 

 













3
3

1
2

2

1
13

1
3

ddd

U
E











.                                     (11) 

 

Let us now insert the given data 

 
15

3 1036  mV.E .                                     (12) 

 

Answer. The electrostatic field in the first dielectric is 
15

1 1014  mV.E . The 

electrostatic field in the second dielectric is 
16

2 10351  mV.E . The 

electrostatic field in the third dielectric is 
15

3 1036  mV.E . 

 

 

Problem 2.3.8  

  

Problem description. Calculate the capacitance of a cylindrical capacitor, the length 

of which is cml 5 , and the radii of the outer and inner plates are cm.R 512   

and cm.R 301  , respectively. The space between the plates is filled with paraffin. 

 

Known quantities: cml 5 , cm.R 301  , cm.R 512  . 

 

Quantities to be calculated: С . 

 

Problem solution. The electrostatic field at any point between the capacitor plates 

can be determined by the Ostrogradsky-Gauss theorem 

 

lRExl x 10 22   ,                                       (1) 

 

where 
  is the relative permittivity of the dielectric between the plates of the capacitor;  

0  is the electric constant;  

l  is the length of the cylindrical capacitor;  
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x  is the distance from the axis of the cylindrical capacitor to the point where the 

electric field is xE ;  

  is the surface charge density on the capacitor plate;  

1R  is the radius of the inner lining of the capacitor. 

 Now we can express the value xE  from formula (1) 

 

x

R
Ex

0

1




 .                                                    (2) 

 

 The potential gradient   between the capacitor plates is related to the electric 

field Е  by the following formula 

 

x

R

dx

d
E

0

1




 .                                             (3) 

 

 Therefore, the elementary potential of the field between the plates of the 

capacitor is given by 

 

dx
x

R
d

0

1




  .                                               (4) 

 

 Now we can integrate equation (4) 

 

 
2

1

2

1
0

1









R

R

dx
x

R
d ,                                         (5) 

 

where 2R  is the radius of the outer plate of the capacitor. 

 Therefore, the potential difference between the capacitor plates is 

 

1

2

0

1
21

R

R
ln

R
U




  .                                       (6) 

 

 The charge on the inner lining of the capacitor is given by 

 

lRQ  12 .                                                (7) 

 

 Formula (7), taking into account (6), can be rewritten as follows 
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U

R

R
ln

l
Q





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




1

2

02 
.                                            (8)  

 

 The ratio of the charge to the potential difference is equal to the electric 

capacitance of a cylindrical capacitor  

 











1

2

02

R

R
ln

l

U

Q
C


.                                             (9) 

 

 Numerically 

 

F.C 121053  .                                         (10) 

 

Answer. The electrical capacity of a cylindrical capacitor, the parameters of which 

are given in the condition of this problem, is F.C 121053  . 

 

 

Problem 2.3.9  

 

Problem description. A metal ball with a radius of cmR 51   is surrounded by a 

spherical dielectric layer ( 7 ) with a thickness of cmd 1  and another metal 

surface with a radius of cmR 72  , which is concentric with respect to the first. 

Calculate the capacitance of such a capacitor. 

 

Known quantities: cmR 51  , cmR 72  , 7 , cmd 1 . 

 

Quantities to be calculated: С . 

 

Problem solution. The system described in the problem statement can be considered 

as two capacitors connected in series. The electrical capacity of a battery of two 

capacitors connected in series is 

 

21

21

CC

CC
C


 .                                                     (1) 

 

 The capacitance of a spherical capacitor can be determined using the relation 
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12

2104

RR

RR
C





,                                                  (2) 

 

where 

  is the relative permittivity of the dielectric between the plates of the capacitor;  

0  is the electric constant;  

1R  and 2R  are the radii of the inner and outer plates of the capacitor, respectively. 

 We will write down the formula for the electrical capacitance of the first 

capacitor, the plates of which are the surface of a metal sphere and the surface of a 

spherical dielectric layer 

 

 
  11

110
1

4

RdR

dRR
C







,                                         (3) 

 

where d  is the thickness of the dielectric. 

   Substituting known values, we get 

 

F.C 10
1 1032  .                                          (4) 

 

 The capacitance of the second capacitor, the plates of which are the surface of 

the spherical dielectric layer and the spherical metal surface, is given by 

 

 
 dRR

RdR
C






12

210
2

4 
.                                     (5) 

 

 Numerically 

 

F.C 11
2 1064  .                                        (6) 

 

 Substituting the numerical values of the electrical capacities 1C  and 2C  into 

the formula (1) for the electrical capacity of a battery of series-connected capacitors, 

we determine the electrical capacity of the capacitor, the characteristics of which are 

given in the conditions of the problem  

 

F.С 111063  .                                        (7) 

 

Answer. The capacitance of the capacitor is F.С 111063  . 
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Problem 2.3.10 

  

Problem description. A flat air capacitor was charged to a potential difference 

VU 60  and the EMF source was turned off. The area of the capacitor plate is 

2200 cmS  . The distance between the capacitor plates is cm.d 50 . Capacitor 

plates are arranged vertically. A vessel with a non-conductive liquid ( 2 ) is 

brought from below so that it fills half of the capacitor. Calculate the capacitance of 

a capacitor. Determine the electric field in the air gap between the plates and in the 

gap between the plates filled with liquid. Calculate the change in the energy of the 

electric field of the capacitor. The liquid-air interface is flat. In addition, all electrical 

quantities of this system change in jumps. 

 

Known quantities: VU 60 , 
2200 cmS  , cm.d 50 , 2 . 

 

Quantities to be calculated: С , 1E , 2E , W . 

 

Problem solution. The system consists of two capacitors connected in parallel. The 

electrical capacity of a battery of two capacitors connected in parallel is determined 

by 

 

21 CCС  ,                                                     (1) 

 

where 1C , 2C  are the capacitances of the first and second capacitors, respectively. 

 Therefore, the capacitance of an equivalent capacitor is 

 

 
d

S

d

S

d

S
С

222

2102010  
 ,                              (2) 

 

where 

0  is the electric constant;  

1  and 2  are the relative permittivities of the dielectrics between the plates of the 

first and second capacitors, respectively;  
S  is half the area of the capacitor plate (according to the condition of the problem); 

d  is the distance between the plates of the capacitor. 

 Substituting known values, we get 

F.C 111035  .                                          (3) 

 

 The electric field in the air part of the capacitor is 

 



68 

 

S

Q
E
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1
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1
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


 ,                                           (4) 

 

where 1Q  is the charge on that part of the capacitor plate that is in the air. 

 The electric field of that part of the capacitor that is immersed in the liquid is 

 

S

Q
E
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2
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2
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2




 ,                                           (5) 

 

where 2Q  is the charge on that part of the capacitor plate that is immersed in the 

liquid. 

 According to the law of conservation of charge, we get 

 

21 QQQ  .                                              (6) 

 

 In addition, we can write the following relations 

 

2

1

2

1

2

1




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C

C

Q

Q
.                                             (7) 

 

 In formula (7), we took into account the fact that  CUQ   (where U  is the 

potential difference between the capacitor plates, which is the same for both 

capacitors). For an air capacitor charged to a potential difference U , we get 

 

d

U

S

Q
E 

10
.                                           (8) 

 

 Now we will rewrite equation (8) taking into account equations (6) and (7) 
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d
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Q .                    (9) 

 

 The electric fields in both capacitors are equal (taking into account (9), (4) 

and (5)) 
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   21
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 Numerically 

 
13

21 108  mVEE .                                        (12) 

 

 The electric fields are the same in both parts of the capacitor. 

 The energy of the capacitor before its half was immersed in the liquid was 
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 ,                                      (13) 

 

where E  is the electric field between the plates of a capacitor before being immersed 

in a liquid. 

 After half of the capacitor is immersed in the liquid, its energy is equal to the 

sum of the energies of the two capacitors 
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 The change in energy of the capacitor is 
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 Numerically 

 

JW 7102  .                                             (16) 

 

Answer. The capacitance of the capacitor is F.C 111035  . The electric field 

in the air gap between the capacitor plates is 
13

1 108  mVE . The electric field 

in the gap between the capacitor plates filled with liquid is 
13

2 108  mVE . 

The change in energy of the capacitor is JW 7102  . 
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Problem 2.3.11  

  

Problem description. Inside a flat capacitor with a plate area of 
2200 cmS   and a 

distance between them equal to cm.d 10 , there is a glass plate ( 5 ), which 

completely fills the space between the capacitor plates. Calculate the change in 

energy after the glass plate has been removed from the capacitor. Consider two 

cases: 1) the capacitor was always connected to the battery with EMF V300 ; 

2) the capacitor was first attached to the same battery, and then it was disconnected 

from the battery, and only after that the glass plate was removed from the capacitor. 

Calculate the mechanical work required to remove the plate in both cases. 

 

Known quantities: 
2200 cmS  , cm.d 10 , 5 , V300 . 

 

Quantities to be calculated: 1W , 2W , 1A , 2A . 

 

Problem solution. The condition of the problem suggests that in the first case, the 

potential difference between the plates of the capacitor remains constant, while the 

charge changes. Therefore, the change in the energy of the electric field of the 

capacitor must be expressed through the potential difference and other constants. 

 The energy of the electric field of a capacitor with a dielectric is given by 

 

2

2
1

1

UC
W  ,                                                (1) 

 

where 

1С  is the capacitance of the capacitor before the glass plate is removed;  

U  is the potential difference between the plates of a capacitor. 

 The energy of the electric field of a capacitor without a dielectric is 

 

2

2
2

2

UC
W  ,                                                  (2) 

 

where 2C  is the capacitance of the capacitor after removing the glass plate. 

 We can write the following relations for electric capacities 

 

d

S
C 0

1


 ,                                                   (3) 

 

where 

0  is the electric constant;  
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  is the relative permittivity of the glass plate; 

d  is the distance between the plates of the capacitor;  

S  is the area of the capacitor plate; 

 

d

S
С 10

2


 ,                                                (4) 

 

where 1  is the relative permittivity of air. 

 The change in the energy of the capacitor in the first case is 
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 Substituting known values, we get 

 

J.W 5
1 10183  .                                     (6) 

 

 The charge on the plates of the capacitor in the second case remains 

unchanged. Therefore, the change in the energy of the electric field must be 

expressed in terms of charge. The energy of the electric field of a capacitor with a 

dielectric is 

 

1

2

1
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Q
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 The energy of the electric field of a capacitor without a dielectric is 
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Q
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 The change in the energy of the capacitor in the second case is given by 
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 We can write the following relationship for the charge 

 

d
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 Therefore, for formula (9) we have 
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 Numerically 

 

J.W 4
2 1061  .                                           (12) 

 

 In both cases, not only the energy of the capacitor changes, but work is done 

to remove the plate. This work is greater in the second case due to the fact that when 

the plate is removed, the electric field of the capacitor increases, while in the first 

case this electric field remains constant. In the first case, when the plate is removed, 

not only mechanical work is performed, but the energy of the capacitor decreases 

and the energy of the EMF source increases. The work done against the EMF source 

is equal to 

 

QUА  ,                                               (13) 

 

where Q  is the change in the charge of the capacitor after the plate is removed. 

 The change in the charge of the capacitor is 

 

 CUQ 1  .                                      (14) 

 

 Then the work is 

 

  2
1 CUA   .                                         (15) 

 

 The work done when removing the plate is determined by the relation 

 

 
d

SU
WAA

2

2
10

11





 .                              (16) 

 

 Numerically 

 

J.A 5
1 10183  .                                       (17) 

 In the second case, when the plate is removed, mechanical work is performed, 

which is equal to the increase in the energy of the capacitor 

 

J.WA 4
22 1061   .                                  (17) 
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Answer. The change in the energy of the electric field of the capacitor in the first 

case is J.W 5
1 10183  . The change in the energy of the electric field of the 

capacitor in the second case is J.W 4
2 1061  . The mechanical work that must 

be expended to remove the plate in the first case is J.A 5
1 10183  . The 

mechanical work that must be spent to remove the plate in the second case is 

J.A 4
2 1061  .  

 

 

Problem 2.3.12  

 

Problem description. A battery of two Leyden jars connected in series with an 

electrical capacity of FС 10
1 105   and F.С 9

2 1031   is charged to a 

potential difference of VU 1800 . Then the capacitors, without discharging, are 

disconnected from the current source and connected in parallel. Calculate the work 

done in this discharge.  

 

Known quantities: FС 10
1 105  , F.С 9

2 1031  , VU 1800 . 

 

Quantities to be calculated: А . 

 

Problem solution. In problems of this type, it is understood that when switching 

capacitors, plates charged with the same charge are connected to each other. In this 

case, each pair of interconnected plates will have a charge 02Q , where 0Q  is the 

charge that was on each plate of capacitors connected in series. 

 We define the discharge work as the energy difference 1W  (before the 

capacitors are switched) and 2W  (after the capacitors are switched). For magnitude 

1W  we get 

 

2

2

1

UC
W


 ,                                                      (1) 

 

where U  is the potential difference applied across the capacitor bank. 

 The value C  is 

 

21

21

CC

CC
C


 ,                                                  (2) 

where 1C  and 2C  are the capacitances of the first and second capacitors, 

respectively. 
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 In this case, the energy before the connection is 

 

 
2

21

21
1

2
U

CC

CC
W


 .                                        (3) 

 

 We will express the energy of parallel-connected capacitors in terms of the 

charge on their plates 

 

C

Q
W




2

2

2 ,                                                 (4) 

 

where 

21 CCC   is the capacitance of a system of two capacitors connected in parallel;  

02QQ   is the charge on the capacitor plates after a new connection.  

 The charge 0Q  can be determined from the following relation 

   

UCQ                                                  (5) 

 

or, taking into account (2) 

 

U
CC

CC
Q

21

21
0


 .                                        (6) 

 

 Now we can write the final equation for the energy of capacitors connected in 

parallel 

 

 
2

2
21

2
2

2
1

2

2
U

CC

CC
W


 .                                           (7) 

 

 In this case, the discharge work is equal to 

 

 
 

2

21

2
2121

21
2

U
CC

CCCC
WWA




 .                             (8) 

 

 Numerically 

 

J.A 221034  .                                            (9) 
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Answer. The work that is done with the discharge of capacitors specified in the 

condition of the problem is J.A 221034  . 

 

2.4. Level 1 problems 

 

2.4.1. Two metal spheres with radii cmR 21   and cmR 62   are connected by a 

conductor whose capacitance can be neglected. The charge of spheres is nCQ 1 . 

Calculate the surface charge density on the spheres. 

 

2.4.2. A ball with a radius of cmR 6  is charged to a potential  V3001  . The 

second ball with a radius of cmR 42   is charged to a potential  V5002  . 

Determine the potential of the balls after they are connected by a metal conductor. 

The capacitance of the connecting conductor under these conditions can be 

neglected. 

 

2.4.3. The distance between the plates of a flat capacitor is m.d 331 . The area of 

the capacitor plates is 
220 cmS  . In the space between the capacitor plates there 

are two layers of dielectrics: mica with a thickness of m.d 701   and ebonite with 

a thickness of m.d 302  . Calculate the capacitance of such a capacitor. 

 

2.4.4. The capacitance of a flat capacitor is F.C 51 . The distance between the 

capacitor plates is mmd 5 . Calculate the capacitance of the capacitor for the case 

when there is a sheet of ebonite with a thickness of mmd 31  .  

 

2.4.5. Between the plates of a flat capacitor is a glass plate tightly adjacent to them. 

The capacitor is charged to a potential difference of VU 1001  . Calculate the 

potential difference 2U  for the case when the glass plate is pulled out of the 

capacitor. 

 

2.4.6. The capacitor consists of two concentric spheres. The radius of the inner 

sphere is cmR 101  . The radius of the outer sphere is cm.R 2102  . The gap 

between the spheres is filled with paraffin. The inner sphere has a charge  

CQ 5 . Calculate the potential difference between the spheres. 

 

2.4.7. Between the plates of the first and second capacitors are air and porcelain, 

respectively. The first capacitor was charged to a potential difference of VU 600  

and disconnected from the voltage source.  The second capacitor has the same size 

and shape. Then the first and second capacitors were connected in parallel. 
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Determine the relative permittivity of porcelain if, after connecting the second 

capacitor, the potential difference has decreased to a value of VU 1001  . 

 

2.4.8. A capacitor with an electrical capacity F,С 201   was charged to  

potential difference VU 3201  . After it was connected in parallel with a second 

capacitor charged to a potential difference of  VU 4502  , the first capacitor 

voltage changed to a value of VU 400 . Calculate the capacitance of the second 

capacitor.  

 

2.4.9. Three identical flat capacitors are connected in series. The capacitance of such 

a capacitor bank is pFC 89 . The area of each plate is 
2100 cmS  . The 

dielectrics in each capacitor are identical glass plates. Calculate the thickness of the 

glass plate. 

 

2.4.10. Two capacitors with capacitances of FC 31   and FC 62  , 

respectively, are connected to each other and connected to the EMF VE 120 . 

etermine the charges of capacitors and the potential difference between their plates. 

Consider two cases: 1) capacitors connected in parallel; 2) capacitors connected in 

series. 

 

2.4.11. The distance between the plates of a flat capacitor is cmd 2 . The 

potential difference between the capacitor plates is kVU 6 . The charge of each 

plate is nCQ 10 . Calculate the energy of the electric field of the capacitor and 

the force of mutual attraction of the plates.  

 

2.4.12. Calculate the amount of heat that will be released during the discharge of a 

flat capacitor if the potential difference between the plates is 0.65 kV , and the 

distance between the plates is mmd 1 . Between the plates of the capacitor there 

is a dielectric (mica). The area of each plate is 
2300 cmS  .  

 

2.4.13. The force of attraction between the plates of a flat air capacitor is 

mNF 50 . The area of each plate is 
2200 cmS  . Calculate the energy density 

of the electric field of the capacitor. 

 

2.4.14. The flat air condenser consists of two round plates. The radius of each plate 

is cmr 10 . The distance between the plates is cmd 11  . The capacitor was 

charged to a potential difference of  kV.U 21  and disconnected from the power 

source. Calculate the work that needs to be done to increase the distance between 

the plates to cm.d 532  . 
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2.4.15. The capacitance of the capacitor is pFC 666 . The capacitor was charged 

to a potential difference of kV.U 51  and disconnected from the current source. 

Then a second uncharged capacitor was connected in parallel to the capacitor, the 

electrical capacity of which was equal to pFC 4442  . Determine the energy that 

was released during the formation of a spark that appeared when the capacitors were 

connected. 

 

2.4.16. The space between the plates of a flat capacitor is filled with a dielectric 

(porcelain), the volume of which is 
3100 cmV  . The surface charge density on 

the capacitor plates is 
2858  mnC. . Calculate the work that must be done to 

remove the dielectric from the capacitor. The friction of the dielectric on the 

capacitor plates can be neglected. 

 

2.4.17. An ebonite plate with a thickness of mmd 2   and an area of 

2300 cmS   was placed in a uniform electric field 
112  mkVE  so that the 

lines of force of the electric field were perpendicular to the surfaces of the plate. 

Calculate the density of bound charges on the plate surface and the energy of the 

electric field between the plates. 

 

2.4.18. A solitary metal sphere with an electrical capacity of  pFC 10  is charged 

to a potential of kV3 . Determine the energy of the field contained in a 

spherical layer bounded by a sphere and a spherical surface concentric with it, the 

radius of which is three times the radius of the sphere. 

 

2.4.19. An electric field is created by a charged sphere. The sphere's charge and 

radius are СQ 7101   and cmR 10 , respectively. Calculate the energy of the 

electric field enclosed in a volume bounded by a sphere and a spherical surface 

concentric with it. The radius of spherical surface is twice the radius of sphere. 

 

2.4.20. A solid paraffin ball is charged uniformly over its volume. The radius of the 

sphere and its volumetric charge density are cmR 10  and 
310  mnC , 

respectivly. Calculate the energy of the electric field, concentrated both in the ball 

itself and outside it.  

2.5. Answers to problems 

 

2.4.1. 
2

1 849  mnC. ;  
2

2 616  mnC. . 

 

2.4.2. V380 . 
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2.4.3. pF.C 435 . 

 

2.4.4. F.C 52 . 

 

2.4.5. VU 7002  . 

 

2.4.6. kV.414 . 

 

2.4.7. 5 . 

 

2.4.8. F.C 3202  . 

 

2.4.9. mm.d 322 . 

 

2.4.10. CQ 3601  ; CQ 7201  ; V1201  ; CQ 2402  ; 

 

           CQ 802  ; V802  . 

 

2.4.11. JW 30 ; mNF 15 . 

 

2.4.12. J.Q 2090 . 

 

2.4.13. 
352  mJ. . 

 

2.4.14. JA 50 . 

 

2.4.15. mJ.W 30 . 

 

2.4.16. nJ.A 563 . 

 

2.4.17. 
295  mnC. ; pJ.W 588 . 

 

2.4.18. JW 30 . 

 

2.4.19. JW 225 . 

 

2.4.20. nJ.W 8871  ; nJ.W 8782  . 

 



79 

 

CHAPTER 3. DIRECT CURRENT 
 

3.1. Basic formulas 

 

 The electric current is determined by the amount of electricity Q , that passes 

through a fixed section of the conductor per unit of time t  

 

dt

dQ
I                                                 (3.1.1) 

 

or for direct current 

 

t

Q
I  .                                                (3.1.2) 

 

 The term electric current was introduced by the French physicist, 

mathematician and naturalist Ampère (André-Marie Ampére 1775 – 1836).  

 The current density is, by definition, the ratio of the current strength to the 

cross-sectional area S  of the conductor perpendicular to the electric field in it 

 

dS

dI
j  .                                                (3.1.3) 

 

or for direct current 

 

S

I
j  .                                                   (3.1.4) 

 

 The resistance of a cylindrical conductor is is proportional to the length of 

the conductor and inversely proportional to its cross-sectional area  

 

S

l
R  ,                                               (3.1.5) 

 

where 

l  is the length of the cylindrical conductor;  

  is the resistivity of the material from which the conductor is made. 

 The dependence of resistivity on temperature can be expressed by the formula 

 

 t  10 ,                                       (3.1.6) 
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where 
  is the temperature coefficient of resistance;  

0  is the resistivity at temperature C0 ;  

t  is the temperature measured in C . 

 Ohm's law for a circuit section has the form 

 

R

U
I  ,                                                 (3.1.7) 

 

where U  is the potential difference applied to the conductor. 

 The law that determines the relationship of electrical voltage with current and 

conductor resistance was established by the German physicist Georg Ohm (Georg 

Simon Ohm 1789 – 1854). 

 Ohm's law for a closed circuit can be formulated using the relation 

 

rR

E
I


 ,                                             (3.1.8) 

 

where 

E  is the EMF of the current source;  

r  is the current source internal resistance. 

 The current that passes through  parallel connection of n  identical elements 

(with EMF E  and internal resistance r ) is 

 













n

r
R

E
I .                                         (3.1.9) 

 

 The current that passes through a series connection of identical elements is 

 

nrR

nE
I


 .                                      (3.1.10) 

 

 The current that passes through a mixed connection of k  parallel rows with 

m  series-connected elements ( nmk  ) is  

 

mrkR

nE
I


 .                                   (3.1.11) 

 

 Equivalent resistance of an electrical circuit, which consists of sections 

connected in series with resistances 1R , 2R , … is given by 
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



n

i

iR...RRR
1

21 .                               (3.1.12) 

 

 The equivalent resistance of an electrical circuit, which consists of sections 

connected in parallel with resistances 1R , 2R , … is  

 





n

i

iR

R

1

1
.                                           (3.1.13) 

 

 Kirchhoff's first law can be formulated as follows: the algebraic sum of all 

currents converging at a branch point is equal to zero  

 

0
1




n

i

iI .                                         (3.1.14) 

 

 Kirchhoff's second law can be formulated as follows: in any closed circuit 

of an electric circuit, the algebraic sum of all voltages is equal to the algebraic sum 

of all EMFs that are present in this circuit 

 





m

k

k

n

i

ii ERI
11

.                                  (3.1.15) 

 

 Relations (3.1.14) and (3.1.15), which are valid between currents and voltages 

in sections of any electrical circuit, were established by the German physicist 

Kirchhoff  (Gustav Robert Kirchhoff 1824 – 1887).  

 The work of electric forces in a section of an electric circuit with a resistance 

R  is 

 

t
R

U
RtIIUtQUA

2
2  .                      (3.1.16) 

 

 The full work of the current source in the entire closed electrical circuit is 

proportional to the EMF 

 
EItA  .                                             (3.1.17) 

 

 The amount of heat that is released in an electrical circuit, provided that all 

the work is converted into heat, is given by 



82 

 

t
R

U
IUtQ

2

 .                                     (3.1.18) 

 

 If due to the energy of an electric current, mechanical work is performed or 

chemical reactions occur, then the amount of heat that is released in the electrical 

circuit is determined by the Joule-Lenz formula (James Prescott Joule 1818 – 1889, 

Heinrich Friedrich Lenz 1804 – 1865) 

 

RtIQ 2 .                                        (3.1.19) 

 

 The efficiency of the current source is 

 

  rR

R

rRI

IR

E

U

IEt

IUt





 .                     (3.1.20) 

 

 Efficiency of the power transmission line from the station to the consumer is 

given by 

 

21

1

2

1

RR

R

U

U
l


 ,                                 (3.1.21) 

 

where 

1U  and 2U  are the voltages at the consumer level and at the station level, 

respectively;  

1R  and 2R  are consumer resistances and transmission line resistances, respectively.  

 

3.2. Problem-solving framework 

 

The electrons do not move in straight lines along the conductor. Instead, they 

collide repeatedly with metal atoms, and their resultant motion is complicated and 

zigzag. For instance, electrons traveling with a drift speed of 2.2210-4 ms-1 would 

take about 75 min to travel 1 m [3, p. 835]. 

Ohm's law defines current from voltage or voltage from current for the 

simplest, unbranched electrical circuit. Calculations of currents in more complex 

branched electrical circuits are performed using Kirchhoff's laws. Problem solving 

skills using Kirchhoff's laws can only be acquired by solving a large number of 

problems. Before compiling equations according to Kirchhoff's laws, it is necessary 

to arbitrarily choose the directions of currents in each branch of a branched electrical 

circuit and indicate these directions with arrows. In addition, it is necessary to 

arbitrarily choose the direction of bypassing the contour (this is necessary only for 

compiling equations according to the second Kirchhoff law). When, it should be 
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remembered that the bypass direction arbitrarily chosen for a given task must be the 

same for all circuits of a branched circuit. 

According to Kirchhoff's first law, one less equation should be written than 

the number of nodes in a given electrical circuit, because the equation for the last 

node will not be independent, but only a consequence of the rest of the equations (it 

can be determined by adding these equations). 

When compiling equations according to Kirchhoff's first law, one should 

adhere to the sign rule: the current that enters the node is indicated by the "+" sign 

in the equation, and the current that leaves the node is indicated by the "-" sign. 

The number of independent equations that can be composed according to 

Kirchhoff's second law is also less than the number of closed contours. For these 

equations, it is necessary to choose closed contours so that each new contour 

contains at least one branch that would not be used in previous closed contours.   

The sign rules for the second Kirchhoff law can be formulated as two points: 

1) if the direction of the current coincides with the direction of bypassing the circuits, 

then the corresponding product of the current strength and the resistance enters the 

equation with the “+” sign, otherwise this resistance enters the equation with the sign 

"-"; 2) EMF values are used with a “+” sign if, when bypassing a closed contour in 

a positive direction, the first electrode will be negative, and the second electrode will 

be positive (regardless of where the current of the corresponding section of the 

electrical circuit is directed). 

The total number of equations for nodes and closed contours should be equal 

to the number of unknown quantities in the problem statement. Next, it is necessary 

to solve the system of equations for the unknown quantities of this problem. To do 

this, it is convenient to use the method of determinants, which makes it possible to 

directly find unknown quantities. 

As a result of solving the system of equations, the numerical values of 

unknown quantities can be negative. If currents are determined, then a negative value 

indicates that the real direction of the current in this section of the electrical circuit 

is opposite to the direction chosen at the beginning. If resistances are specified, then 

a negative value indicates an incorrect result (since electrical resistance is always 

positive by definition). In this case, it is necessary to change the direction of the 

current for this section of the electrical circuit and solve the problem again. 

 

3.3. Problem-solving examples 

 

Problem 3.3.1  

 

Problem description. The voltage at the terminals of the electrical circuit was 

originally VU 1200  . Subsequently, the voltage decreases uniformly at a rate of 

1010  sV.dt/dU .  At the same time, a resistance with a speed of 

110  s.dt/dR   is placed in the electrical circuit. In addition, the electrical 
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circuit contains a constant resistance 120 R . Calculate the amount of charge 

that will pass through the electric circuit in time s180 . 

 

Known quantities: VU 1200  , 
1010  sV.dt/dU , 

110  s.dt/dR  , 

120 R , s180 . 

 

Quantities to be calculated: Q . 

 

Problem solution. According to the condition of the problem, the rate of voltage 

change with time is  010.dt/dU  . Therefore, the voltage at the terminals of the 

electrical circuit at time t  will be determined by the equation 

 

 

tU

U

dt.dU

0

010

0

                                            (1) 

or 

 

t.UU 0100  ,                                               (2) 

 

where 0U  is the voltage at the time 0t .  

 The rate of change of resistance, according to the condition of the problem, at 

time t  is 10.dt/dR  . Therefore, the resistance value at time t  is given by 

 

t.R 10 .                                                  (3) 

 

 For any moment in time, the current in the electrical circuit is determined 

according to Ohm's law 

 

0RR

U
I


 ,                                               (4) 

 

where 0R  is the resistance at time 0t . 

 The defining formula for the current has the form 

 

dt

dQ
I  .                                                   (5) 

 

 Therefore, equation (4) can be rewritten in the following form 
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dt
t.R

t.U
dQ

10

010

0

0




 .                                              (6) 

 

 Now we can integrate equation (6) over time from 0 to   

 

 






0 0

0

10

010
dt

t.R

t.U
Q                                              (7) 

 

or 

 

  










 



10

01010
10

0

0
00

.

.

R

.R
lnRUQ .                        (8) 

 

   Substituting known values, we get 

 

C.Q 3100921  .                                         (9) 

 

Answer. The amount of charge that will pass through the electric circuit in time  , 

is C.Q 3100921  . 

 

 

Problem 3.3.2  

 

Problem description. A flat capacitor with plates ba  ( cma 20 ), the distance 

between which is b , is connected to a battery of batteries with EMF VE 100  

and internal resistance 5R . A galvanometer whose resistance can be 

neglected is connected to an electric circuit. A glass plate with thickness and relative 

dielectric constant equal to cmd 1   and 5 , respectively, is placed in the 

capacitor. The plate movement speed from side b  is equal to 
11  sm . 

Calculate the current that the galvanometer will record when the glass plate is 

inserted into the capacitor. 

 

Known quantities: cma 20 , VE 100 , 5R , cmd 1 , 5 , 

11  sm . 

 

Quantities to be calculated:  I . 
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Problem solution. During the placement of a glass plate in a capacitor, an additional 

charge will transfer to its plate 

 

UdCdQ  ,                                                        (1) 

 

where 

U  is the voltage across the plates of the capacitor;  
C  is the capacitance of the capacitor. 

 The change in the capacitance of the capacitor is due to the gradual filling of 

the space between the plates of the capacitor with a dielectric (glass) 

 

 
d

dS

d

dS

d

dS
dC 000  








 
 ,                            (2) 

 

where 

0  is the electric constant;  

  is the relative permittivity of the dielectric;  

 is the relative permittivity of air;  

d  is the dielectric thickness;  

dS  is the area covered by the glass plate in time dt . 

 The value dS  when the glass plate moves uniformly along side b  of the 

capacitor plate is 

 

dtadS  ,                                                  (3) 

 

where 
a  is the width of the second side of the capacitor plate;  
  is the speed at which the dielectric is placed between the plates of the capacitor. 

 Now we can write an expression for the current, taking into account equations 

(1), (2) and (3) 

 

 
d

Ua

dt

dQ
dI

 0
 .                                  (4) 

 

 According to Ohm's law, the current is 

 

R

UE
I


 ,                                                   (5) 

 

where E , R  are the electromotive force and the internal resistance of the battery 

pack, respectively. 

 We will rewrite equation (5) taking into account equations (1) - (4) 
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 
  



aRd

Ea
I

0

0




 .                                          (6) 

 

 Numerically 

 

AI 8107  .                                                    (7) 

 

Answer. The current strength that the galvanometer will fix during the introduction 

of a glass plate into the capacitor is AI 8107  . 

 

 

Problem 3.3.3  

 

Problem description. The internal resistance of the first voltmeter is 45001 R . 

The indications of the first voltmeter when measuring the voltage on the anode 

battery were equal to VU 821  . The internal resistance of the second voltmeter is 

45002 R . The indications of the second voltmeter when measuring the 

voltage on the anode battery were equal to VU 822  . Calculate the EMF of the 

anode battery. 

 

Known quantities: 45001 R , VU 821  , 45002 R , VU 822  . 

 

Quantities to be calculated: Е . 

 

Problem solution. In the first case, the current in the circuit is determined by the ratio 

of voltage to resistance 

 

1

1
1

R

U
I  ,                                                      (1) 

 

where 

1U  is the indication of the first voltmeter;  

1R  is the internal resistance of the first voltmeter. 

 The internal voltage drop in the anode battery is determined by the difference 

between the EMF and voltage 

 

11 UErI  ,                                              (2) 
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where 

E  is the electromotive force of the anode battery;  

r  is the internal resistance of the anode battery. 

 We can write a similar equation for measuring voltage with a second voltmeter 

 

22 UErI  ,                                                    (3) 

 

where 

2I  is the current in the circuit when measured with a second voltmeter;  

2U  is the indication of the second voltmeter. 

 Solving the system of equations (1) - (3) with respect to the unknown quantity 

E , we get 

 

 

2112

1221

URUR

RRUU
E




 .                                          (4) 

 

 Substituting known values, we have 

 

VE 92 .                                                   (5) 

 

Answer. The electromotive force of the second battery is VE 92 . 

 

 

Problem 3.3.4  

 

Problem description. The electrical circuit consists of copper wire with a cross-

sectional area of 
2

1 3 mmS  . A lead fuse with a cross-sectional area of 

2
2 1 mmS   is connected to an electrical circuit. Determine the short-circuit 

temperature rise for which this fuse is rated. All the heat that is released during a 

short circuit is spent on heating the wires. The initial temperature of the fuse is 

Ct 170 .  

 

Known quantities: 
2

1 3 mmS  , 
2

2 1 mmS  , Ct 170 . 

 

Quantities to be calculated: t . 

 

Problem solution. The amount of heat that is released in a copper wire during a short 

circuit is proportional to the temperature difference 

 

tcSlDtcmQ  1111111  ,                                         (1) 
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where 

1D  is the density of copper;  

1l  is the length of the wire;  

1S  is the cross-sectional area;  

1c  is the specific heat capacity of copper;  

t  is the temperature rise of the wire;  

1m  is the mass of copper wire. 

 The amount of heat that is released in the lead wire is proportional to the 

melting point of the lead 

 

 rtcSlDQ  122222  ,                                        (2) 

 

where 

r  is the specific heat of fusion of lead;  

01 ttt m  ;  

mt  is the melting point of lead;  

0t  is the initial temperature of the lead wire (room temperature); 

2D  is the density of lead;  

2l  is the length of the fuse;  

2S  is the cross-sectional area of the fuse;  

2c  is the specific heat capacity of lead. 

 Since both wires are connected in series in the electrical circuit, the current 

passing through them is the same. Given this fact, we can write the following relation 

 

212

121

2

1

2

1





Sl

Sl

R

R

Q

Q
 ,                                           (3) 

 

where 1  and 2  are the resistivities of copper and lead, respectively. 

 Analysis of equations (1) - (3) leads us to the following relationship 

 

  212

121

12222

1111









Sl

Sl

rtcSlD

tcSlD



.                                   (4) 

 

 Hence, the desired temperature increase is equal to 
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 

1
2
112

12
2
221

cSD

rtcSD
t







 .                                      (5) 

 

 Substituting known values, we get 

 

C.t  81 .                                                 (6) 

 

Answer. The change in temperature during a short circuit is C.t  81 . 

 

 

Problem 3.3.5  

 

Problem description. Calculate the resistance of an iron rod                                                                 

( cm.    5
0 1021 ), whose end temperatures are Ct  01  and  Ct  8002 , 

respectively. The rod length is cmL 5 . The cross-sectional area of the rod is 

21 cmS  . The temperature coefficient of resistance for iron is 
13106  K . 

No heat is removed from the side surface of the rod. The dependence of the thermal 

conductivity coefficient on temperature should be neglected. 

 

Known quantities: cm.    5
0 1021  , Ct  01 , Ct  8002 , cmL 5 , 

21 cmS  , 
13106  K . 

 

Quantities to be calculated:  R . 

 

Problem solution. Thermal conduction is the mechanism that transfers heat in a rod. 

Since heat is not removed from the side surface of the rod, but is transferred only 

along the rod, then according to the Fourier law 

 

S
dl

dt
S

dl

dT
Q  1 ,                                      (1) 

 

where 

1Q  is the amount of heat that is transferred through the cross section of the rod with 

area S ;  

  is the thermal conductivity;  

dl/dtdl/dT   is the temperature gradient;  

ld  is the elementary length counted along the rod. 

 Since the temperatures of the ends of the rod are kept constant, the heat 

conduction process is stationary, and the value 1Q  is the same for all cross sections 
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of the rod. The values k  and S  are also not functions of temperature. Given the 

above arguments, we can write 

 

L

tt
const

dl

dt 12  ,                                         (2) 

 

where 

L  is the length of the rod;  

1t  and 2t  are the temperatures of the ends of the rod. 

 The law of temperature change along the rod can be determined by integrating 

equation (2) 

 

 




2

1 0

12

t

t

L

dl
L

tt
dt ,                                            (3) 

 

then 

 

l
L

tt
ttl

12
1


 ,                                               (4) 

 

where l  is the distance from the end of the bar to the fixed cross section.  

 Resistivity   at temperature lt  is 

 

   10 1 t  

 

   lba
L

l
ttt 















 01210 1  ,                    (5) 

 

where 11 ta   and  
L

ttb


12    are constants.  

 The resistance of the rod is given by 

 

   

L L

dllba
SS

dl
R

0 0

0  

 
















2

2
0 bL

aL
S


.                                                (6) 
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 Now we will substitute the values a  and b  into equation (6) 

 

    





 121

0

2
1 ttt

S

L
R





 

 








 


2
1 120 tt

S

L



.                                            (7) 

 

 Numerically 

 

210042  .R .                                               (8) 

 

Answer.  The resistance of an iron rod is 210042  .R . 

 

 

Problem 3.3.6  

 

Problem description. A battery of 400N  cells (EMF and internal resistance of 

each element are VE 2  and 10.r  , respectively) is connected to an 

electrical circuit with an external resistance 10R . It is necessary to make a 

mixed battery from such a number ( 1n ) of parallel groups with 2n  cells connected 

in series in order to obtain the maximum current. Calculate the values 1n  and 2n , as 

well as the current in the resistance R  in each element. 

 

Known quantities: 400N , VE 2 , 10.r  , 10R . 

 

Quantities to be calculated: 1n , 2n , I , 1I . 

 

Problem solution. We will apply Kirchhoff's laws for the electrical circuit that is 

mentioned in the problem statement (see Fig. 3.1). 

 The electrical circuit shown in Figure 1 has two nodes. Therefore, according 

to Kirchhoff's first law, we can write one equation for the node А  

 

11InI  ,                                                     (1) 

 

where 

1n  is the number of parallel EMF groups;  

1I  is the current in each of these groups. 
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 Now we will write the second Kirchhoff's law for a closed loop that contains 

resistance R  and one of the branches between the points A  and B  

 

EnInrIR 212  ,                                         (2) 

 

where 

r  is the internal resistance of the EMF;  

2n  is the number of EMFs connected in series in each parallel branch;  

E  is the electromotive force of each element. 

 Besides 

 

21nnN  ,                                                     (3) 

 

where N  is the number of all elements with electromotive forces equal to E , in an 

electric circuit. 

 The current in the electrical circuit can be determined from equations (1) - (3) 

 


















N

n
rR

En
I

2
2

2 .                                             (4) 

 

R 
I 

I1 
n2 

n1 

A B 

Figure 3.1. Problem  3.3.6. 
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 The current in the electrical circuit reaches its maximum value, provided that 

the external resistance is equal to the internal resistance of the EMF 

 

N

n
rR

2
2 ,                                                (5) 

 

and 

 

N
r

R
n 2 .                                          (6) 

 

 Substituting known values, we get 

 

2002 n .                                                   (7) 

 

 In this case, from equations (3) and (7) we can write the following relation for 

the number of parallel groups 

 

N
R

r
n 1 .                                                 (8) 

 

 Numerically 

 

21 n .                                                      (9) 

 

 Therefore, the maximum force at the values 1n  and 2n , given by equations 

(6) and (8) is 

 

rR

NE
I

2
 .                                              (10) 

 

 Substituting known values, we get 

 

AI 20 .                                              (11) 

 

 The current in individual cells can be determined according to equation (1) 

 

21
2 RNr

RNE

n

I
I  .                                    (12) 
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 Substituting known values, we find 

 

AI 101  .                                              (13) 

 

Answer.  The number of parallel EMF groups is 21 n . The number of series-

connected elements is 2002 n . The current in the electrical circuit is AI 20 . 

The current in each of the elements is AI 101  . 

 

 

Problem 3.3.7  

 

Problem description. Determine the resistance R  between the points A  and B  for 

the electrical circuit shown in Fig. 3.2. The resistance of individual sections of the 

circuit (r , r2 ) is indicated in the figure. 

 

Known quantities: r , r2 . 

 

Quantities to be calculated: R .  

 

Problem solution. We will connect resistance R  in an electrical circuit with EMF 

Е  and use Kirchhoff's laws. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The directions of currents in individual parts of the electrical circuit are 

indicated by arrows, and the magnitudes of the currents are indicated by a symbol I  

C 

D 

2r 

2r 

r 

r 
I 

I1 I4 

I2 I5 

A B 

Figure 3.2. Problem  3.3.7. 

Е 

I3 
r 
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with the corresponding index. The resistance values are also indicated in Fig. 2 with 

symbols r  and r2 . Based on Kirchhoff's first law for node А  we can write 

 

III  31 .                                                           (1) 

 

respectively, for node С  

 

431 III  ,                                                            (2) 

 

and for node D  

 

0532  III .                                                (3) 

 

 According to Kirchhoff's second law, for a closed circuit ACDA  we get 

 

02 231  IrIrIr ,                                           (4) 

 

respectively, for circuit CBDC  

 

02 354  IrIrIr ,                                           (5) 

 

and for circuit ADBEA  

 

EIrIr  52 2 .                                               (6) 

 

 When writing the last equation, we neglected the internal resistance of the 

EMF Е .  

 Now we solve the system of equations (1) - (6). Functional dependence 

 r,EfI   can be considered as a solution to the system of equations (1) - (6) 

 











r

E
I

5

7
.                                                  (7)  

 

 Ohm's law for a circuit section  

 

R

E
I  .                                                    (8) 

 

 By comparing equations (7) and (8) we can determine the resistance R  

between the points A  and B  
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rR
5

7
 .                                                    (9) 

 

Answer. Resistance between points A  and B  is rR
5

7
 . 

 

 

Problem 3.3.8  

 

Problem description. Determine the resistance R  between points A  and B  for an 

electrical circuit consisting of five resistors 1R , 2R , 3R , 4R  and 5R , connected in 

a bridge circuit. 

 

Known quantities: 1R , 2R , 3R , 4R , 5R . 

 

Quantities to be calculated: R . 

 

Problem solution. We introduce the following notation: 1I , 2I , 3I , 4I  and 5I  are 

the currents passing through the resistors 1R , 2R , 3R , 4R  and 5R , respectively (see 

Fig. 3.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B 

R1 

R2 

R3 

R4 

R5 

I1 

I2 

I3 

I4 

I5 

Figure 3.3. Problem 3.3.8. 

I I 
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The equivalent resistance of the entire electrical circuit between points A  and 

B  can be calculated according to Ohm's law by dividing the voltage between points

A  and B  by the total current. 

The voltage between the points A  and B  is equal to the sum of the voltages 

across the resistances 1R  and 4R  (or 2R  and 5R ) 

 

4411 RIRIUAB  .                                                  (1) 

 

The total current in the electrical circuit is 

 

21 III  ,                                                     (2) 

 

or 

 

54 III  .                                                    (3) 

 

 Therefore, we can express the total resistance as follows 

 

21

4411

II

RIRI

I

U
R AB




 .                                       (4) 

 

 To determine the currents, we will write, according to the first and second 

Kirchhoff laws, the following equations 

 

314 III  ,                                                  (5) 

 

325 III  ,                                                 (6) 

 

223311 RIRIRI  ,                                         (7) 

 

553344 RIRIRI  .                                         (8) 

 

 We will rewrite equation (4) using equation (5) 

 

21

434111

II

RIRIRI
R




 .                                  (9) 

 

or, taking into account the system of equations (5) - (8) 
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   
    







54354321

3215454321

RRRRRRRR

RRRRRRRRRR
R  

 

 
    54354321

42513

RRRRRRRR

RRRRR




 .                       (10) 

 

Answer. Resistance between points A  and B  is  

   
    







54354321

3215454321

RRRRRRRR

RRRRRRRRRR
R  

 

 
    54354321

42513

RRRRRRRR

RRRRR




 . 

 

 

Problem 3.3.9  

 

Problem description. Determine the strength of the currents that pass through the 

resistance 241  RR  and 432  RR  (Fig. 4). The magnitudes of the 

electromotive forces of current sources connected to the electrical circuit are 

VE 101    and VE 42  . The internal resistance of current sources can be 

neglected. 

 

Known quantities: 241  RR , 432  RR , VE 101  , VE 42  . 

 

Quantities to be calculated:  1I , 2I , 3I , 4I . 

 

Problem solution. The electrical circuit shown in Fig. 3.4 is a branched chain. 

Therefore, in order to determine the currents, we need to use Kirchhoff's laws.  

 To solve the problem, it is necessary to compose four equations (according to 

the number of unknown quantities - currents). We will arbitrarily choose the 

directions of the currents in each section of the electrical circuit (these directions are 

indicated by arrows in the figure).  

We will also choose the direction of bypassing closed contours arbitrarily, 

namely, in the clockwise direction. In addition, to solve the problem, we introduce 

the following notation: 1I , 2I , 3I , 4I  are the currents passing through the 

resistances 1R , 2R , 3R , 4R , respectively; 1E , 2E  are the electromotive forces of 

current sources connected to an electrical circuit. 
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 According to Kirchhoff's first law, for node В  we can write 

 

04321  IIII .                                           (1) 

 

 We write the second Kirchhoff law for a closed sircuit ABRAR 21  

 

212211 EERIRI  ,                                        (2) 

 

for sircuit ABRAR 31  

 

13311 ERIRI  ,                                              (3) 

 

for sircuit ABRAR 43  

 

04433  RIRI .                                             (4) 

 

 Now, to simplify the solution, we will substitute in equations (1) - (4) the 

numerical values of resistance and EMF 

 

04321  IIII ,                                          (5) 

 

642 21  II ,                                                 (6) 

R4 

R1 

R2 

R3 

A B 

Е1 

Е2 

I1 

I2 

I3 

I4 

Figure 3.4. Problem 3.3.9. 
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1042 31  II ,                                                (7) 

 

024 43  II .                                                 (8) 

 

 The solution of this system is the following values of currents 

 

AI 31  ,        02 I ,       AI 13  ,        AI 24  .                (9) 

 

 The “–” sign in the numerical value of the current 3I  indicates that with an 

arbitrary choice of the directions of the currents (those indicated in Fig. 3.4), we 

made a mistake. In reality, the current 3I  has the opposite direction: i.e. current is 

directed from node В  to node А . 

 

Answer. The currents that pass through the resistances are: AI 31  , 02 I , 

AI 13  , AI 24  .                 

 

 

Problem 3.3.10  

 

Problem description. The low-resistance winding for speaker magnetization is 

connected by a transmission line to the battery with EMF VE 8 .  The 

transmission line resistance is 1R . Calculate the resistance of winding, 

provided that the power of winding magnetizing is WP 8 .  

 

Known quantities: VE 8 , 1R , WP 8 . 

 

Quantities to be calculated: xR .  

 

Problem solution. We will denote the resistance of the magnetization winding with 

the symbol xR . The current in the electrical circuit is 

 

xRR

E
I


 ,                                                         (1) 

 

where 

E  is the EMF of the battery;  

R  s the resistance of the transmission line. 

 The power that is released in the speaker coil can be determined as follows 
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x
x

x R
RR

E
RIP

2

2











 .                                           (2) 

 

 Given numerical values, we can form a quadratic equation for the unknown 

quantity xR  

 

0162  xx RR .                                                 (3) 

 

 Therefore, the problem has two solutions. 

1. The resistance of the magnetizing winding is 85.Rx  . In this case, the 

current is A.I 1711  ; the voltage at the winding terminals is V.RIU x 8611  ;  

the line voltage loss is V.RIU 17112  ; the line power loss is  

W.RIP 3712
1  . 

2. The resistance of the magnetizing winding is 170.Rx  . In this case, the 

current is A.I 862  ; the voltage at the winding terminals is V.U 1711  ; the line 

voltage loss is V.U 862  ; the line power loss is  WP 472  . 

 The analysis of the presented numerical data allows us to conclude that the 

first option is practically more convenient than the second one. Consequently, 

85.RR xx  .  

 

Answer. The resistance of winding is 85.Rx  . 

 

 

Problem 3.3.11  

 

Problem description. The electrical circuit is energized at VU 110  and contains 

an electrical furnace connected in series with a resistance 5R . Calculate the 

resistance of the furnace, provided that its power is WP 200 .  

 

Known quantities: VU 110 , 5R , WP 200 . 

 

Quantities to be calculated: xR .  

 

Problem solution. According to Ohm's law, we can write the following equation 

 

 xRRIU  ,                                                   (1) 

 

where 
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U  is the voltage in the circuit;  

R  s the resistance that is connected to the electrical circuit;  

xR  is the resistance of the electric furnace. 

 The power of the electric current in the furnace is 

 

xRIP 2 .                                                       (2) 

 

 Taking into account equation (2), we can write equation (1) in the following 

form 

 

PIIR
I

PI
RIU 










2
,                                     (3) 

 

or 

 

02  PIURI .                                              (4) 

 

 The solution to equation (4) is the mathematical expression for the current 

 

R

RPUU
I

2

42 
 .                                         (5) 

 

 In this case, we obtain two solutions for the furnace resistance 

 

2

i

i,x

I

P
R  ,   1i , 2 ,                                          (6) 

 

where iI  is the solution of equation (5). 

 Substituting known values, we get 

for AI 201   

 

501 .R ,x  .                                                    (7) 

 

for AI 22   

 

502 ,xR .                                                 (8) 
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 Both solutions correspond to the condition of the problem. However, these 

solutions have the following features. The first solution 501 .R ,x   corresponds 

to the power that is consumed from the source (the calculation was carried out 

according to formula (2)). The second solution 502 ,xR  corresponds to the 

power WP 2202   that is consumed from the source. Therefore, it is necessary to 

use a furnace that consumes less power and has resistance 502  ,xx RR . 

 

Answer. Furnace resistance is 50xR . 

 

 

Problem 3.3.12  

 

Problem description. A generator with EMF VE 140  and internal resistance 

20.r   produces a current of AI 100 . The resistance of the external 

electrical circuit is 21.R  . Calculate the total and useful power of the 

generator, as well as electrical losses and efficiency. Write a power balance equation. 

 

Known quantities: VE 140 , 20.r  , AI 100 , 21.R  . 

 

Quantities to be calculated: 0P , P , P ,  , power balance equation. 

 

Problem solution. The total power that the generator develops is determined by the 

equation 

 

EIP 0 ,                                                          (1) 

 

where 

E  is the EMF of the generator;  

I  is the current in the generator circuit. 

 Substituting known values, we get 

 

W.P 4
0 1041  .                                                (2) 

 

 The useful power that is released in the external electrical circuit is given by 

 
IUP  ,                                                        (3) 

 

где U  is the potential difference at the ends of an external electrical circuit. 

 We can write the following equation for this potential difference 
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IrEU  ,                                                     (4) 

 

where r  is the internal resistance of the generator. 

 In this case, equation (3) can be rewritten as follows 

 

 IIrEP  .                                                  (5) 

 

 Numerically 

 

W.P 41021  .                                             (6) 

 

 Power losses (for heating) in the external electrical circuit are equal to 

 

PPP  0 .                                                (7) 

 

 Substituting known values, we have 

 

WP 3102  .                                             (8) 

 

 The efficiency of the generator is determined by the following relationship 

 

0P

P
 .                                                      (9) 

 

 Substituting known values, we get 

 

%.785 .                                              (10) 

 

 Let's write the power balance equation 

 

RIrIIE 22  .                                          (11) 

 

 Numerically 

 

21000102000010100140 ..  .                       (12) 

 

Answer.  The total power is W.P 4
0 1041  . The useful power is 

W.P 41021  . The power losses in the external electrical circuit are 

WP 3102  . The generator efficiency is %.785 . The power balance 
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equation has an analytical form: RIrIIE 22   and, accordingly, the numerical 

form: 21000102000010100140 ..  . 

 

3.4. Level 1 problems 

 

3.4.1. The current in the conductor increases uniformly from 00 I  to AI 3  

during the time st 10 . Determine the charge that has passed through the 

conductor during this time. 

 

3.4.2. Calculate the current density in an iron conductor of length ml 10  provided 

that the wire is energized with VU 6 . 

 

3.4.3. The voltage on the busbars of the power plant is kV.U 66 . The consumer 

of electrical energy is located at a distance of kml 10  from the power plant. 

Determine the cross-sectional area of the copper wire that must be used for the 

device of a two-wire transmission line, if the current in the line is AI 20  and the 

voltage loss in the wires should not exceed 3%. 

 

3.4.4. Calculate the resistance of a graphite conductor made in the form of a right 

circular truncated cone with a height of cmh 20  and base radii of mmr 121   

and mmr 82  . The temperature of the conductor is Ct  20 .  

 

3.4.5. At one end of a cylindrical copper conductor with a resistance of 100 R  

(at С0 ) a temperature of Сt  201  is maintained, and at the other end a 

temperature of Сt  40023  is maintained. Calculate the resistance of the 

conductor assuming that the temperature gradient does not change along the axis of 

the conductor. 

 

3.4.6. The resistance R  and ammeter are connected in series and connected to a 

current source. A voltmeter with a resistance of  kR 11   is connected to the 

terminals of the inductor. Voltmeter and ammeter readings are VU 100  and 

A.I 50 , respectively. Determine the amount of resistance R . Calculate the 

relative error of the resistance R , due to the resistance of the voltmeter. 

 

3.4.7. A resistance 10.R   was connected to a current source with an EMF of 

V.E 51 . The ammeter reading was A.I 501  . When another current source 

with the same EMF was connected in series to the current source, the current passing 

through the resistance became equal to A.I 402  . Determine the internal 

resistances of the first and second current source. 
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3.4.8. Two groups of three series-connected elements are connected in parallel. The 

EMF of each element is V.E 21 , and the internal resistance is 20.r  . The 

resulting circuit is connected to an external resistance 51.R  . Calculate the 

current in the external electrical circuit. 

 

3.4.9. Twelve identical elements are characterized by an EMF and an internal 

resistance  of 40.r  . Determine such a way of connecting these elements so 

that the maximum current passes in an external electrical circuit with a resistance of 

30.R  . Calculate this maximum current. 

 

3.4.10. Two identical current sources with EMF V.E 21  and internal resistance 

40.R   are connected by poles with the same and opposite signs. Calculate the 

current in the electrical circuit, as well as the potential difference between points 

located on opposite sides of one of the current sources in the first and second cases. 

 

3.4.11. The two elements of an electrical circuit have the following characteristics: 

V.E 211  , 101 .r  , V.E 902  , 302 .r  . These elements are connected 

by poles with the same signs. The resistance of the connecting wires is 20.R  . 

Determine the current in the circuit. 

 

3.4.12. Three electric batteries with EMF VE 121  , VE 52  , VЕ 103   have 

the same internal resistance 1r . Electric batteries are interconnected by the 

same poles. The resistance of the connecting wires is negligible. Calculate the 

currents that pass through each electric battery. 

 

3.4.13. A light bulb and a rheostat are connected in series and connected to a current 

source. The voltage across the bulb is VU 40 . The resistance of the rheostat is 

10R . The external electrical circuit consumes a power equal to WP 120 . 

Determine the current in this electrical circuit. 

 

3.4.14. The EMF of the battery is VE 12 . The short circuit current is AI 5 . 

Calculate the maximum power in the external electrical circuit connected to such a 

battery. 

 

3.4.15. The battery EMF is VE 20 . The resistance of the external electrical 

circuit is 2R , and the current in it is AI 4 . Determine the efficiency of the 

battery. Calculate the value of external resistance at which the efficiency will be 

equal to %99 . 
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3.4.16. A heater is connected to the battery terminals. The battery EMF is VE 24

, and the internal resistance is 1r . The heater, when connected to an electrical 

circuit, consumes power WP 80 . Calculate the current in the circuit and the 

efficiency of the heater.  

 

3.4.17. The winding of the electric boiler has two sections. If only the first section 

is turned on, then the water boils after a time of mint 151 . If only the second 

section is turned on, then the water boils after a time of mint 302  . Determine the 

boiling time of water for two cases: 1) both sections are connected in series, 2) both 

sections are connected in parallel. 

 

3.4.18. The current in the external electrical circuit of the battery is AI 31  . The 

power of the battery pack is WP 181  . If a current AI 12   passes through the 

external electrical circuit, then power WP 102   is released. Determine the EMF 

and internal resistance of the battery pack. 

 

3.4.19. The current in the conductor with resistance 12R  decreases uniformly 

from the value AI 50   to the value 0I  during the time st 10 . Determine 

the amount of heat that is released in this conductor for a specified period of time. 

 

3.4.20. The current in the conductor with resistance 15R  increases uniformly 

from the value 00 I  to some maximum value during the time s5 . During 

this time, an amount of heat equal to kJQ 10  was released in the conductor. 

Calculate the average current in the conductor for this period of time. 

 

3.5. Answers to problems 

 

3.4.1. CQ 15 . 

 

3.4.2. 
261016  mA.j . 

 

3.4.3. 
2234 mm.S  . 

 

3.4.4. 310582  .R . 

 

3.4.5. 818.R  . 

 

3.4.6. 250R ; %R 20 . 
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3.4.7. 921 .r  ; 542 .r  . 

 

3.4.8. AI 2 . 

 

3.4.9. A.I 57 . 

 

3.4.10. 1) AI 3 , 0U ; 2) 0I , V.U 21 . 

 

3.4.11. A.I 50 . 

 

3.4.12. AI 31  ; AI 42  ; AI 13  . 

 

3.4.13. AI 2 . 

 

3.4.14. WPmax 15 . 

 

3.4.15. %40 ; 297R . 

 

3.4.16. AI 20 ; %17 . 

 

3.4.17. mint 451  ; mint 102  . 

 

3.4.18. VE 12 ; 2r . 

 

3.4.19. JQ 310 . 

 

3.4.20. AI 10 . 
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CHAPTER 4. MAGNETIC FIELD  
 

4.1. Basic formulas 
 

The magnetic field intensity formed by the element dx  of the conductor 

through which the current I , at a point that is at a distance of l , is determined 

according to the Biot-Savart-Laplace law (Jean-Baptiste Biot 1774 – 1862, Félix 

Savart 1791 – 1841, Pierre-Simon de Laplace 1749 – 1827) 

 

24 l

sinIdx
dH




 ,                                            (4.1.1) 

 

where   is the angle between xd


 and l


. 

 The vector is perpendicular to the plane that passes through xd


 and l


 and is 

directed according to the right screw rule. The right screw rule states that if the 

rotational motion of the screw occurs in the direction from xd


 to l


 along the 

shortest distance, then the translational motion of the screw coincides with the 

direction of the vector Hd


.  

 The intensity of the magnetic field formed at a point А  by a straight segment 

of a conductor, through which current I  passes, is given by 

 

 21  coscos
l

I
H  ,                                (4.1.2) 

 

where 

1  and 2  are the angles between the conductor and the directions to the point А  

from the ends of the segment; 

l  is the length of the conductor. 

 The intensity of the magnetic field formed by an infinitely long thin straight 

conductor with current at a point located at a distance of l  from the conductor is 

 

l

I
H

2
 .                                                   (4.1.3) 

 

 The magnetic field intensity at the center of the circle arc with a radius R  is 

 

2R

Id
H  .                                                   (4.1.4) 

 

where d  is the length of the arc. 
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 The magnetic field intensity in the center of a circular conductor with current 

can be expressed by the relation 

 

R

I
H

2
 ,                                                 (4.1.5) 

 

where R  is the radius of the circular conductor. 

 The magnetic field intensity on the axis of a circular conductor with current 

is determined by the equation 

 

  2322

2

2
/

lR

IR
H


 ,                                      (4.1.6) 

 

where l  is the distance from the center of the circular current to a point on the axis. 

 The magnetic field intensity at a point А  on the axis of a direct solenoid is  

 

 212  coscosnIH  ,                           (4.1.7) 

 

where 

1  is an acute (or right) angle between the axis of the solenoid and the direction 

from point А  to some element of the extreme turn of the solenoid; 

2  is an obtuse angle between the axis of the solenoid and the direction from point 

А  to some element of the other extreme turn of the solenoid; 
n  is the number of turns per unit length of the solenoid; 

I  is the current passes through the solenoid. 

 The magnetic field intensity on the axis of a long straight solenoid (or toroid) 

at points near its middle is 

 
nIH  .                                                  (4.1.8) 

 

 The magnetic moment of the circuit with current I  is given by 

 

SIpm


0 ,                                              (4.1.9) 

 

where 

  is the relative magnetic permeability of the medium in which the current-carrying 

circuit is located; 

0  is the magnetic constant; 

S


 is a vector that is numerically equal to the contour area S  and is directed along 

the normal n


, constructed to the contour plane according to the right screw rule. 
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 The circulation of the magnetic field intensity vector H


 along a closed 

loop that covers the current I , is 

 

  IldHl


,                                        (4.1.10) 

 

where 

lH


 is the component of the magnetic field intensity vector H


, directed tangentially 

to the contour that contains the element ld


; 

I  is the current that is covered by the circuit. 

 The functional relationship between magnetic induction, magnetic intensity 

and relative magnetic permeability has the form 

 

HB


0 ,                                        (4.1.11) 

 

where B


 s the magnetic field induction vector. 

 The flux of magnetic induction through a flat surface S   is determined by 

the formula 

 

  cosBSSBФ 


,                                    (4.1.12) 

 

where   is the angle between vectors B


 and S


. 

 The Hopkinson formula (John Hopkinson 1849 – 1898) for numerical 

calculations of the magnetic field flux has the form 

 

 











S

l

IN
Ф

0

,                                            (4.1.13) 

 

where 

l  is the length of the magnetic circuit;   

mR
S

l


0
 is the magnetic resistance; 

N  is the number of closed circuits with current. 

 For the case when the magnetic circuit consists of several sections connected 

in series with circuit lengths 1l , 2l , …, areas 1S , 2S , …  and relative magnetic 

permeabilities 1 , 2 , …, the equivalent magnetic resistance is equal to 
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...
S

l

S

l
Rm 

202

2

101

1


                             (4.1.14) 

 

 In this case, we can write the following formula for the magnetic flux 

 





























...
S

l

S

l

IN
Ф

202

2

101

1



.                     (4.1.15) 

 

 According to Ampère's law, the modulus of force that acts on a current-

carrying conductor in a magnetic field is 

 

sinIBdxF  ,                                        (4.1.16) 

 

where 

I  is the current; 

B  is the induction of the magnetic field; 

xd


 is an element of a current-carrying conductor; 

  is the angle between the vectors xd


 and B


. 

 The force of interaction between conductors that passes in two rectilinear 

parallel conductors is 

 

dx
d

II
F




2

21
0 ,                                   (4.1.17) 

 

where 

1  and 2I  are the currents in the first and second conductors, respectively; 

d  is the distance between conductors; 

dx  is the length of the first conductor (the length of the second conductor is assumed 

to be very large compared to the distance d ). 

 The torque module of a pair of forces that acts on a coil (or coil) with a current 

is 

 

sinBpМ m ,                                    (4.1.18) 

 

where 

B  is the induction of the magnetic field in which the circuit with current is located; 

mp  is the magnetic moment of the circuit with current;  

  is the angle between the vectors B


 and mp


. 
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 The lifting force [4, p. 118] of an electromagnet is given by the equation 

 

S
B

F
0

2

2
 .                                         (4.1.19) 

 

 The Lorentz force modulus (Hedrik Antoon Lorentz 1853 – 1928) is 

determined by a functional relationship that is linear with respect to the charge 

 

 sinQBFL  ,                                     (4.1.20) 

 

where 

Q  is a single charge moving in a magnetic field; 

В  is the induction of the magnetic field; 
  is the speed of the charge; 

  is the angle between the vectors B


 and 


. 

 Since it is perpendicular to 


, LF


 does not do any work on the particle with 

charge Q .  

 The work of moving a conductor (or a closed loop) with current in a 

magnetic field is equal to 

 

 12 ФФIФIA   ,                              (4.1.21) 

 

where 

I  is the current passing through the conductor; 

1Ф  is the magnetic flux inside the loop at its initial position; 

2Ф  is the magnetic flux inside the circuit in its final position. 

   

4.2. Problem-solving framework 

 

 The main characteristics of the magnetic field are two quantities: magnetic 

induction B


 and magnetic field intensity H


. These quantities are related by the 

following relationship 

 

HB


0 .                                           (4.2.1) 

 

 The calculation of the magnetic field intensity of the current that passes 

through a conductor of arbitrary geometric shape is based on the following 

theoretical dependencies: 1) Biot-Savart-Laplace formula; 2) the theorem on the 

circulation of the magnetic field vector. 
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 When using the Biot-Savart-Laplace formula, it is necessary to first select a 

certain current element with a length of dx  on the conductor. The elementary 

intensity of the magnetic field 1H  (according to the first method) formed by such 

an element is calculated according to the formula (see the notation for formula 

(4.1.1)) 

 

2
1

4 l

sinIdx
dH




 .                                      (4.2.2) 

 

 We can find the total intensity of the magnetic field at some point by 

integrating formula (4.2.2). In this case, we must always remember that the magnetic 

field intensity is a vector quantity. 

 Often, when determining the intensity of a magnetic field, calculations are 

simplified if we use the concept of a magnetizing force, which is proportional to the 

algebraic sum of the currents covered by a given closed cirquit. This algebraic sum 

of currents is equal to the linear integral of the magnetic field intensity along the 

contour )L(  

 

 




)L(

n

k

kIldH
1


.                                      (4.2.3) 

 

 The second method of solving problems is convenient to use if the circuit that 

covers the currents can be chosen with the correct geometric shape. In this case, the 

magnetic field intensity at each point of such a circuit should be the same.  

 The electrodynamic force that acts on a conductor of length l  in a uniform 

magnetic field with an induction of B


, is determined by integrating the elementary 

electrodynamic force (Ampère's law) 

 

sinIBdldF                                         (4.2.4) 

 

along the entire length of the conductor. 

 When calculating the force of interaction between two conductors with 

currents, Ampère's law is also used. In this case, the value В  refers to the induction 

of magnetic field that one conductor generated in the place where the other 

conductor is located. 
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4.3. Problem-solving examples 

 

Problem 4.3.1  

 

Problem description. The current AI 2  flows in a straight wire of length 

cml 10 . Determine the magnetic field intensity formed by this current at a point 

that is perpendicular to the middle of the conductor at a distance of cmd 6  from 

it. 

 

Known quantities: AI 2 , cml 10 , cmd 6 . 

 

Quantities to be calculated: H .  

 

Problem solution. We will use the Biot-Savart-Laplace law to calculate the magnetic 

field intensity 

 

 dl
r

sinI
H

24


.                                                (1) 

 

where 

I  is the current; 

dl  is the current element module ld


; 

r  is the modulus of the radius vector r


, drawn from the current element to point А , 

where the magnetic field intensity is determined;  

  is the angle between the vectors ld


 and r


. 

 For the system specified in the condition of the problem, we can write the 

following geometric relations 

 





sin

rd
dl  ,                                                  (2) 

 

and 

 

sin

d
r  ,                                                  (3) 

 

where d  is the distance from the middle of the straight wire segment, through which 

the current passes, to point А . 

 Now we can rewrite equation (1) 
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

2

1
4








dsin
d

I
H .                                              (4) 

 

 After integration we get 

 

 21
4




coscos
d

I
H  .                                     (5) 

 

 In addition, the following relations are valid for the angle 2  

 

  112  coscoscos                                 (6) 

 

and on the angle 1  

 

221
4 ld

l
cos


 ,                                        (7) 

 

where l  s the length of the wire carrying the current I . 

 As a result, the intensity of the magnetic field formed by the current I  at point 

А , is given by 

 

2242 ldd

Il
H





.                                    (8) 

 

 Substituting known values, we get 

 
13  mAH .                                          (9) 

 

Answer.  The intensity of the magnetic field formed by the current I  at the point А , 

is 
13  mAH . 

 

 

Problem 4.3.2  

 

Problem description. Currents AI 101   and AI 102   are carried in two long 

straight wires, the distance between which is cmd 5 . Determine the magnetic 

field intensity at a point that is located in the middle between the wires for the 

following cases when the wires are parallel and the directions of the currents 
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coincide with each other; when the wires are parallel and the directions of the 

currents are opposite; and finally, when the wires are arranged in mutually 

perpendicular directions. 

 

Known quantities: AI 101  , AI 102  , cmd 5 . 

 

Quantities to be calculated:  1) 1H , 2H ; 2) 1H , 2H ; 3) 1H , 2H . 

 

Problem solution. The resulting magnetic field intensity is equal to the vector sum 

of the field intensities generated by each current separately 

 

21 HHH


 .                                              (1) 

 

where 

1H


 is the intensity of the magnetic field generated by the current 1I ; 

2H


 is the intensity of the magnetic field generated by the current 2I . 

 In the case when the vectors 1H


 and 2H


 are directed along one straight line, 

the geometric sum can be replaced by an algebraic sum 

 

21 HHH  .                                          (2) 

 

 To solve the problem for all three cases, it is necessary to determine the 

modules and directions of the vectors 1H


 and 2H


. The direction of the magnetic 

field intensity vector formed by the current flowing through an infinitely long 

straight wire is determined by the right screw rule. The module of the same vector 

can be calculated in accordance with the formula 

 

r

I
H

2
 ,                                                 (3) 

 

where 

I  is the current; 

r  is the distance from the wire to the point at which the modulus of the vector H


 

is determined. 

 In this problem, in all three cases, the modules of vectors 1H


 and 2H


 will be 

the same, since the points at which the magnetic field strength is determined are at 

the same distance from the wires, and, moreover, the current strengths are also the 

same. 

 Let us determine the magnetic field strength in each case. 
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1) Due to the same direction of currents and the peculiarities of applying the right 

screw rule, for the resulting magnetic field intensity we get 

 

0
d

I

d

I
H


.                                            (4) 

 

2) In this case, the vectors 1H


 and 2H


 at the midpoint are directed in the same 

direction, so the absolute value of the vector of the resulting magnetic field strength 

is equal to 

 

d

I

d

I

d

I
H



2
 .                                         (5) 

 

 Numerically 

 
1130  mAH .                                              (6) 

 

3) The intensities of the magnetic fields formed by currents flowing through 

mutually perpendicular wires, at a point that is in the middle between the wires, are 

also mutually perpendicular. Therefore, the modulus of the resulting magnetic field 

intensity is equal to 

 

2
2

2
1 HHH  .                                               (7) 

 

 Substituting known values, we get 

 
190  mAH .                                               (8) 

 

Answer.  The module of the resulting magnetic field intensity at a point located in 

the middle between the wires is equal to: 1) 021  HH ; 2) 

1
21 130  mAHH ; 3) 

1
21 90  mAHH . 

 

 

Problem 4.3.3  

 

Problem description. A ring wire with a radius of cmR 11 , carries an electric 

current of AI 14 . Determine the magnetic field intensity in the center of the ring; 

and also at a point that is perpendicular to the plane of the ring drawn from its center, 

at a distance of cml 10  from its center. 



120 

 

 

Known quantities: cmR 11 , AI 14 , cml 10 . 

 

Quantities to be calculated: 1H , 2H . 

 

Problem solution. To simplify the solution of the problem, we will divide the circular 

contour with a radius of R  into elements dx . Next, we will denote the distance from 

point А , where the magnetic field intensity is determined, to these elements with 

the symbol r . The angle   etween directions r


 and xd


 is 2/ . 

 The intensity of the magnetic field, which is formed by the contour element 

dx  at point А , is determined according to the Biot-Savart-Laplace formula 

 

24 r

Idx
H


 ,                                                       (1)  

 

where I  is the current passing through a circular conductor. 

 The resulting magnetic field intensity H


 is the vector sum of elementary 

intensities Hd


. The vector H


 is directed along the axis of the circular current. The 

modulus of the vector H


 is 

 

 dxsin
r

I
H 

 24
,                                          (2) 

 

where   is the angle between the direction from the point А  to the center of the 

circular conductor and the vector r


. 

 Functional relationships  r,Rf  and  l,Rfr  , where l  is the 

distance from a point А  to the center of a circular conductor, can be defined by the 

following equations 

 

r

R
sin  ,                                                   (3) 

 

and 

 

22 lRr  .                                                (4) 

 

 In this case, we can rewrite formula (2) as follows 
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   
  







 dx

lR

IR

lR

IRdx
H

322322 44 

 

 

    2322

2

322 2
2

4
/

lR

IR
)R(

lR

IR






 



.                     (5) 

 

 Numerically 

 
1

2 26  mAHH .                                              (6) 

 

 Now we will find the magnetic field intensity for the second case. The value 

l  for the center of the circular conductor is zero: 0l . Therefore, formula (5) in 

this case, we can write as follows 

 

R

I

R

IR
H

22 3

2

 .                                              (7) 

 

 Substituting known values, we get 

 
1

1 64  mAHH .                                               (8) 

 

 It should be noted that for distances l , greater than the radius R  of the circular 

contour, the value R  in the denominator of formula (5) can be neglected 

 

3

2

2l

IR
H Rl  .                                                    (9) 

  

 For such distances l  we get the dependence 









3

1

l
fH . 

 

Answer. The magnetic field intensity in the center of a circular current-carrying wire 

is 
1

1 64  mAH . The magnetic field intensity on the axis passing through the 

center of the circular wire is 
1

2 26  mAH . 
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Problem 4.3.4  

 

Problem description. The current A.I 50  passes through a direct solenoid with a 

linear density of turns equal to 
115  cmn . The length of the solenoid is 

cml 10 , and the diameter of its base is cmd 4 . Determine the magnetic field 

strength at the center of the solenoid; and also in the center of one of its bases. 

 

Known quantities: 
115  cmn , A.I 50 , cml 10 , cmd 4 . 

 

Quantities to be calculated: 1H , 2H . 

 

Problem solution. At a distance of x  from the center of the solenoid, we select a 

small element of length dx . The number of turns that are placed on this element  (

n  is the linear density of the turns of the solenoid) is ndx . Denoting the current in 

each turn with the symbol I , we can consider the element dx  as a circular current 

Indx .  

 The elementary intensity of the magnetic field in the center of the solenoid, 

formed by this element, is equal to 

 

 
dx

xR

nIR
dH

/ 2322

2

2 
 ,                                        (1) 

 

where R  is the radius of the loop. 

 The following geometric relationship can be written for a given solenoid 

 

Rtgx  ,                                                    (2) 

 

where   is the angle between the axis of the solenoid and the radius vector drawn 

from the center of the solenoid to the element dx . 

 Let's rewrite equation (2) 

 




2sin

d
Rdx  .                                             (3) 

 

 Besides 

 

2

2
22

sin

R
xR  .                                          (4) 
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 Substituting the expressions dx  and 
22 xR   into equation (1), we get 

 




d
sinIn

dH
2

1  .                                               (5) 

 

 Since the intensity in the center of the solenoid for all elements dx  is directed 

along the axis of the solenoid, then to determine the resulting value of the magnetic 

field intensity, it is necessary to integrate equation (5) over the variable  . В 

результате мы можем записать такое уравнение 

 

  

2

1

211
22





 coscos
In

dsin
In

H ,                    (6) 

 

where 1  and 2  are the angles for the ends of the solenoid. 

 For the quantities 1  and 2  we can write the following geometric relation 

 

2221
ld

l
coscos


  ,                                       (7) 

 

where 

l  is the length of the solenoid; 

d  is the diameter of the base of the solenoid. 

 Finally, for intensity 1H  we get 

 

221
ld

Inl
H


.                                              (8) 

 

 Numerically 

 
1

1 700  mAH .                                        (9) 

 

 The magnetic field intensity at the center of one of the bases of the solenoid 

can be determined using formula (6), in which one of the corners is considered as a 

right angle (for example, 22 /  ) 

 

2212
22 lR

Inl
cos

In
H


  .                                  (10) 
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 Substituting known values, we get 

 
1

2 375  mAH .                                           (11) 

 

Answer. The magnetic field intensity at the center of the solenoid is 
1

1 700  mAH . The magnetic field intensity at the center of one of the bases of 

the solenoid is 
1

2 375  mAH . 

 

  

Problem 4.3.5  

 

Problem description. Determine the magnetic field intensity at a point located on the 

axis of a flat spiral at a distance of h  from the area of the spiral. The spiral is located 

between circles with radii R  and r . The total number of turns of the spiral is N .  

 

Known quantities: h , R , r , N . 

 

Quantities to be calculated: H . 

 

Problem solution. First of all, we select at a distance of x  from the center of the 

spiral an element of length dx . This element has a number of turns equal to 

 

rR

N
N


 ,                                                     (1) 

 

where 

N  is the total number of turns of the spiral; 

R  is the radius of the outer circle of the spiral; 

r  is the radius of the inner circle of the spiral. 

 The intensity of the magnetic field formed by these turns at the point А , 

specified in the problem condition is  

 

 
dx

rR

N

xh

Ix
dH

/ 





2322

2

2
,                               (2) 

 

where 

I  is the current passing in a spiral; 

h  is the distance from the point А  to the plane of the spiral. 

 The resulting magnetic field intensity can be determined by integrating 

equation (2) 
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   




R

r

/
dx

xh

x

rR

IN
H

2322

2

2
.                                 (3) 

 

 As a result of integration, we get 

 

 






















2222

22

222 rh

r

rhr

RhR
ln

Rh

R

rR

IN
H .         (4) 

 

 The magnetic field intensity at the center of the spiral (for 0h ) is 

 

 












r

R
ln

rR

IN
H

2
.                                         (5) 

 

Answer. The magnetic field intensity at point А , specified in the condition of the 

problem, is 
 























2222

22

222 rh

r

rhr

RhR
ln

Rh

R

rR

IN
H . 

 

 

Problem 4.3.6  

 

Problem description. A wooden ball with a radius of cmR 10  is wound with a 

thin wire so that all the turns are parallel to each other. The coils fit snugly together 

and cover half the ball in one layer. The wire carries a current of AI 1 . The total 

number of turns is 30N . Determine the magnetic field intensity at the center of 

the sphere. 

 

Known quantities: cmR 10 , AI 1 , 30N . 

 

Quantities to be calculated: Н . 

 

Problem solution. To solve the problem, we select at a distance of x  from the center 

of the ball an element of length with a radius dx . The number of turns located on 

this element is equal to 

 

dx
R

N
N  ,                                                    (1) 

 

where 
N  is the total number of turns;  
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R  is the radius of the sphere. 

 The elementary intensity of the magnetic field at the center of the ball is 

 

4

2

4

2

R

NdxIr
dH




 ,                                              (2) 

 

where 

22 xRr  ;  

I  is the current passing through the coils. 

 Let's rewrite equation (2) 

 

 
4

22

2R

xRIN
dH


 .                                            (3) 

 

 The total magnetic field intensity at the center of the ball can be found by 

integrating equation (3) with respect to the variable x  

 

  

R

R

IN
dxxR

R

IN
H

0

22

4 32
.                                 (4) 

 

 Substituting known values, we get 

 
1100  mAH .                                                 (5) 

 

Answer. The magnetic field intensity at the center of the ball is 
1100  mAH . 

 

 

Problem 4.3.7  

 

Problem description. A ring with a diameter of cmd 10  of lead wire with a cross-

sectional area 
270 mm.S   carries a current AI 7 . As a result, the temperature 

in the wire rises almost to the melting point. At this temperature, the tensile strength 

of lead is 
26

0 102  mNP . The ring is placed in a magnetic field whose 

induction is T.B 20 . The plane of the ring is perpendicular to the direction of the 

magnetic field. Determine the pressure acting on the cross section of the wire. 

 

Known quantities: cmd 10 , 
270 mm.S  , AI 7 , 

26
0 102  mN , 

T.B 20 . 
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Quantities to be calculated: P . 

 

Problem solution. According to Ampère's law, the force with which the magnetic 

field acts on a conductor element with current is proportional to the magnetic field 

induction 

 

sinBIdldF  ,                                               (1) 

 

where 

I  is the current passing through the conductor; 

B  is the induction of the magnetic field;  

dl  is a current element;  

  is the angle between the vectors ld


 and B


. 

 Since the magnetic field is perpendicular to the plane of the ring, the force 

will be directed along the radius and in this case 2/  . 

 We will draw the axis Y  in such a way that it divides the ring into two equal 

halves. Then the projection of the elementary force on the axis Y  is equal to 

 

 dsinBIRdFY  ,                                          (2) 

 

where 

R  is the radius of the ring; 

  s the angle between the radius of the ring and the end of the segment dl . 

 The modulus of the vector ld


 is included in the following geometric relation 

 

Rddl  .                                                  (3) 

 

 Now we can integrate equation (2) 

 






2

2

0

/

/

Y dsinIBRF





 .                                 (4) 

 

 Therefore, the projection of the force on one half of the ring is zero. 

 Similarly, we can find the projection of the force on the axis X , perpendicular 

to the axis Y  

 






2

2

2

/

/

Y IBRdcosIBRF





 .                                 (5) 
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 Considering that the projection of the force XF  acts on both cross sections of 

the ring, we get  

 

S

IBd

S

IBR

S

F
P X

22

2

2
 ,                                        (6) 

 

where 

S  is the cross-sectional area of the wire; 

d  is the diameter of the ring. 

Substituting known values, we get 

 
2610  mNP .                                                (7) 

 

 The ring break corresponds to the fulfillment of the inequality 

 

 0PP  ,                                                         (8)  

 

where 0P  is the tensile strength of lead.  

 An analysis of inequality (9) shows that the ring will not break under the 

action of this force.  

  

Answer. The pressure acting on the cross section of the wire is 
2610  mNP . 

 

 

Problem 4.3.8  

 

Problem description. Determine the force with which the magnetic field of a straight 

infinite wire with a current I , acts on a ring circuit with a current 1I . Current I  is 

located in the plane of the circular contour.  Ring radius is R . The distance from the 

center of the ring to the wire carrying the current I , is d . 

 

Known quantities: I , 1I , R , d . 

 

Quantities to be calculated: F . 

 

Problem solution. All forces that act on the elements of the ring are directed from 

the center along the corresponding radii. o solve the problem, we will choose point 

M  on the ring. The distance from point М  to the wire carrying current I  is x . In 

this case, the intensity of magnetic field created by the current I  at point M , is 
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x

I
H

2
 .                                                    (1) 

 

 The force that acts on the current element dl  in the ring is 

 

x

IdlI
dF





2

10 ,                                               (2) 

 

where 

  is the relative magnetic permeability of the medium containing the ring and the 

straight wire; 

0  is the magnetic constant; 

1I  is the current. that flows in the ring. 

 Now we will decompose the force into two components: parallel and 

perpendicular to a straight infinite wire. If element M  is connected to a symmetrical 

element M  , then all components parallel to current I , cancel each other out. Only 

perpendicular components remain, the resultant of which is equal to 

 

 x

dlcosII
F





2

2 10 ,                                        (3) 

 

where   is the angle between the perpendicular drawn from the center of the circle 

to the straight wire and the line connecting the center of the circle to point M . 

 The quantities dl ,  , x  and dx  are related by the following geometric 

relations 

 

sin

dx
dl                                                 (4) 

 and 

 

 22 xdR

xd
ctg




 ,                                           (5) 

 

where 

d  is the distance from the center of the ring to the wire carrying the current I ; 

R  is the radius of the ring. 

 We substitute the resulting equations (4) and (5) into equation (3) 
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 



 




Rd

Rd

dx
xdRx

xdII
F

22

10




.                            (6) 

 

 After integration, we get an equation for the force acting on a ring conductor 

with current 

 














 1

22

10

Rd

dII
F




.                                 (7) 

 

Answer.  The force acting on a ring conductor with current is equal to 














 1

22

10

Rd

dII
F




. 

 

 

Problem 4.3.9  

 

Problem description. A rectangular frame with current is in a magnetic field parallel 

to the lines of magnetic induction. A torque mNM  210  is acting on the frame. 

Calculate the work of the field forces when the frame is rotated through an angle of 

 30 . 

 

Known quantities: mNM  210 ,  30 . 

 

Quantities to be calculated: А . 

 

Problem solution. The work of the forces of the magnetic field during the movement 

of the frame with current is 

 

 12 ФФIA  ,                                             (1) 

 

where 

I  is the current passing through the frame; 

1Ф  is the flux of magnetic induction crossing the frame before turning; 

2Ф  is the final flux of magnetic induction crossing the frame after the turn. 

 The flux of magnetic induction crossing the frame is 

 
cosBSФ  ,                                              (2) 

 

where 
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B  is the induction of magnetic field; 

S  is the induction of magnetic field;  

  is the angle between vectors B


 and S


. 

 For the case when the frame is placed parallel to the magnetic field lines, the 

normal to the plane of the frame forms an angle of 21 /  . Then 

 

011  cosBSФ .                                          (3) 

 

 For the case when the frame rotates by an angle equal to 30 , he angle 

between the normal and the vector B


 will be equal to  602 . Therefore, the 

flux of magnetic induction after the turn is equal to 

 

2
22

BS
cosBSФ   .                                     (4) 

 

 The difference between the fluxes of magnetic induction is determined by the 

relation 

 

2
12

BS
ФФ  .                                            (5) 

  

 The torque of the forces that act on the frame with current in its initial position 

is proportional to the induction of the magnetic field on the current 

 
BISM  .                                                (6) 

 

 Therefore, the current passing through the frame is 

 

BS

M
I  .                                                   (7) 

 

 Therefore, for the work of the magnetic field forces, we can write the 

following equation 

 

 
22

12

M

BS

MBS
ФФIA  .                                  (8) 

 

 Substituting the given data, we find 

 

JA 3105  .                                              (9) 
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Answer.  The work of the field forces when the frame is rotated is JA 3105  . 

 

 

Problem 4.3.10  

 

Problem description. An alternating current is used to operate the electromagnet. 

The maximum magnetic field induction is TBm 1   and varies according to the 

law tsinBB m  . The area of the electromagnet is 
22 cmS  . Consider that 

during the time during which the induction of the magnetic field is too small to hold 

the load, this load, however, does not have time to fall. Calculate the lifting force of 

the electromagnet. 

 

Known quantities: TBm 1 , tsinBB m  , 
22 cmS  . 

 

Quantities to be calculated: F . 

 

Problem solution.  The lifting force of an electromagnet can be determined according 

to the formula 

 

S
B

F
0

2

2
 ,                                                     (1) 

 

where 

B  is the induction of the magnetic field in an electromagnet; 

0  is the electric constant; 

  is the relative magnetic permeability; 

S  is the area of the electromagnet. 

 Since the magnetic induction changes according to a sinusoidal law, in order 

to solve the problem, it is necessary to calculate the effective value of the induction 

 

2

m
e

B
B  ,                                                       (2) 

 

where mB  is the maximum value of the magnetic field induction. 

 Substituting formula (2) into formula (1), we obtain 

 

S
B

F m

0

2

4
 .                                                 (3) 
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 Numerically, 

 

NF 40 .                                                  (4) 

 

Answer. The lifting force of the electromagnet is NF 40 . 

 

 

Problem 4.3.11  

 

Problem description. An electron, having a very low initial speed, passed through a 

uniform electric field with a potential difference of VU 1000 . After that, the 

electron enters a uniform magnetic field with induction TB 210 . The direction 

of the magnetic field is perpendicular to the electric field intensity vector. Determine 

the trajectory of the electron. 

 

Known quantities: VU 1000 , TB 210 . 

 

Quantities to be calculated: R . 

 

Problem solution. We will assume that an electron, having a speed of  , moves in 

an electric field from the start point A  в to the end point C . In time dt  the length 

of this path will be equal to ACdl  , and the shape of the trajectory is a straight 

line parallel to the speed  . The movement of an electron in section dl  is equivalent 

to the presence of current I , directed from point C  to point A . This current is 

 

dt

e
I  ,                                                              (1) 

 

where e  is the elementary charge. 

 The force of action of a uniform magnetic field on the current element Idl  is 

 

sinIBdlF  ,                                                (2) 

 

where 

B  is the induction of the magnetic field; 

  is the angle between the vectors ld


 and B


. 

 According to the conditions of problems 2/   and 1sin , therefore, 

substituting equation (1) into equation (2), we get 

 

Be
dt

dl
eBdF  ,                                           (3) 
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where   is the speed of an electron at the moment it enters the region where the 

magnetic field acts. 

 The Lorentz force, which is determined by equation (3), is perpendicular to 

the direction of electron motion. Therefore, this force only changes the direction of 

the velocity and causes the normal acceleration of the electron to appear 

 

R
a

2
 ,                                                    (4) 

 

where R  is the radius of the corresponding circle. 

 Therefore, the centripetal force that acts on the electron is 

 

Be
R

m
dF 




2

,                                         (5) 

 

where m  is the electron mass. 

 We found out that the shape of the electron trajectory is a circle and the radius 

of this circle can be determined from equation (5) 

 

eB

m
R


 .                                                    (6) 

 

 We only need to determine the speed of the electron. We use the following 

reasoning for this. If the electron passed through the potential difference U  in the 

electric field, then the electric forces did the work and changed the kinetic energy of 

the electron by the value 

 

22

2
0

2
 mm

eU  ,                                                 (7) 

 

where 0  s the initial speed of the electron. 

 According to the condition of the problem, the initial speed of the electron is 

approximately equal to zero 00  . Consequently 

 

2

2m
eU  .                                                      (8) 

 

 The electron speed determined from equation (9) is equal to 
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m

eU2
 .                                                     (9) 

 

 As a result, by substituting equation (9) into equation (6), we obtain a formula 

for determining the radius of a circle 

 

e

mU

B
R

21
 .                                              (10) 

 

 Substituting known values, we get 

 

m.R 010 .                                               (11) 

 

Answer. The electron motion trajectory is a circle with a radius m.R 010 . 

 

 

Problem 4.3.12  

 

Problem description. A proton with a velocity of 
120  skm , flies into a 

uniform magnetic field at an angle of  30  to the direction of the field intensity 

vector. The modulus of the magnetic field intensity is equal to 
131042  mA.H . Determine the radius and pitch of the helix along which the 

proton will move in this case. 

 

Known quantities: 
120  skm ,  30 , 

131042  mA.H . 

 

Quantities to be calculated: R , h . 

 

Problem solution. A charged particle that flies into a magnetic field is affected by 

the Lorentz force, which is perpendicular to the direction of the field and the 

particle's velocity 

 

nHesinBeF  0 ,                                  (1) 

 

where 

e  is the elementary charge; 
  is the speed of the proton;  

B  is the induction of the magnetic field;  

  is the angle between the vectors 


 and B


; 

0  is the magnetic constant; 
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  is the relative magnetic permeability of the medium in which the proton moves 

(according to the condition of the problem 1 ); 

H  is the magnetic field intensity; 

n  is the normal component of the proton velocity (  sinn  ). 

 The Lorentz force is always perpendicular to the direction of the velocity. 

Therefore, the velocity modulus of a proton does not change under the action of the 

Lorentz force. It should also be taken into account that, since the speed of the proton 

does not change, the Lorentz force also remains constant. 

 A force constant in absolute value, the direction of which is perpendicular to 

the velocity of a charged particle, is the reason for the motion of this particle in a 

circle. Consequently, a proton, flying into a magnetic field, will move in a circle in 

a plane perpendicular to the vector of the magnetic field. The speed of the proton in 

this case will be equal to the normal component of its initial speed. At the same time, 

the proton will move along the field with a speed  . The value   is equal to the 

projection of the initial velocity of the proton on the direction of the magnetic field.  

 As a result of simultaneous movement in a circle and in a straight line, the 

proton will move along a helix. Next, we will determine the radius and pitch of this 

helix. The Lorentz force, being the cause of the proton's motion in a circle, can be 

represented as a centripetal force. Consequently 

 

R

m
sinHe

2

0


  ,                                            (2) 

 

where 
m  is the mass of the proton; 

R  is the radius of the circle. 

 Equation (2) allows us to determine the radius of the circle 

 





sineH

m
R

0

 .                                             (3) 

 

 Numerically, 

 

m.R 140 .                                                  (4) 

 

 The pitch of the helix is equal to the path taken by the proton along the 

direction of the field at a speed   in the time it takes for the proton to make one 

turn 

 

Th  ,                                                   (5) 
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where T  is the rotation period of the proton. 

 The rotation period of a proton can be defined as the ratio of the circumference 

to the normal component of the velocity 

 

n

R
T



2
 .                                                  (6) 

 

 Now we will rewrite equation (5) taking into account equation (6) 

 

n

R
h



 2
                                                  (7) 

 

or 

 





cotR

sin

cosR
h 2

2
 .                              (8) 

 

 Substituting known values, we get 

 

m.h 51 .                                                 (9) 

 

Answer. The radius of the proton helix is m.R 140 . The pitch of the proton helix 

is m.h 51 . 

 

4.4. Level 1 problems 

 

4.4.1. Determine the induction of the magnetic field in the center of a thin ring 

through which the current AI 10  passes. The radius of the ring is cmr 5 . 

 

4.4.2. The magnetic field intensity at the center of a circular coil with a radius of 

cmr 8  is 
130  mAH . Determine the magnetic field intensity on the axis of 

the coil at a point located at a distance of cmd 6  from the center of the coil. 

 

4.4.3. A coil with a length of cml 20  contains 100N  turns. A current of 

AI 5  passes through the coil winding. The coil diameter is cmd 20 . 

Determine the induction of the magnetic field at a point that is located on the axis of 

the coil at a distance cma 10  from its end. 

 

4.4.4. A long straight solenoid made of wire with a diameter of mm.d 50  is 

wound so that the turns fit snugly together. The current passing through the solenoid 
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is AI 4 . Calculate the magnetic field intensity inside the solenoid. The thickness 

of the insulation in solving the problem can be neglected.. 

 

4.4.5. The solenoid winding is made of a thin wire with turns tightly adjacent to each 

other. The length of the coil is ml 1 , and its diameter is cmd 2 . An electric 

current flows through the winding. Calculate the dimensions of the area on the center 

line within which the magnetic field induction can be calculated using the infinite 

solenoid formula with an error not exceeding %.10 .  

 

4.4.6. Two long parallel wires are cmr 5  apart. The wires carry equal currents 

AI 10  in opposite directions. Determine the magnetic field strength at a point 

that is cmr 21   from one wire and cmr 32   from the other wire. 

 

4.4.7. Two infinitely long straight parallel wires carry currents AI 501   and 

AI 1002   in opposite directions. The distance between the wires is cmd 20 . 

Determine the induction of the magnetic field at a point removed at a distance of 

cmr 251   from the first wire and at a distance of from the second wire. 

 

4.4.8. An electron in an unexcited hydrogen atom moves around the nucleus in a 

circle with a radius of pmr 53 . Calculate the equivalent circular current and 

magnetic field intensity at the center of the circle. 

 

4.4.9. A straight wire carrying a current kAI 1 , is located in a uniform magnetic 

field perpendicular to the lines of induction. Calculate the force with which the 

magnetic field acts on a piece of wire with a length of ml 1 , if the magnetic field 

strength is TB 1 . 

 

4.4.10. A straight wire with a length of cml 10 , through which a current of 

AI 20  passes, is in a uniform magnetic field with an induction of T.B 010 . 

Calculate the angle between the directions of the vector B


 and the current if a force 

equal to mNF 10  acts on the wire . 

 

4.4.11. A wire in the form of a thin half-ring with a radius of  cmR 10  is in a 

uniform magnetic field with an induction mTB 50 . An electric current 

AI 10  passes through the wire. Determine the force acting on the wire if the 

plane of the semiring is perpendicular to the lines of magnetic field induction, and 

the power wires are outside the field. 
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4.4.12. Two parallel straight wires of length m.l 52  each carry the same currents 

kAI 1 . The distance between the wires is cmd 20 . Calculate the strength of 

the currents interaction. 

 

4.4.13. Three parallel straight wires at the same distance cma 10  from each 

other carry the same currents AI 100 . The directions of the currents are the same 

in two wires. Calculate the force that acts on a segment of length ml 1  of each 

wire.  

 

4.4.14. The magnetic moment of the coil is 
120  TJ.pm . The coil diameter is 

cmd 10 . Calculate the current in the coil. 

 

4.4.15. A direct current flows through the ring wire. The magnetic field induction 

on the axis of the ring at a distance of md 1  from its plane is nTB 10 . 

Determine the magnetic moment of a ring with current. When solving the problem, 

assume that the radius of the ring is much less than the distance d . 

 

4.4.16. An electron in an unexcited hydrogen atom moves around the nucleus in a 

circle with a radius of pmr 53 . Calculate the magnetic moment of the equivalent 

circular current and the mechanical moment acting on the circular current if the atom 

is placed in a magnetic field whose lines of induction are parallel to the plane of the 

electron's orbit. The magnetic field induction is T.B 10 . 

 

4.4.17. On a disk with a radius of cmR 10  there is an electric charge 

C.Q 20 . The disc rotates uniformly at a frequency of 
120  sn  about an 

axis perpendicular to the plane of the disc and passing through its center. Calculate 

the magnetic moment of the circular current created by the disk, as well as the ratio 

of the magnetic moment to the angular momentum, if the mass of the disk is 

gm 100 . 

 

4.4.18. A galvanometer frame containing 200N  turns of a thin wire is suspended 

on an elastic thread. The area of the frame is 
21 cmS  . The normal to the plane of 

the frame is perpendicular to the lines of magnetic induction. The magnetic field 

induction is mTB 5 . When a current of AI 2  was passed through the 

galvanometer, the frame turned through an angle of  30 . Determine the torsion 

constant of the thread. 

 

4.4.19. An electron moves in a uniform magnetic field perpendicular to the lines of 

induction. The magnetic field induction is T.B 10  . The radius of curvature of 
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the electron trajectory is cm.R 50 . Determine the force acting on the electron 

from the magnetic field. 

 

4.4.20. An electron that flew into a cloud chamber left a trace in the form of an arc 

of a circle with a radius of cmR 10 . The chamber is in a uniform magnetic field. 

The magnetic field induction is TB 10 . Calculate the kinetic energy of an 

electron. 

 

4.5. Answers to problems 

 

4.4.1. T.B 410261  . 

 

4.4.2.  
1415  mA.H . 

 

4.4.3. T.B 410056  . 

 

4.4.4. 
13108  mAH . 

 

4.4.5. m.l 110846  . 

 

4.4.6. 
1132  mAH . 

 

4.4.7. T.B 510122  . 

 

4.4.8. A.I 31011  ; 
15101  mAH . 

 

4.4.9. 
13101  mNF . 

 

4.4.10.  30 . 

 

4.4.11. N.F 10 . 

  

4.4.12. N.F 52 . 

 

4.4.13. N.F 210463  . 

 

4.4.14. A.I 525 . 
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4.4.15. 
22105 mApm  

. 

 

4.4.16. 
2231049 mA.pm  
; mN.M  251049 . 

 

4.4.17. 
2810286 mA.pm  

; 
16101   kgCL/pm . 

 

4.4.18. rad/mN.C  1010323 . 

 

4.4.19. N.F 121041  . 

 

4.4.20. J.Ek
111084  . 
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CHAPTER 5. ELECTROMAGNETIC INDUCTION.  

MAGNETIC FIELD ENERGY 

 
5.1. Basic formulas 

 

 An electromotive force occurs in a conductor provided that the magnetic field 

around this conductor changes. The magnitude of the electromotive force of induction 

in a closed circuit is determined by the rate of change of the magnetic flux that crosses 

the circuit (Faraday's law) 

 

dt

d

dt

dФ
NEi


 ,                                                  (5.1.1) 

 

where 
N  is the number of turns in a closed circuit; 

Ф  is the magnetic flux of one turn; 

  is flux linkage ( NФ ). 

 The “–” sign in formula (5.1.1) indicates that the direction of the electromotive 

force of induction is considered positive when the magnetic flux in the closed circuit 

decreases.  

 The electromotive force of induction in a conductor that moves in a uniform 

magnetic field is 

 

 sinBlEi  ,                                                   (5.1.2) 

 

where 

l  is the conductor length; 

B  is the magnetic field induction;  

  is the conductor speed;  

  is the angle between the vectors 


 and B


. 

 The electromotive force of induction, which occurs in a frame rotating in a 

uniform magnetic field, is 

 

 tsinBNSEi  ,                                              (5.1.3) 

 

where 
S  is the area of the frame;  
  is the angular velocity of the frame; 
N  is the number of turns of the frame; 
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t  is the time during which the frame was in rotational motion. 

 The amount of electric charge that passes in the closed circuit when the magnetic 

flux changes is determined by the ratio 

 

R

Ф
Q


  ,                                                (5.1.4) 

 

where 

Ф  is the change in magnetic flux; 

R  is the circuit resistance. 

 A change in current in a wire loop is the cause of a change in the magnetic flux 

and the appearance of electromagnetic induction (the phenomenon of self-induction). 

The phenomenon of self-induction was discovered by the American physicist Joseph 

Henry (Joseph Henry 1797 – 1878). The electromotive force of self-induction is 

proportional to the change in current  

 

dt

dI
LEs  ,                                           (5.1.5) 

 

where 

L  is the inductance, which depends on the size and shape of the conductor; 

I  s the current that passes through the conductor; 

dt/dI  is the rate of current change in the conductor. 

 The inductance of the solenoid (toroid) can be determined according to the 

formula 

 

l

SN
L

2
0

 ,                                        (5.1.6) 

  

where 

0  is the magnetic constant; 

  is the relative magnetic permeability of the core of the solenoid (toroid); 

N  is the number of turns of the solenoid (toroid); 

S  is the solenoid cross-sectional area; 

l  is the solenoid length (toroid). 

 The relative magnetic permeability of the solenoid (toroid) core depends on the 

magnetic field intensity. In all cases of calculating the inductance of a solenoid (toroid) 

with a core to determine the relative magnetic permeability, first of all, it is necessary 
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to use a graph of the dependence of the magnetic field on the magnetic field intensity. 

Then we should make calculations according to the formula 

 

H

B

0
  ,                                               (5.1.7) 

 

where Н  is the magnetic field intensity. 

 The dependence of the current on time after connecting the inductance to the 

electrical circuit has the form 

 

















 t

L

R
exp

R

E
I 1 ,                                   (5.1.8) 

 

where  

Е  is the electromotive force of the current source;  

t  is the time that has elapsed since the closing of the electrical circuit. 

 The dependence of the current on time after the opening of the electrical circuit 

has the form 

 









 t

L

R
expII 0 ,                                          (5.1.9) 

 

where 

0I  is the current at the initial moment of time (the moment of opening the electrical 

circuit); 

t  is the time that has elapsed since the opening of the electrical circuit. 

 Consider a system of two wire loops. A change in the current in one loop is the 

cause of the occurrence of an electromotive force of mutual induction in the second 

loop 

 

dt

dI
ME 21

21                                             (5.1.10) 

 

or 

 

dt

dI
ME 12

12  ,                                           (5.1.11) 
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where М  is the mutual induction coefficient. 

 The energy of the magnetic field that occurs in the circuit (solenoid) is 

determined by the equation 

 

2

2LI
W  ,                                              (5.1.12) 

 

where 

I  is the current in the circuit; 

L  is the inductance of the circuit. 

 The volumetric energy density of magnetic field is 

 

222 0

22
0 BHBH





 .                         (5.1.13) 

 

 

5.2. Problem-solving framework 
 

 To calculate the electromotive force of induction according to Faraday's law, it 

is necessary to calculate only the change in the magnetic flux through the area bounded 

by a closed loop. In this case, the reason for the change in the magnetic flux does not 

matter. In particular, as the reasons for such a change, one can indicate: a change in the 

shape of the contour; displacement of the contour in a non-uniform magnetic field; 

change over time in the magnitude of the induction of the magnetic field. Solving 

problems for calculating the electromotive force of induction should be accompanied 

by determining the dependence of the magnetic induction flux on time. Only then can 

we proceed to the calculation of the electromotive force of induction by determining 

the derivative of the flux of magnetic induction with respect to time. Similarly, we can 

calculate the electromotive force of self-induction. In this case, it should be borne in 

mind that the change in the flux of magnetic induction through a fixed circuit is 

associated with the current that passes through the same circuit. 

 If the law of current change with time and the inductance of the circuit are known, 

then the electromotive force of self-induction can be determined according to the 

formula 

 

dt

dI
LE  .                                                       (5.2.1) 

 



146 

 

 In order to calculate the inductance of an arbitrary closed circuit, it is necessary 

to determine the induction flux that permeates the area bounded by this circuit. In this 

case, the induction flux is determined only by the current passing in the circuit. Then 

the inductance is equal to the ratio of the induction flux to the current strength in the 

circuit 

 

I

Ф
L  .                                                 (5.2.2) 

 

 The calculation of the mutual inductance of two circuits also comes down to 

determining the flux of magnetic induction. To do this, we must consider the ratio of 

the flux that permeates the first circuit to the current in the second circuit 

 

2

12

I

Ф
M  .                                            (5.2.3) 

  

 

5.3. Problem-solving examples 

 

Problem 5.3.1  

 

Problem description. A metal rod OA  of length  m.l 40  rotates with an angular 

velocity of 
110  s  around a point O  in a plane perpendicular to the magnetic field 

lines. The magnetic field induction is TB 310 . Determine the electromotive force 

of induction between points О  and A . 

 

Known quantities: m.l 40 , 
110  s , TB 310 . 

 

Quantities to be calculated: U . 

 

Problem solution. We will consider an element of length dx , which is at a distance of 

x  from the center О . The flux of magnetic induction through an elementary area dS  

is 

 

 BxdxdcosBdSdФ  ,                                    (1) 

 

where 

B  is the induction of magnetic field; 



147 

 

  is the angle between the vectors B


 and Sd


; 

  is the elementary angle through which the rod is turned. 

 The electromotive force generated in element dx , is 

 

xdxB
dt

dФ
dE  ,                                       (2) 

 

where 

  is the angular velocity of the rod; 

dt  is the elementary time of rotation of the rod. 

 The total electromotive force that occurs in the rod is 

 

 

l
l

BxdxBE

0

2

2
 ,                                       (3) 

 

where l  is the length of the rod. 

 If the electrical circuit is open, then this electromotive force is the cause of the 

potential difference between the points O  and A  

 

2

2lB
UOA


  .                                         (4) 

 

 If the electrical circuit is closed (for example, the end А  of the rod slides along 

the conductive section of the electrical circuit, which is connected to the point О   

through resistance R ), then a current appears in the circuit 

 

R

U
I  .                                                      (5) 

 

 We substitute numerical values in the formula (4) 

 

VU 4108  .                                             (6) 

 

Answer. The electromotive force of induction between points О  and A  is 

VU 4108  . 
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Problem 5.3.2  

 

Problem description. The rod AB  moves parallel to itself, sliding along a circular 

conductor at a constant speed of  . The conductor is in a uniform magnetic field. The 

magnetic field lines are perpendicular to the conductor. Determine the electromotive 

force of induction in the rod. 

 

Known quantities: ABB  ,  . 

 

Quantities to be calculated: Е . 

 

Problem solution. To solve the problem, we consider an infinitely narrow strip of 

conductor dx , which is located at a distance of x  from a point on a round conductor 

in the direction of its radius towards the center. The area of an infinitely narrow strip is 

 

dxABdS  ,                                                    (1) 

 

where AB  is the length of the longer side of the infinitely narrow strip. 

 Suppose that the rod starts its movement from point С  on the round conductor 

towards point Е , which is located on the radius of the round conductor, closer to its 

center. The path passed by the rod is 

 

tx  ,                                                           (2) 

 

where 

  is the rod speed; 

t  is the time of the rod movement on the segment CE . 

 For this problem, we can write the following geometric relation 

 

 222 xRRAB  ,                                         (3) 

 

where R  is the radius of the round conductor. 

 Let us rewrite equation (2) for elementary increments of the path and time 

 

dtdx  .                                                       (4) 

 

 We can now write the following equation for the area of an infinitely narrow strip 

 

  dttRtdtxRXdS   2222 2
.                       (5) 
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 The elementary magnetic flux in this case is 

 

  dttRtBBdSdФ   22 ,                               (6) 

 

where B  is the induction of a uniform magnetic field. 

 According to Faraday's law, the electromotive force of induction in the rod AB  

at the moment of time t  is 

 

 tRtB
dt

dФ
E   22 .                                   (7) 

 

Answer.  Electromotive force of induction in the rod AB  at the moment of time t  is 

 tRtB
dt

dФ
E   22 . 

 

 

Problem 5.3.3  

 

Problem description. The frame, which covers area 
21400 cmS  , consists of several 

turns of the conductor. The frame resistance is 74.R  . The number of turns of the 

frame is 100N . The frame is placed in a vertical plane and connected to a ballistic 

galvanometer, the sensitivity of which is div/СC 6102  . The frame quickly 

rotates around the diameter so that its plane becomes parallel to the direction of the 

Earth's magnetic field. The initial angle between the frame diameter and the direction 

of the Earth's magnetic field lines is  30 . The resistance of the galvanometer is 

49.R  . The intensity of the Earth's magnetic field is 
116  mAH . Determine 

the amount of deviation on the scale of the galvanometer. 

 

Known quantities: 
21400 cmS  , 74.R  , 100N , div/СC 6102  , 

 30 , 49.R  , 
116  mAH . 

 

Quantities to be calculated:  . 

 

Problem solution. For the initial position, the magnetic field flux through the plane 

enclosed by the frame is 
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sinBSNФ 1 ,                                                (1) 

 

where 

B  is the induction of the earth's magnetic field; 

S  is the area of the frame; 

N  is the number of turns of the frame; 

  is the angle between the normal to the box plane and the vector B


. 

 The flux of magnetic induction for the end position of the frame is 

 

02 Ф .                                                      (2) 

 

 Therefore, the resulting change in the flux of magnetic induction is 

 
 sinNBSФ  .                                            (3) 

 

 The magnitude of the electric charge that has passed in the electric circuit as a 

result of the occurrence of an induction current can be found from the relation 

 

0

0

0 RR

sinHSN

RR

sinNBS
Q








,                            (4) 

 

where 

0  is the electric constant; 

  is the relative magnetic permeability of the environment (for the conditions of the 

problem, we can assume that 1 ); 

H  Earth's magnetic field intensity; 

R  is the total resistance of the frame turns; 

0R  is the resistance of the ballistic galvanometer. 

 The number of scale divisions corresponding to a change in the readings of a 

ballistic galvanometer is equal to the ratio of the electric charge Q  to the sensitivity of 

the galvanometer 

 CRR

sinHSN

0

0





 ,                                             (5) 

 

where C  is the sensitivity of a ballistic galvanometer. 

 Numerically, 
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div10 .                                                  (6) 

 

Answer. The deviation of the ballistic galvanometer is div10 . 

 

 

Problem 5.3.4  

 

Problem description. A frame with an area of 
21000 cmS   and an ohmic resistance 

of 50.R   was first placed parallel to the lines of induction of the Earth's magnetic 

field, and then turned so that its plane became perpendicular to the lines of magnetic 

induction. Calculate the amount of charge that is induced in the frame. The induction 

of the Earth's magnetic field is TB 5105  . 

 

Known quantities: 
21000 cmS  , 50.R  , TB 5105  . 

 

Quantities to be calculated: Q . 

 

Problem solution. The magnetic field induction flux crossing the frame is equal to for 

the initial position 

 

01 Ф .                                                          (1) 

 

 The magnetic field induction flux crossing the frame in the final position, when 

the plane of the frame is perpendicular to the lines of magnetic induction, is 

 

BSФ 2 ,                                                         (2) 

 

where 

B  is the induction of the earth's magnetic field; 
S  is the area of the frame. 

 Therefore, the change in the magnetic field induction flux crossing the frame is 

determined by the relation 

 

BSФФФ  12 .                                           (3) 

 

 The amount of charge induced in the frame is 
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R

BS

R

ФФ

R

Ф
Q 


 12

,                                      (4) 

 

where R  is the ohmic resistance of the frame. 

 Substituting known values, we get 

 

CQ 510 .                                                  (5) 

 

Answer. The charge that is induced in the frame is CQ 510 . 

 

 

Problem 5.3.5  

 

Problem description. The length and cross-sectional area of the solenoid are, 

respectively cml 50  and 
210 cmS  . The total number of turns of the solenoid is 

3000N . The relative magnetic permeability of the substance concentrated inside 

the solenoid is equal to 1 . Calculate the coefficient of self-induction of the 

solenoid.  

 

Known quantities: cml 50 , 
210 cmS  , 3000N , 1 . 

 

Quantities to be calculated: L . 

 

Problem solution. The magnetic field intensity inside the solenoid is 

 

I
l

N
H  ,                                                         (1) 

 

where 
N  is the total number of turns of the solenoid; 

l  is the length of the solenoid; 

I  is the current flowing through the coils of the solenoid. 

 If the winding of the coil is bifilar, i.e., in the second layer the turns are wound 

in opposite sense, backwards along the solenoid (with the same density), then the 

magnetic field is zeroinside as well as outside the solenoid. 

 The magnetic field induction flux [5, p. 956] through the cross section of one coil 

is determined by the relation 
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HSBSФ 00  ,                                             (2) 

 

where 

B  is the induction of the magnetic field;  

S  is the cross-sectional area of the solenoid; 

0  is the magnetic constant; 

  is the relative magnetic permeability of the substance inside the solenoid; 

H  is the intensity of the magnetic field. 

 The total flux of magnetic induction through all turns is 

 

HSNNФФ 00  .                                          (3) 

 

 Let us rewrite equation (3) taking into account equation (1) 

 

l

N
SIФ

2

0 .                                              (4) 

 

 According to the formula that determines the relationship between the flux of 

magnetic induction and electric current, we can write 

 

LIФ  ,                                                     (5) 

 

where L  is the inductance of the solenoid. 

 Now we can rewrite equation (5) as follows 

 

l

SN

I

Ф
L

2
0

 .                                         (6) 

 

 Numerically 

 

H.L 0230 .                                                   (7) 

 

Answer. The coefficient of self-induction of the solenoid is H.L 0230 . 
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Problem 5.3.6  

 

Problem description. Determine the inductance of a toroid with an iron core at a current 

of A.I 301  . The core centerline radius is cmR 30 . The number of winding turns 

is 10000N . The cross-sectional area of the core is 
25 cmS  . Calculate the 

inductance for the case when the current is A.I 102  . The inhomogeneity of the 

magnetic field within the cross section of the core can be neglected. 

 

Known quantities: A.I 301  , cmR 30 , 10000N , 
25 cmS  , A.I 102  . 

 

Quantities to be calculated: 1L , 2L . 

 

Problem solution. The magnetic field intensity in the core of the toroid is 

 

R

IN
H

2
 ,                                                   (1) 

 

where 

I  is the current flowing through the turns of the toroid; 
N  is the number of turns of the toroid; 

R  is the radius of the centerline of the toroid. 

 The magnetic flux in the core is 

 
BSФ  ,                                                     (2) 

 

where 

B  is the induction of the magnetic field in the core; 
S  is the cross-sectional area of the core. 

 The magnetic field induction is determined from the dependency graph 

 HfB   for the magnet from which the core is made. The inductance of the toroid 

is equal to the ratio of the total magnetic flux for all turns of the toroid to the current in 

these turns 

 

I

BSN

I

NФ
L  .                                                  (3) 

 

 We substitute numerical data for the current 1I  
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H.L 3231  .                                                       (4) 

 

 We substitute numerical data for the current 2I  

 

H.L 5542  .                                                     (5) 

 

Answer. The inductance of the toroid in the first case is H.L 3231  . The inductance 

of the toroid in the second case is H.L 5542  . 

 

 

Problem 5.3.7  

 

Problem description. Determine the coefficient of self-induction of a coaxial cable, 

which consists of two coaxial cylindrical conductors, between which there is a 

substance with a relative magnetic permeability  . The radii of the inner and outer 

cylinders are equal 1R  and 2R , respectively. The cable length is l .  

 

Known quantities:  , 1R , 2R , l . 

 

Quantities to be calculated: L . 

 

Problem solution. The primary goal of the problem is to determine the flux of magnetic 

induction through one half of the axial section. In this case, it should be taken into 

account that the intensity of the magnetic field generated by the current that passes in 

the hollow conductor (cylinder) in the inner region of the cylinder is zero. The magnetic 

field intensity between the cylindrical surfaces of the conductor is determined only by 

the current that passes in the inner cylinder, since the magnetic field intensity of the 

outer cylinder is also zero. The magnetic field intensities generated by currents in a 

cylindrical conductor are equal for areas outside the cylinder and along the axis of the 

cylinder. Therefore, the magnetic field intensity between the cylinders is 

 

x

I
H

2
 ,                                                     (1) 

 

where 

I  is the current flowing through the cylindrical conductor; 

x  is the distance measured from the axis of the cylinder. 
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 The magnetic field strength outside both cylinders is equal to the sum of strengths 

equal in magnitude and opposite in sign, formed by oppositely directed currents 

III  21 . Therefore, the magnetic field intensity for the entire area outside both 

cylinders is zero.  

 Now we divide the area of the axial section into elementary bands with area 

 

dxldS  ,                                               (2) 

 

where 

l  is length of the band (equal to the length of the cable); 

dx  is the bandwidth. 

 The elementary magnetic flux through the area is equal dS  is 

 

dx
x

lI
BdSdФ




2
0


 ,                                 (3) 

 

where 

B  is the induction of the magnetic field; 

0  is the magnetic constant; 

  is the relative magnetic permeability. 

 The total magnetic flux through half the cross-sectional area of a coaxial cable is 

 

1

2
00

22

2

1
R

R
ln

lI

x

dxlI
Ф

R

R











  ,                        (4) 

where 

1R  is the radius of the inner cylinder of the coaxial cable; 

2R  is the radius of the outer cylinder of the coaxial cable. 

 Finally, the coefficient of self-inductance of the coaxial cable is 

 

1

2
0

2 R

R
ln

l

I

Ф
L


 .                                         (5) 

 

Answer. The coefficient of self-induction of a coaxial cable is 

1

2
0

2 R

R
ln

l
L


 . 
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Problem 5.3.8  

 

Problem description. Calculate the mutual induction coefficient of two circular 

currents. Circular currents are located in parallel planes with a common axis. One 

circular current is much smaller than the other. The radii of the circular current loops 

are m.R 50  and m.r 10 , respectively. The distance between the planes of circular 

currents is m.d 51 .  

 

Known quantities: m.R 50 , m.r 10 , m.d 51 . 

 

Quantities to be calculated: М . 

 

Problem solution. The intensity of the magnetic field on the axis of the circular current 

is determined by the relation 

 

  2322

2

2
/

dR

IR
H


 ,                                            (1) 

 

where 

I  is the current; 

R  is the radius of the conductor loop through which the current flow; 

d  is the distance from a fixed point to the plane of the circular current, measured along 

an axis passing through its center. 

 The flux of magnetic field induction through the plane of small circular current 

is 

 

  2322

22
0

2
/

dR

rRI
BSФ





,                                             (2) 

 

where 

B  is the induction of the magnetic field; 
S  is the area covered by the small circular current; 

r  is the radius of the conductor contour for small circular current; 

0  is the magnetic constant; 

  is the relative magnetic permeability of the substance in which the circular currents 

are located (according to the conditions of the problem 1 ). 
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 The coefficient of mutual induction is equal to the ratio of the flux of magnetic 

induction to the current 

 

I

Ф
М  .                                                     (3) 

 

 Hence 

 

  2322

22
0

2
/

dR

rR
М





.                                          (4) 

 

 Substituting known values, we get 

 

H.M 91021  .                                          (5) 

 

Answer. The mutual induction coefficient of two circular currents is 

H.M 91021  . 

 

 

Problem 5.3.9  

 

Problem description. The solenoid is connected to the battery. The electromotive force 

of the battery is VE 8 . The ohmic resistance of the solenoid is 2R . The 

current in this electrical circuit reaches a value of AI 1  after a time s.010 . 

Calculate the coefficient of self-induction of the solenoid. The internal resistance of the 

battery can be neglected. 

 

Known quantities: VE 8 , 2R , AI 1 , s.010 . 

 

Quantities to be calculated: L . 

 

Problem solution. After the solenoid is included in the electric circuit, the current in it 

after some time t  will be determined by the relation 

 

















 t

L

R
expII 10 ,                                               (1) 
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where 

0I  is the current that will be established in the electrical circuit after the attenuation of 

induction phenomena; 

R  is the resistance of the solenoid; 

L  is the coefficient of the solenoid self-induction. 

 According to Ohm's law 

 

R

E
I 0 ,                                                          (2) 

 

where E  is the electromotive force of the battery. 

 Now we can rewrite equation (1) with respect to the self-induction coefficient of 

the solenoid 

 














IRE

E
ln

R
L


 ,                                                (3) 

 

where   is the time interval after which the current in the electric circuit reaches the 

value I . 

 Numerically 

 

H.L 070 .                                                     (4) 

 

Answer. The self-induction coefficient of the solenoid is H.L 070 . 

 

Problem 5.3.10  

 

Problem description. To measure the mutual induction coefficient of two solenoids, an 

electrical circuit is used, which includes two resistances 1R  and 2R , a capacitor with 

an electrical capacity C , a galvanometer, and a battery with an electromotive force E . 

The resistance values 1R  and 2R  and the capacitance of the capacitor are related to 

each other in such a way that the current passing through the galvanometer when 

connecting and disconnecting the electrical circuit from the battery was equal to zero. 

Determine the coefficient of mutual induction of the solenoids. 

 

Known quantities: 1R , 2R , C , E . 
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Quantities to be calculated: M . 

 

Problem solution. When an electrical circuit is connected to the battery, an electric 

current appears. When the electrical circuit is subsequently disconnected from the 

battery, the current will change, as a result of which an electromotive force will appear 

in the circuit with the galvanometer 

 

dt

dI
LE 1 ,                                                       (1) 

 

where 

L  is the inductance of each of the solenoids; 

dt/dI1  is the change in current strength when an electrical circuit is opened. 

 Now we can write Kirchhoff's second law for a circuit with a galvanometer 

 

220
1 RIIR

dt

dI
L  ,                                                   (2) 

 

where 

0R  is the internal resistance of the galvanometer; 

I  is the current passing through the galvanometer; 

2I  is the amount of discharge current that passes through the resistance 2R . 

 We integrate equation (2) 

 

   dtRIdtIRLdI 2201 .                                        (3) 

 

 According to the condition of the problem, the current does not pass through the 

galvanometer, therefore 

 

  00dtIR .                                                      (4) 

 

 For current 2I  we can write the following relation 

 

 QdtI2 ,                                                        (5) 

 

where Q  is the electric charge on the capacitor plates. 
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 The consequence of equations (3) - (4) is the relation 

 

QRLI 21  .                                                       (6) 

 

 According to Ohm's law, the voltage at the ends of resistance 1R  is 

 

11RIU  .                                                         (7) 

 

 The relationship between the electric charge of a capacitor and the potential 

difference across the resistance 1R  can be represented as an equation 

 

CUQ  .                                                        (8) 

 

 In this case, the mutual induction coefficient of the solenoids is 

 

21RCRLM  .                                                 (9) 

 

Answer. The coefficient of mutual induction of solenoids is 21RCRM  . 

 

 

Problem 5.3.11  

 

Problem description. The electrical circuit consists of a solenoid connected in series 

with an inductance of HL 10  and a group of two resistances 2424.r   and 

2400R . The resistors, in turn, are connected in parallel. The resistance group 

and the solenoid are connected to a battery with an electromotive force of VE 24 . 

Calculate the voltage at the ends of the parallel connection of the resistances for the 

case when the resistance r  is connected to the electrical circuit, and for the case when 

the resistance r  is disconnected from the electrical circuit.  

 

Known quantities: HL 10 , 2424.r  , 2400R , VE 24 . 

 

Quantities to be calculated: 1U , 2U . 

 

Problem solution. Consider the case when the resistance r  is connected to an electric 

circuit and an electromotive force of self-induction arises in it 
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dt

dI
LEi  ,                                                            (1) 

 

where 

L  is the inductance of the solenoid; 

dt/dI  is the change in current in the circuit over time. 

 The current in an electrical circuit can be determined using the following relation 

 

I
rR

rR

dt

dI
LE


 ,                                                 (2) 

 

where 

E  is the electromotive force of the battery; 

R  is the second resistance from a group of resistors connected in parallel. 

 Let us rewrite equation (2) as follows 

 

    RIrErR

dI

rRL

dt





.                                          (3) 

 

 Now we can integrate both sides of equation (3) 

 

  
 

Clnt
rRL

Rr
RIrErRln 


 ,                        (4) 

 

where C  is the constant of integration. 

 An arbitrary constant Cln  can be determined from the conditions 

 

0II   for 0t .                                                     (5) 

 

 Then 

 

  0RIrErRlnCln  .                                         (6) 

 

 At the initial moment of time, the current in the electric circuit is equal to 

 

R

E
I 0 .                                                             (7) 
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 Now equation (4) can be written as 

 

 
   

t
rRL

Rr

ErErR

RIrErR
ln







.                                       (8) 

 

 From here we determine the current 

 

 
  
























 t

rRL

Rr
exp

rR

R

rR

rRE
I 1 .                              (9) 

 

 The voltage between the ends of a group of resistors connected in parallel is 

determined by the relation  

 

  























 t

rRL

Rr
exp

rR

R
E

rR

RIr
U 11 .                         (10) 

 

 Substituting known values, we get 

 

V.U 2401  .                                                   (11) 

 

 Consider the case of disconnection of the resistance r  from the electrical circuit. 

In this case, the processes in the electrical circuit are determined by the relation 

 

RI
dt

dI
LE  .                                               (12) 

 

 The current at the initial moment of time is given by 

 

 
Rr

rRE
I


0 .                                               (13) 

 

 Then the solution of equation (12) will have the form 

 

















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E
I 1 .                                      (14) 
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 The voltage between the ends of a group of resistors connected in parallel in this 

case is equal to the voltage between the ends of the resistance R  

 

















 t

L

R
exp

r

R
EIRU 12 .                                   (15) 

 

 Let us now insert the given data 

 

VU 24002  .                                               (16) 

 

Answer. The voltages when connecting and disconnecting resistance r  are 

V.U 2401   and VU 24002  , respectively. 

 

 

Problem 5.3.12  

 

Problem description. Current AI 20  passes through a wire with a radius of 

mmR 11  , placed along the axis of a sufficiently thin metal tube. Then this current 

passes to the bottom of the tube, to the center of which a wire is soldered, and returns 

back along the surface of the tube. The radius and length of the tube are equal, 

respectively cmR 52   and cml 20 . Determine the energy of the magnetic field 

of the conductor. 

 

Known quantities: AI 20 , mmR 11  , cmR 52  , cml 20 . 

 

Quantities to be calculated: W . 

 

Problem solution. The energy of the magnetic field that occurs when the magnetic flux 

changes can be represented by the equation 

 

IdФdW  ,                                                  (1) 

 

where 

I  is the current; 

dФ  is an elementary change in the magnetic flux. 

 The magnetic field intensity inside the tube at a distance of x  from its axis is 
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x

I
H

2
 .                                                     (2) 

 

 The calculation of the magnetic field intensity by formula (2) can be performed 

without taking into account the edge effects. In addition, when solving the problem, we 

assume that there is no magnetic field outside the tube. 

 The elementary magnetic flux through a strip of a radial partition with a thickness  

dx  can be determined using the following relation 

 

dxl
x

I
HdSdФ




2
00  ,                                 (3) 

 

where 

0  is the magnetic constant; 

  is the relative magnetic permeability; 

l  is the length of the strip; 

dS  is the elementary area of the strip. 

 Now we can integrate equation (1) 

 

 

2

1
1

2
2

0

2

0
22

R

R
R

R
ln

lI
dxl

x

I
W





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where 

1R  is the radius of the wire; 

2R  is the radius of the tube. 

 Numerically 

 

JW 3106  .                                                  (5) 

 

Answer. The energy of the magnetic field of the conductor is JW 3106  . 
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5.4. Level 1 problems 

 

5.4.1. A straight wire of length cml 10  is placed in a uniform magnetic field of 

induction TB 1 . The ends of the straight wire are closed by a flexible wire outside 

the field. The resistance of the entire circuit is 40.R  . Calculate the power 

required to move the wire perpendicular to the magnetic field lines at a speed of 
120  sm . 

 

5.4.2. A rod of length cml 10  rotates in a uniform magnetic field with an induction 

of  T.B 40  in a plane perpendicular to the lines of induction of the field. The axis 

of rotation passes through one of the ends of the rod. Determine the potential difference 

at the ends of the rod at a rotational speed of 
116  sn .  

 

5.4.3. In a uniform magnetic field with induction T.B 350   the frame rotates 

uniformly. Frame rotation frequency is 
1480  minn . The frame contains 

1500N  turns with an area of 
250 cmS  . The axis of rotation is in the plane of 

the frame and is perpendicular to the lines of induction. Determine the maximum 

electromotive force of induction that occurs in the frame. 

 

5.4.4. A short solenoid containing 1000N  turns rotates uniformly in a uniform 

magnetic field with an induction of T.B 40 . The angular velocity of rotation is 

15  srad . Rotation occurs about an axis coinciding with the diameter of the 

solenoid, which, in turn, is perpendicular to the lines of magnetic field induction. 

Determine the instantaneous value of the electromotive force of induction for those 

moments of time when the angle between the plane of the coil and the lines of induction 

of the magnetic field is  60 . The cross-sectional area of the solenoid is 

2100 cmS  . 

 

5.4.5. A straight magnet was inserted into a wire ring attached to a ballistic 

galvanometer. The amount of electric charge that has passed through the circuit is 

CQ 10 . The resistance of the galvanometer circuit is 30R . Calculate the 

magnetic flux that crosses the ring. 

 

5.4.6. At a distance of ma 1  from a long straight wire with a current of kAI 1  

here is a ring with a radius of cmr 1 . The ring is located so that the magnetic flux 

through it is maximum. Determine the amount of charge that will flow through the ring 
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when the current in the conductor is turned off. Ring resistance is 10R . The 

magnetic field within the ring can be considered uniform.  

 

5.4.7. The inductance of the solenoid is mH.L 030 . A current equal to A.I 60 , 

flows through the solenoid. When the electrical circuit is opened, the current changes 

almost to zero in a time of st  120 . Determine the average value of the 

electromotive force of induction that occurs in the circuit. 

 

5.4.8. The inductance of the solenoid is mHL 2 . The current with a frequency of 

Hz50 , flowing through the solenoid, changes according to a sinusoidal law. 

Determine the average electromotive force of induction that occurs over the time 

interval during which the current in the solenoid changes from the minimum to the 

maximum value. The amplitude value of the current strength is AI 100  . 

 

5.4.9. The inductance of a solenoid with a length of ml 1 , wound in one layer on a 

non-magnetic frame, is mH.L 61 . The cross-sectional area of the solenoid is 

220cmS  . Determine the number of turns per centimeter of solenoid length. 

 

5.4.10. The inductance of the solenoid is mHL 4 . The number of turns of the 

solenoid is 600N . Determine the magnetic flux if the current flowing through the 

winding is AI 12 . 

 

5.4.11. The number of turns of the iron core solenoid winding is 500N . The length 

of the solenoid core is cml 50 . The current flowing through the winding increases 

from a value of A.I 101   to a value of AI 12  . Calculate the relative change in 

solenoid inductance. 

 

5.4.12. The electrical circuit consists of a solenoid with an inductance of HL 1  and 

a resistance of 10R . The current source can be turned off without breaking the 

circuit. Determine the time after which the current will decrease a thousand times 

compared to its original value. 

 

5.4.13. A solenoid with an inductance of H.L 50  and a resistance of 81 R 66 

is connected to a current source with an internal resistance of 22 R . Calculate the 

time during which the current in the solenoid, increasing, reaches a value that differs 

from the maximum by 1%. 
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5.4.14. The average rate of change of the magnetic flux in the betatron is 
150  sWbt/Ф  . The betatron is rated at MeVT 60  energy. Determine the 

number of turns of the electron in orbit during the time of accelerated motion, as well 

as the path passed by the electron, provided that the radius of its orbit is cmr 20 . 

 

5.4.15. An electron in a betatron moves in an orbit with a radius of m.r 40  and 

receives a kinetic energy of eVT 20  in one turn. Calculate the rate of change of the 

magnetic field induction, considering this rate to be constant over a fixed period of time. 

 

5.4.16. The number of turns of the solenoid is 1000N . The current in the solenoid 

winding is AI 1 . The magnetic flux through the cross section of the solenoid is 

mWb.Ф 10 . Calculate the energy of the magnetic field. 

 

5.4.17. The current that flows through the winding of the toroid is A.I 60 . The 

diameter of the turns of wire is mm.d 40 . The coils fit snugly together. In this case, 

the thickness of the wire insulation can be neglected. The cross-sectional area of the 

toroid core is 
24 cmS  . The midline diameter of the toroid is cmD 30 . 

Determine the energy of the magnetic field in the steel core of the toroid.  

 

5.4.18. Calculate the energy density of the magnetic field in the iron core of a closed 

solenoid if the intensity of the magnetizing field is 
121  mkA.H . 

 

5.4.19. At a certain current, the energy density of the magnetic field of a solenoid 

without a core is 
320  mJ. . Calculate the relative increase in field energy 

density at the same current if the solenoid has an iron core. 

 

5.4.20. The number of turns for each centimeter of the length of a toroid with a non-

magnetic core is 
110  cmn . Determine the energy density of the magnetic field for 

the case when current AI 16  flows through the winding. 
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5.5. Answers to problems 

 

5.4.1. WP 10 . 

 

5.4.2. mVU 201 . 

 

5.4.3. V.Emax
210321  . 

 

5.4.4. VEi 1 . 

 

5.4.5. WbФ 4103  . 

 

5.4.6. C.Q 510286  . 

 

5.4.7. V.E 11051  . 

  

5.4.8. VE 4 .  

 

5.4.9. 
18  cmn . 

 

5.4.10. WbФ 5108  . 

 

5.4.11. 58112 /L/L  . 

 

5.4.12. s. 11096  . 

 

5.4.13. s.t 11032  . 

 

5.4.14. 
61021  .N ; m.L 610511  . 

 

5.4.15. 
11104  sTt/B  . 

 

5.4.16. JW 1105  . 
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5.4.17. J.W 110243  . 

 

5.4.18. 
32108  mJ . 

 

5.4.19. 
3

12 1061  ./ . 

 

5.4.20. 
3210611  mJ. . 
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CHAPTER 6. ELECTROMAGNETIC 

OSCILLATIONS AND WAVES 

 
6.1. Basic formulas 

 

 Ohm's law for a section of an alternating current circuit has the form 

 

Z

U
I e
e  ,                                                  (6.1.1) 

 

where 

eI  is the effective value of the current; 

eU  is the effective value of the voltage; 

Z  is the total (effective) resistance. 

 The effective values of current and voltage are determined by the following 

equations 

 

2

0IIe  ,                                               (6.1.2) 

 

2

0U
Ue  ,                                              (6.1.3) 

 

where 

0I  is the amplitude value of the sinusoidal current; 

0U  is the amplitude value of the sinusoidal voltage. 

 Effective resistance can be defined as a function of active (ohmic), capacitive 

and inductive resistances 

 

2

2 1










C
LRZ


 ,                            (6.1.4) 

 

where 
  is the circular frequency of change in current and voltage values; 

R  is an active (ohmic) resistance; 

L  is the inductance; 
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C  is the electric capacity; 

 C/L  1  is the reactance; 

L  is the inductive reactance; 

 C/ 1  is the capacitance. 

 The term effective resistance or impedance was introduced by the English 

engineer, mathematician and physicist Heaviside (Oliver Heaviside 1850 – 1925). 

 The phase shift between current and voltage is determined according to the 

formula 

 

R

C
L

tg

















1

.                                           (6.1.5) 

 

 The total resistance for series-connected active and inductive resistances is 

 

 22 LRZ  .                                         (6.1.6) 

 

 The total resistance for parallel connected active and inductive resistances is 

 

 22 LR

LR
Z






 .                                        (6.1.7) 

 

 The phase shift for series-connected active and inductive resistances is 

 

R

L
tg


  .                                              (6.1.8) 

 

The phase shift for parallel-connected active and inductive resistances is 

determined by the relation 

 

L

R
tg


  .                                              (6.1.9) 

 

The impedance for series-connected active and capacitive resistances can be 

represented by the equation 
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2

2 1










C
RZ


.                                         (6.1.10) 

 

The impedance for parallel connected resistance and capacitance can be 

determined using the following relation 

 

 21 RC

R
Z


 .                                         (6.1.11) 

 

 The phase shift for series-connected active and capacitive resistances is 

determined by the relation 

 

RC
tg




1
 .                                              (6.1.12) 

 

The phase shift for active and capacitive resistances connected in parallel can be 

represented by the equation 

 

RCtg   .                                              (6.1.13) 

  

 A solenoid, which is characterized by active resistance and inductance in an 

alternating current circuit, can be considered as a series connection of active and 

inductive resistances. The solenoid, which is characterized by active resistance and 

electrical capacitance in an alternating current circuit, can be considered as a parallel 

connection of active and capacitive resistances. 

 The active power of alternating current, which is released in the electrical 

circuit in one period, is given by 

 

cosUIP ee .                                         (6.1.14) 

 

 For the case when the electrical circuit contains only active resistance ( 0 ), 

the active power is 

 

R

U
RIUIP e

eee

2
2  .                                   (6.1.15) 
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 For the case where the electrical circuit contains only capacitive or only inductive 

resistance ( 0cos ), the active power can be determined using the following 

relationship 

 

0P .                                                 (6.1.16) 

 

 The period of electromagnetic oscillations in a circuit, which consists of 

electrical capacitance, inductance and active resistance connected in series, is 

determined according to the formula 

 

2

2

1

2





















L

R

LC

T


.                                  (6.1.17) 

 

 For the case when the resistance of the electric circuit is sufficiently small and 

obeys a strong inequality 

 

LCL

R 1

2

2









,                                       (6.1.18) 

 

the period of undamped electromagnetic oscillations is determined by the Thomson 

formula 
 

LCT 2 .                                        (6.1.19) 

 

 Note that an LC circuit can considered a special case where the resistance R  in 

RLC circuit goes to zero [6, p. 58]. 

 Formula (6.1.19) was obtained by the British physicist, mechanic and engineer 

Thomson (William Thomson 1824 – 1907). 

 Electromagnetic oscillations are damped for the case when the resistance of the 

electrical circuit is not equal to zero. In this case, the potential difference on the 

capacitor plates changes with time t  according to the law 

 

   tcostexpUU  0 ,                               (6.1.20) 

 

where   is the attenuation coefficient. 

 Formula (6.1.20) is given for the case when the time is counted from the moment 

when the potential difference on the capacitor plates has a maximum value. The 
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functional relationship between the attenuation coefficient, active resistance and 

inductance has the form 

 

L

R

2
 .                                             (6.1.21) 

 

 Electromagnetic oscillations in an electrical circuit, the resistance of which is not 

equal to zero, are characterized by a logarithmic decrement 

 

T  .                                             (6.1.22) 

 

 For the case when 0 , electromagnetic oscillations will be undamped, and 

the dependence of voltage on time has the form 

 

 tcosUU 0 .                                  (6.1.23) 

 

 Q factor of the oscillatory circuit is 

 

R

R
Q x ,                                              (6.1.24) 

 

where xR  is the wave impedance of the oscillating circuit. 

 The functional relationship between wave impedance, inductance and 

capacitance can be represented using the following equation 

 

C

L
Rx  .                                        (6.1.25) 

 

   

6.2. Problem-solving framework 
 

 Most of the typical problems can be solved analytically using formulas (6.1.1) - 

(6.1.25). However, the solution of problems concerning alternating currents is greatly 

facilitated by using the graphical method, which is also called the method of vector 

diagrams of voltages and currents.  

 A vector voltage diagram (voltage triangle) for an alternating current circuit 

with a solenoid connected in series and an electrical capacity is compiled as follows. 

On a certain scale, along an arbitrary axis X  the voltage vector on the active resistance 
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RU


 is plotted. The voltage across the inductive reactance leads the current in phase by 

2/ . Therefore, the vector LU


 is perpendicular to RU


 in the direction of increasing 

angles. Vector CU


 on the capacitance lags the current in phase by 2/ . Therefore, 

vectors LU


 and CU


 are directed in opposite directions. The resulting voltage U


 is a 

simple geometric sum. From the voltage triangle (see Fig. 6.1) we can easily determine 

the phase shift between current and voltage (angle  ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To graphically determine the impedance of alternating current for the case of known 

values of active, inductive and capacitive resistances, we can build a triangle of 

resistance. The legs of this triangle are R  and 









C
L




1
, and the hypotenuse is 

equal to the total resistance 

2

2 1










C
LRZ


 . The resistance triangle can 

also be useful for determining the phase shift between current and voltage 

 

 

 
 

 

 

 

 

Figure 6.1. Vector voltage diagram. 
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R

C
L

tg

















1

.                                             (6.2.1) 

 

   

6.3. Problem-solving examples 

 

Problem 6.3.1  

 

Problem description. Determine the impedance of the solenoid and the phase shift 

between current and voltage in the AC circuit, if the values of active and inductive 

resistances are equal, respectively 51.R   and 2LX . 

 

Known quantities: 51.R  , 2LX . 

 

Quantities to be calculated: Z ,  . 

 

Problem solution. We will solve the problem graphically by constructing a triangle of 

resistance. First of all, we will choose the scale 501 .cm  . On this scale, the leg 

that corresponds to the active resistance is equal to cm./.R 35051  . The length 

of the leg, which corresponds to the inductive reactance, is cm./X L 4502  . 

From an arbitrary point O  (см. рис. 6.2) we will construct a segment cmOA 3 , 

which corresponds to the active resistance 51.R  . Through point А  we draw a 

straight line perpendicular to segment OA  and construct segment cmFB 4  on it, 

which corresponds to the inductive reactance 2LX . We connect points O  and 

B  with a straight line, which corresponds to the total resistance Z . Measuring segment 

OB  allows us to determine its length ( cm5 ). Therefore, the total resistance of this 

connection is 52.Z  . 

 An analysis of the geometric features of the triangle of resistance makes it 

possible to determine the magnitude of the phase shift between current and voltage: 

 53 .  
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Answer. The impedance of the connection is 52.Z  . The phase shift between 

current and voltage is  53 . 

 

 

Problem 6.3.2  

 

Problem description. In an AC circuit, the voltage at the solenoid terminals is 

VU 120 . The phase shift between current and voltage is  37 . Determine 

active and inductive voltage.  

 

Known quantities: VU 120 ,  37 . 

 

Quantities to be calculated: RU , LU . 

 

Problem solution. To solve the problem, we will build a stress triangle with a scale of 

Vcm 201  . On this scale, the hypotenuse of the stress triangle is cm/ 620120  .  

   

 

 

 

 
 

 

 

 

 

Figure 6.2. Resistance triangle. 
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 From an arbitrary point О  (see Fig. 6.3) we draw a line OC . Further, at an angle 

of  37  to this line, we will postpone the segment cmОВ 6 . This segment 

corresponds to the voltage vector U


 at the solenoid terminals. From point В  let's drop 

perpendicular CB  to line ОС , which corresponds to the vector of inductive voltage 

LU


. In turn, segment OC  corresponds to the active voltage vector RU


.  

 An analysis of the geometric features of the stress triangle allows us to determine 

the length of the segments OC  and BC . Therefore, the active voltage is 

V.UR 968420  . The inductive voltage is V.UL 726320  .  

 

Answer.  The active voltage is VUR 96 . The inductive voltage is VUL 72 . 

 

 

Problem 6.3.3  

 

Problem description. Determine the impedance and value cos  for an alternating 

current circuit, which consists of active resistance 8R , inductive resistance 

20LX  and capacitance 26CX . 

 

 

 
 

 

 
 

 

Figure 6.3. Voltage triangle. 
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Known quantities: 8R , 20LX , 26CX . 

 

Quantities to be calculated: Z , cos . 

 

Problem solution. The reactance in the AC circuit is 

 

CL XXX  ,                                                     (1) 

 

where 

LX  is an inductive reactance; 

CX  is the capacitance.  

 Substituting known values, we get 

 

6X .                                                        (2) 

 

 The value of the reactance is negative, therefore, the load in the AC circuit has a 

capacitive character.  

 Next, we will choose a scale 21 cm  and build a resistance triangle (see 

Fig. 6.4) similar to the case of an electrical circuit with active resistance and electric 

capacitance. An analysis of the geometric features of the resistance triangle allows us 

to determine the values of the impedance and the cosine of the phase shift between 

current and voltage. 

 The total resistance of the electrical circuit in this case is 

 

  2222 XRXXRZ CL  .                             (3) 

 

 Numerically 

 

10Z .                                                        (4) 

 

 The cosine of the phase shift between current and voltage is 

 

22 XR

R

Z

R
cos


 .                                       (5) 

 

 Substituting known values, we get 
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80.cos  .                                                    (6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answer. The total resistance of the electrical circuit is 10Z . The cosine of the 

phase shift between current and voltage is 80.cos  . 

 

 

Problem 6.3.4  

 

Problem description. The electrical circuit (see Fig. 6.5) is characterized by the 

following parameters: the power recorded by the wattmeter is WP 940 ; the voltage 

recorded by the voltmeter is VU 220 ; the current recorded by the ammeter is 

AI 5 . Determine the resistance values 1R , 1X  and build a vector diagram. Calculate 

the voltage in section KM  and the phase shift between current and voltage.  

 

Known quantities: WP 940 , VU 220 , AI 5 . 

 

Quantities to be calculated: 1R , 1X , 
1RU , 

1XU , vector diagram, 2 . 

 

 

 

 

Figure 6.4. Resistance triangle for an electrical 

circuit with active, capacitive and inductive 

resistances. 
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Problem solution. The active power in the section with a resistance 2R  is 

 
2
2

2
2 RIP  ,                                                             (1) 

 

where I  is the current flowing through the section. 

 Substituting known values, we have 

 

WP 5502  .                                                          (2) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Active power in section KM  (see Fig. 6.5) is  

 

21 PPP  ,                                                           (3) 

 

where P  is the wattmeter reading. 

 Numerically 

 

WP 3901  .                                                        (4) 

 

 Analysis of equation (1) allows us to determine the resistance value 1R  

A V 

 

  

  

Figure 6.5. Electrical circuit for problem 6.3.4. 
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2
1

1
I

P
R  .                                                         (5) 

 

 Substituting known values, we get 

 

6151 .R  .                                                     (6) 

 

 The phase shift cosine   between current and voltage can be determined using 

the equation 

 

IU

P
cos  ,                                                     (7) 

 

where U  is the voltage value, which is determined by the readings of the voltmeter. 

 Numerically 

 

8550.cos  .                                                  (8) 

 

 The reactance for a given phase shift is 

 

 sin
I

U
sinZX 1 ,                                           (9) 

 

where Z  is the total resistance. 

 Substituting known values, we have 

 

8221 .X  .                                                     (10) 

 

 The voltage across the active resistance 1R  is 

 

11
IRUR  .                                                        (11) 

 

 Numerically 

 

VUR 78
1
 .                                                       (12) 

 The voltage across the active resistance 2R  is 
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22
IRUR  .                                                        (13) 

 

 Substituting known values, we get 

 

VUR 110
2
 .                                                       (14) 

 

 

 

 The voltage across the reactance 1X  is 

 

11
IXUX  .                                                        (15) 

 

 Numerically 

 

VUX 114
1
 .                                                      (16) 

 

 Using the calculated values of stresses, we can build a vector diagram (see Fig. 

6.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of the vector diagram allows us to calculate the phase shift between 

current and voltage 

 

4612 .tg  ;              03552  .                               (17) 

 

  

 

  

 

 

Figure 6.6. Vector diagram for problem 6.3.4. 
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Answer. The active resistance is 6151 .R  . The reactance is 8221 .X  . The 

voltage across the active resistance (section KM ) is VUR 78
1
 . The voltage across 

the reactance (section KM ) is VUX 114
1
 . The vector diagram is shown in Fig. 6.6. 

The phase shift between current and voltage in section KM  is 03552  .  

 

 

Problem 6.3.5  

 

Problem description. The light bulb and solenoid are connected in parallel and 

connected to a VU 120  AC supply. The active resistance of the light bulb is 

70R . The active and reactive resistances of the solenoid are 12LR  and 

16LX . Determine the current in the supply wires and the phase shift between 

current and voltage. 

 

Known quantities: VU 120 , 70R , 12LR , 16LX . 

 

Quantities to be calculated: 1I , 2I ,  . 

 

Problem solution. The electrical circuit, which includes a light bulb and a solenoid 

connected in parallel, is shown in Fig. 6.7.  

 The current in the light bulb is 

 

R

U
I 1 ,                                                               (1) 

 

where 
U  is the voltage in the AC circuit; 

R  is the resistance of the bulb. 

 Substituting known values, we get 

 

A.I 7111  .                                                           (2) 

 

The phase shift between the current in the bulb and the voltage is zero ( 0 ). 
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Solenoid impedance is 

 

22
LL XRZ  ,                                                       (3) 

 

where 

LR  is the active resistance of the solenoid; 

LX  is the reactance of the solenoid. 

 Numerically 

 

20Z .                                                      (4) 

 

 The current in the solenoid is 

 

Z

U
I 2 .                                                         (5) 

 

 Substituting known values, we get 

 

AI 62  .                                                         (6) 

 

 The phase shift between the current in the solenoid and the voltage is 

 

 

 

 

 

 

 

Figure 6.7. Electrical circuit for problem 6.3.5. 
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Z

R
cos L2 .                                                     (7) 

 

 Substituting known values, we have 

 

 532 .                                                         (8) 

 

 To build a vector diagram (see Fig. 6.8), we will choose the scale: Acm 11  . 

In the horizontal direction, we will plot the voltage vector U


. Current 1I


 is in phase 

with the voltage, so we will build the vector 1I


 in the direction of the vector U


. 

Between the current  2I


  and the voltage U


 there is a phase difference 2 , so we will 

direct the vector 2I


 at an angle  532  towards the lag. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The current vector I


 in the supply wires is equal to the vector sum of the vectors 

1I


 and 2I


. Analysis of the geometric features of the vector diagram shown in Fig. 6.8., 

allows us to get the next numerical value for the module of the vector I


 

 

 

 

 

 

 

 

Figure 6.8. Vector diagram for problem 6.3.5. 
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A.I 27 .                                                       (9) 

 

 The phase shift between current and voltage in a given electrical circuit is equal 

to the angle    on the vector diagram 

 

 42 .                                                     (10) 

 

Answer.  The currents in the supply wires are: A.I 7111   and AI 62  . The phase 

shift between current and voltage in an electrical circuit is  42 . 

 

 

Problem 6.3.6  

 

Problem description. The AC circuit contains a solenoid with an inductance of 

mHL 10  and a capacitor with an electrical capacity of FC 400 . The 

resistance values RRR  21  change simultaneously by the same amount. Current 

resonance occurs at the following frequencies: Hzf 501  , Hzf 1002   and 

Hzf 2003  . The voltage in the electrical circuit is VU 120 . Determine the 

amount of resistance that corresponds to this resonance. Calculate the values of currents 

for branched and unbranched parts of the electrical circuit. 

 

Known quantities: mHL 10 , FC 400 , RRR  21 , Hzf 501  , 

Hzf 1002  , Hzf 2003  , VU 120 . 

 

Quantities to be calculated: rR , 1I , 2I , 3I . 

 

Problem solution. The current resonance condition in the electrical circuit shown in Fig. 

6.9 for the case RRR  21  can be written as follows 

 

    1
222 


 RC

C

LR

L








,                                      (1) 

 

or 

 

2222
C

C

L

L

XR

X

XR

X





,                                           (2) 
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where 
  is the circular frequency of alternating current; 

L  is the inductance of the solenoid; 

R  is active resistance; 
С  is the capacitance of the capacitor; 

LX  is an inductive reactance; 

CX  is the capacitance. 

 Analysis of equations (1) and (2) shows that the current resonance corresponds 

to the following condition for the resistance value 

 

C

L
RR r  .                                                (3) 

 

where rR  is the resonant impedance. 

 Therefore, the value of the resonant impedance does not depend on the frequency. 

 The current passing through resistance 1R , is 

 

   2222
1

2 LfR

U

LR

U
I

 



 ,                                (4) 

 

where 
U  is the voltage in the circuit; 

f  is the line frequency of the AC. 

 The current passing through resistance 2R , is 

 

 222

2

2

21 CfR

U

C
R

U
I


















 .                               (5) 

 

 The current in the supply wires is 

 

2
2

2
1 III  .                                                        (6) 
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 We substitute numerical values for Hzf 501   

 

5rR ,    A.I 3201  ,    A.I 7122  ,    AI 24 .                (7) 

 

We substitute numerical values for Hzf 1002   

 

5rR ,    AI 151  ,    A.I 75182  ,    AI 24 .                (8) 

 

We substitute numerical values for Hzf 503   

 

5rR ,    A.I 981  ,    A.I 4222  ,    AI 24 .                (9) 

 

Answer.  The resonant impedance is 5rR . The currents for branched and 

unbranched parts of the electrical circuit are equal for Hzf 501  : A.I 3201  , 

A.I 7122  , AI 24 ; for Hzf 1002  : AI 151  ,   A.I 75182  , AI 24 ; 

for Hzf 503  : A.I 981  ,  A.I 4222  ,    AI 24 . 

 

 

 

 

 

 

  

 

Figure 6.9. Electrical circuit for problem 6.3.6 
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Problem 6.3.7  

 

Problem description. The AC circuit is energized at VU 120 . The current in the 

electrical circuit changes with a frequency of Hzf 50 . The electrical circuit 

contains a solenoid with an inductance of H.L 30  and a resistance of 10R . 

Determine the amplitude of the current and the phase shift between current and voltage 

in the electrical circuit. 

 

Known quantities: VU 120 , Hzf 50 , H.L 30 , 10R . 

 

Quantities to be calculated: I ,  . 

 

Problem solution. The amplitude of the current can be determined using the following 

relationship 

 

 22

2
2

LR

U
II e
e


 ,                                        (1) 

 

where 

eI  is the effective value of the current; 

eU  is the effective value of the voltage; 

R  is the active resistance; 
  is the circular frequency of the change in current in an electrical circuit; 

L  is the inductance of the solenoid. 

 Substituting known values, we get 

 

А.I 681 .                                                         (2) 

 

 The phase shift between current and voltage can be determined by the formula 

 











R

L
arctan


 .                                                         (3) 

 

 Numerically 

 

 43 .                                                                     (4) 
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Answer. The current amplitude is А.I 681 . The phase shift between current and 

voltage is  43 . 

 

 

Problem 6.3.8  

 

Problem description. A three-phase consumer, which has an active resistance AR 8  

and an inductive resistance 6LX , in each phase, is connected to a three-phase 

current network with a linear voltage VULN 380 . Determine the voltage in each 

phase of the consumer and the currents in each phase and linear wires, if the phases are 

connected according to  schemes «wye» and «delta». 

 

Known quantities: AR 8 , 6LX , VULN 380 . 

 

Quantities to be calculated: PHU , PHI , LNI . 

 

Problem solution. Due to the fact that the load in the electrical circuit is uniform, it is 

enough to calculate the voltage in one phase. 

 Consider the "wye" schema. The voltage in each phase is 

 

3

LN
PH

U
U  ,                                                   (1) 

 

where LNU  is the line voltage. 

 Numerically 

 

VUPH 220 .                                                 (2) 

 

 The impedance of each phase is determined by the ratio 

 

22
PH,LPHPH XRZ  ,                                           (3) 

 

 where 

RRPH   is the active resistance of each phase; 

LPH,L XX   is the inductive reactance of each phase. 

 Substituting known values, we get 
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10PHZ .                                                   (4) 

 

 The current in each phase and in the line wire is 

 

PH

PH
LNPH

Z

U
II  ,                                              (5) 

 

where 

PHI  is the phase current; 

LNI  is the current in the line. 

 Substituting known values, we find 

 

AII LNPH 22 .                                             (6) 

 

 Consider the "delta" scheme. The voltage in each phase is 

 

VUU LNPH 380 .                                         (7) 

 

 The impedance of each phase is 

 

10PHZ .                                                    (8) 

 

 The current in each phase is 

 

A
Z

U
I

PH

PH
PH 38 .                                            (9) 

 

 The current in each line wire is 

 

PHLN II 3 .                                            (10) 

 

 Numerically 

 

AILN 66 .                                              (11) 
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Answer.  "Wye" scheme. The voltage in each phase is VUPH 220 . The current in 

each phase and in the line wire is AII LNPH 22 . "Delta" scheme. The voltage in 

each phase is VUPH 380 . The current in each phase is AIPH 38 . The current 

in each line wire is AILN 66 . 

 

 

Problem 6.3.9  

 

Problem description. The oscillating circuit consists of capacitors connected in series 

with electric capacitance FC 10 , non-inductive resistance 20R  two 

solenoids with inductances mH.L 201   and mH.L 402   and a very small active 

resistance. Determine the period of free oscillations in this oscillatory circuit for the 

cases of series and parallel connection of solenoids. 

 

Known quantities: FC 10 , 20R , mH.L 201  , mH.L 402  . 

 

Quantities to be calculated: 1Т , 2Т . 

 

Problem solution. The period of free oscillations in an electromagnetic oscillatory 

circuit can be determined using the following relationship 

 

2

2

1

2





















L

R

LC

T


,                                           (1) 

 

where 
С  is the capacitance of the capacitor; 

R  is active resistance; 

L  is the total inductance of the two solenoids. 

 Consider two types of connection of solenoids: 1) serial connection, 2) parallel 

connection. 

 For the case of series connection (see Fig. 6.10), the same current I  flows in both 

solenoids.  

 The electromotive force in the first solenoid is  

 

dt

dI
LE 11  ,                                                             (2) 
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where 1L  is the inductance of the first solenoid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The electromotive force in the second solenoid is 

 

dt

dI
LE 22  ,                                                     (3) 

 

where 2L  is the inductance of the second solenoid. 

 The resulting electromotive force in the oscillatory circuit is given by 

 

 
dt

dI
L

dt

dI
LLEEE  2121 ,                              (4) 

 

where L  is the inductance of the entire resonant circuit. 

 By analogy with formula (1), for the period 1T  of free oscillations in an 

oscillatory circuit, for the case of a series connection of two solenoids, we can write the 

equation 

 

 

 

 

 

Figure 6.10. Electric circuit # 1 to problem 6.3.9. 
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   
























2
21

2

21

1

4

1

2

LL

R

CLL

T


.                              (5) 

 

 Substituting known values, we have 

 

s.T 3
1 10681  .                                           (6) 

 

 Consider a parallel connection of two solenoids (see Fig. 6.11). We will assume 

that the voltage between points A  and B  changes over time t  according to the law 

 

 tsinUU 0 ,                                             (7) 

 

where 

0U  is the amplitude value of the voltage; 

  is the circular frequency of voltage change. 

 In this case, the amplitude of the current 1I  in the first solenoid is 

 

1

0
01

L

U
I


 .                                                        (8) 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

А 
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Figure. 6.11. Electric circuit # 2 to problem 6.3.9. 
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The current amplitude in the second solenoid is 

 

2

0
02

L

U
I


 .                                                   (9) 

 

 The phase shift between current 1I  and voltage U  is 

 

1

1
1

R

L
tg


  ,                                               (10) 

 

where 1R  is the active resistance of the first solenoid. 

 The phase shift between current 2I  and voltage U  is 

 

2

2
2

R

L
tg


  ,                                               (11) 

 

where 2R  is the active resistance of the first solenoid. 

 According to the condition of the problem, the active resistances of both 

solenoids are very small, therefore 

 

2
21


  .                                            (12) 

 

 The dependence of the current 1I  on time has the form 

 

 tcos
L

U
tsin

L

U
I 






 1

0

1

0
1

2









 .                          (13) 

 

 The dependence of the current 2I  on time has the form 

 

 tcos
L

U
tsin

L

U
I 






 2

0

2

0
2

2









 .                          (13) 

 

 The current in the unbranched part of the oscillatory circuit is equal to the sum 

of the currents 1I  and 2I  
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 tcos
LL

U
III 

 









21

0
21

11
.                                 (14) 

 

 An analysis of the last equation shows that the same time dependence can be 

obtained if one solenoid with equivalent inductance is included in the oscillatory circuit 

 

21

2

21

11

1

LL

LL

LL

L














  .                                        (15) 

 

 Now we can substitute the expression for the equivalent inductance into equation 

(1) and obtain a formula for the period 2T  of free oscillations in an oscillatory circuit 

with two solenoids connected in parallel 

 

   







 








 


2
2

2
1

22
21

21

21

2

4

2

LL

RLL

CLL

LL
T


.                                 (16) 

 

 Substituting known values, we get 

 

s.T 3
2 10451  .                                          (17) 

 

Answer. The period of free oscillations in the oscillatory circuit when two solenoids are 

connected in series is s.T 3
1 10681  . The period of free oscillations in the 

oscillatory circuit with a parallel connection of two solenoids is s.T 3
2 10451  . 

 

 

Problem 6.3.10  

 

Problem description. In an oscillatory circuit, the inductance of which is H.L 010 , 

the charge of the capacitor decreases by 10 times over a period of sT 510 . 

Determine the resistance of the oscillatory circuit.  

 

Known quantities: H.L 010 , 101 Q/Q , sT 510 . 

 



200 

 

Quantities to be calculated: R .  

 

Problem solution. The charge of the capacitor at any time t  is determined by the relation 

 

  







 tcost

L

R
expAQ

2
,                                        (1) 

 

there 

A  is a constant; 

R  is the active resistance of the oscillating circuit; 
  is the circular frequency of the oscillating circuit; 

L  is the inductance; 

  is the phase shift. 

 The charge of the capacitor at time Tt   is 

 

     





 TtcosTt

L

R
expAQ

2
,                                      (2) 

 

where 

T  is the period of the oscillatory circuit. 

 Divide equation (2) by equation (1) 

 

 
  
















Ttcos

tcos
T

L

R
exp

Q

Q

21

.                                     (3) 

 

The relationship between the circular frequency and the period of the oscillatory 

circuit has the form  

 

T




2
 .                                                               (4) 

 

 Now we can rewrite equation (3), given that the period of the cosine is 2  

 











L

RT
exp

Q

Q

21

.                                                        (5) 

 

 Therefore, the resistance of the oscillatory circuit is 
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









1

2

Q

Q
ln

T

L
R .                                                      (6) 

 

 Numerically 

 

3106054  .R .                                                 (7) 

 

Answer. The resistance of the oscillatory circuit is 3106054  .R . 

 

 

Problem 6.3.11  

 

Problem description. The oscillatory circuit consists of a capacitor with an electrical 

capacity of   F/C 81031   and a solenoid with an inductance of 

H.L 51021  . Solenoid resistance is 6R . Determine the period of free 

oscillations, the attenuation coefficient and the logarithmic decrement.  

 

Known quantities:   F/C 81031  , H.L 51021  , 6R . 

 

Quantities to be calculated: T ,  ,  . 

 

Problem solution. The oscillation period of the electromagnetic circuit can be 

determined using the following relationship 

 

 

2

2

1

2


















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L

R

LC

T


,                                               (1) 

 

where 

L  is the inductance of the solenoid; 

C  is the capacitance of the capacitor; 

R  is the ohmic resistance. 

   Substituting known values, we get 
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s.T 610481  .                                                 (2) 

 

 The attenuation coefficient is determined by the relation 

 

L

R

2
 .                                                         (3) 

 

 Substituting known values, we find 

 
161052  s. .                                                (4) 

 

 The logarithmic decrement characterizes the decrease in the oscillation amplitude 

in one period 

 

 
  
















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




 TtexpA

texpA
ln

A

A
ln

n

n






0

0

1

,                             (5) 

 

where 

nA  and 1nA  are amplitudes that differ by one period; 

0A  is the initial amplitude; 

t  is the current time. 

 Numerically 

 
73. .                                                          (6) 

  

Answer. The period of free oscillations is s.T 610481  . The attenuation 

coefficient is 
161052  s. . The logarithmic decrement is 73. . 

 

 

Problem 6.3.12  

 

Problem description. The oscillatory circuit of the receiver is tuned to a wavelength 

m500 . The inductance and active resistance of the oscillatory circuit are equal, 

respectively HL 6102   and 10R . Determine the natural frequency of 

oscillation of the circuit. 
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Known quantities: m500 , HL 6102  , 10R .  

 

Quantities to be calculated: 0 . 

 

Problem solution. The resonant period of the circuit oscillations is determined by the 

Thomson formula 

 

LCT 2 ,                                                      (1) 

 

where 

L  is the inductance of the oscillating circuit; 

C  is the capacitance of the oscillating circuit. 

 The natural oscillation frequency of the circuit is 

 

2
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L

R

LC
 ,                                           (2) 

 

where R  is the ohmic resistance of the oscillating circuit. 

 The relationship between the length of the electromagnetic wave and the 

oscillation period of the circuit has the form 

 

cT ,                                                              (3) 

 

where 
  is the wavelength of the electromagnetic wave; 
C  is the speed of light in a vacuum. 

 Let us rewrite equation (3) taking into account the Thomson formula 

 

LCc 2 .                                                        (4) 

 

 Now we can write a mathematical expression for the natural frequency of 

oscillation of the circuit, taking into account equations (2) and (4) 
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


 .                                          (5) 

 

 Substituting known values, we get 
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Hz. 5
0 1054  .                                                 (6) 

Answer. The frequency of natural oscillations of the circuit is Hz. 5
0 1054  . 

 

6.4. Level 1 problems 

 

6.4.1. A coil with an inductance of mHL 1  and an air capacitor, consisting of two 

round plates with a diameter of cmD 20  each, are connected in parallel. The 

distance between the plates is cmD 1 . Determine the period of electromagnetic 

oscillations. 

 

6.4.2. Capacitor with capacitance pFC 500  is connected in parallel with a solenoid 

with length cml 40  and cross-sectional area 
25 cmS  . The number of turns of 

the coil is 1000N . The core is made of non-magnetic material. Determine the period 

of electromagnetic oscillations of such a circuit. 

 

6.4.3. The oscillatory circuit consists of a solenoid with an inductance of HL 20  

and a capacitor with an electrical capacity of nFC 80 . The value of the electrical 

capacity may deviate from the specified value by 2%. Calculate the change in the 

wavelength at which the given oscillatory circuit resonates. 

 

6.4.4. The oscillatory circuit consists of a solenoid with an inductance of mH.L 61  

and a capacitor with an electric capacitance of F.C 040 . The maximum voltage 

across the capacitor plates is VU 200 . Determine the maximum current in the 

circuit. The resistance of the electromagnetic circuit can be neglected. 

 

6.4.5. The oscillatory circuit consists of a capacitor with an electrical capacity of 

pFC 8  and a solenoid with an inductance of mH.L 50 . The maximum current 

in the oscillatory circuit is mAIm 40 . Determine the maximum voltage across the 

capacitor plates. 

 

6.4.6. The length and cross-sectional area of the solenoid are equal, respectively 

cml 50  and 
2

1 3cmS  . The number of turns of the solenoid is 1000N . The 

solenoid has no core and is connected in parallel with a capacitor. The area of each 

capacitor plate is 
2

2 75 cmS  . The distance between the plates is cmd 5 . The 
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dielectric located between the plates of the capacitor is the air medium. Determine the 

period of oscillation of the circuit. 

 

6.4.7. The oscillatory circuit consists of a capacitor with electric capacitance 

FC 1  and a solenoid with inductance mHL 1  connected in parallel. The 

resistance of the electromagnetic circuit is negligible. Determine the frequency of 

electromagnetic oscillations of this circui. 

 

6.4.8. The inductance of the oscillating circuit is mH.L 50 . The oscillatory circuit 

resonates at a wavelength of m300 . Determine the capacitance of the capacitor. 

 

6.4.9. The oscillatory circuit consists of a solenoid with an inductance of HL 4  

and a capacitor with an electric capacitance of nF.C 111 . Determine the 

wavelength at which the oscillatory circuit will resonate. 

 

6.4.10. To demonstrate Hertz's experiments with the refraction of electromagnetic 

waves, a large prism made of paraffin is sometimes used. The dielectric constant and 

relative magnetic permeability of paraffin are equal, respectively 2  and 1 . 

Determine the refractive index of paraffin. 

 

6.4.11. Two parallel wires immersed in glycerine are inductively connected to an 

electromagnetic oscillation generator with a frequency of MHz420 . The distance 

between the antinodes of standing waves on the wires is cml 7 . The relative 

magnetic permeability of glycerol is approximately equal to unity. Determine the 

relative permittivity of glycerol. 

 

6.4.12. The oscillatory circuit consists of a solenoid and a capacitor. The inductance of 

the solenoid is HL 5103  . The area of each plate of a flat capacitor is 

2100 cmS  . The distance between the plates of the capacitor is mm.d 10 . The 

oscillatory circuit resonates at a wavelength of m750 . Determine the relative 

permittivity of the medium that fills the space between the capacitor plates. 

 

6.4.13. The oscillatory circuit consists of a capacitor with an electrical capacity of 

F.C 20  and a solenoid with an inductance of H.L 310075  . The potential 

difference across the plates of the capacitor decreases three times in time s310 . 

Determine the logarithmic decrement of the oscillatory circuit. 
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6.4.14. The oscillatory circuit consists of a capacitor and a long coil wound of copper 

wire with a cross-sectional area of 
210 mm.S  . The length of the solenoid is 

cml 40 . The error that occurs when calculating the oscillation period using the 

approximate formula LCT 2 , is %1 . Determine the capacitance of the 

capacitor. 

 

6.4.15. Two capacitors with capacitances F.C 201   and F.C 102   are 

connected in series in an alternating current circuit with a voltage of VU 220  and 

a frequency of Hz50 . Determine the current in the electrical circuit and the 

voltage on the first and second capacitors.  

 

6.4.16. The capacitor and the light bulb are connected in series and are included in an 

alternating current circuit with a voltage of VU 440  and a frequency of Hz50 . 

The current flowing through the bulb is A.I 50 . The potential difference across the 

light bulb is VU 110 . Determine the capacitance of the capacitor. 

 

6.4.17. A solenoid with active resistance 10R  is connected to an alternating 

current circuit with a voltage of VU 127  and a frequency of Hz50 . The 

solenoid absorbs power equal to WP 400 . The phase shift between voltage and 

current is  60 . Determine the inductance of the solenoid. 

 

6.4.18. Active resistance, solenoid and capacitor are included in an alternating current 

circuit with a voltage of VU 220  and a frequency of Hz50 . The capacitance 

of the capacitor is F.C 435 . The inductance of the solenoid is H.L 70 . The 

active resistance is 100R . Calculate the current in the electrical circuit, as well 

as the voltage on the capacitor plates, solenoid and active resistance. 

 

6.4.19. The active resistance and the solenoid are connected in parallel and connected 

to an alternating current circuit with a voltage of VU 127  and a frequency of 

Hz50 . The power absorbed in the electrical circuit is WP 404 . The phase 

shift between voltage and current is  60 . Calculate the values of active resistance 

and inductance. 

 

6.4.20. The capacitor, solenoid and active resistance are connected in series in an 

alternating current circuit with a voltage of  VU 220 . The voltage across the 

capacitor plates is twice as much as the voltage across the resistance. The voltage across 
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the solenoid is three times greater than the voltage across the resistance. Determine the 

voltage across the active resistance.  

 

 

6.5. Answers to problems 

 

6.4.1. s.T 810323  . 

 

6.4.2. s.T 610575  . 

 

6.4.3.  m.. 13 1038210382  . 

 

6.4.4. AIm 1 . 

 

6.4.5. V.Um
210173  . 

 

6.4.6. s.T 710286  . 

 

6.4.7. Hz. 310055  . 

 

6.4.8. F.C 111015  . 

 

6.4.9. m. 210261  . 

 

6.4.10. 41.n  . 

 

6.4.11. 
11062  . . 

 

6.4.12. 6 . 

 

6.4.13. 220. . 

 

6.4.14. FC 7107  . 

 

6.4.15. A.I 31064  ; V.U 1
1 10347  ; V.U 2

2 104661  . 
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6.4.16. F.C 610743  . 

 

6.4.17. H.L 21055  . 

 

6.4.18. A.I 341 ; V.UC
210211  ; V.UR

210341  ; V.UL
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APPENDICES 

Table A1. Greek alphabet 

Name Capital Lower-case Name Capital Lower-case 

Alpha A  Nu N  

Beta B  Xi   

Gamma Г  Omicron O  

Delta   Pi П  

Epsilon E  Rho P  

Zeta Z  Sigma   

Eta H  Tau T  

Theta   Upsilon ϒ  

Iota I  Phi Ф  

Kappa K  Chi X  

Lambda   Psi   

Mu M  Omega   

 

Table A2. SI prefixes 

Prefix Representation Prefix Representation 

Name Symbol Base 10 Name Symbol Base 10 

yotta Y 1024 deci d 10–1 

zeta Z 1021 centi c 10–2 

exa E 1018 milli m 10–3 

peta P 1015 micro   or u 10–6 

tera T 1012 nano n 10–9 

giga G 109 pico p 10–12 

 



211 

 

Name Symbol Base 10 Name Symbol Base 10 

mega M 106 femto f 10–15 

kilo k 103 atto a 10–18 

hecto h 102 zepto z 10–21 

deca da 101 yocto y 10–24 

 

Table A3. SI base units  

Unit 

name 

Unit 

symbol 

Quantity 

name 

Definition 

metre m length 
The distance travelled by light in vacuum in 

1/299792458 second. 

kilogram kg mass 

The kilogram is defined by taking the fixed 

numerical value of the Plank constant h to be 

6.6260701510–34 when expressed in the unit 

Js, which is equal to kgm2s–1 , where the 

metre and the second are defined in terms of c 

and Cs. 

second s time 

The second is define by taking the fixed 

numerical value of the caesium frequency 

Cs, the unperturbed ground-state hyperfine 

transition frequency of the 133C atom, to be 

9192631770 when expressed in the unit Hz, 

which is equal to s–1. 
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Unit 

name 

Unit 

symbol 

Quantity 

name 
Definition 

ampere A 
electric 

current 

The ampere is defined by taking the fixed 

numerical value of the elementary charge e to 

be 1.60217663410–19 when expressed in unit 

C, which is equal to As, where the second is 

defined in terms of Cs. 

kelvin K 

thermodyna

mic 

temperature 

The kelvin is defined by taking the fixed 

numerical value of the Boltzmann constant k 

to be 1.38064910–23 JK–1 (J=kgm2s–2), 

given the definition of the kilogram, the metre, 

and the second. 

mole mol 
amount of  

substance 

The amount of substance of exactly 

6.022140761023 elementary entities. This 

number is the fixed numerical value of the 

Avogadro constant, NA, when expressed in the 

unit mol–1 and is called the Avogadro number. 

candela cd 
luminous  

intensity 

The luminous intensity, in a given direction, of 

a source that emits monochromatic radiation 

of frequency 5.41014 Hz and that has a radiant 

intensity in that direction of 1/683 watt per 

steradian. 

 

Table A4. SI derived units 

Unit name 
Unit 

symbol 
Unit Equivalents Quantity name 

hertz Hz s–1 frequency 

radian rad 

One radian is the angle 

subtended at the center of a 

circle by an arc that is 

equal in length to the 

radius of the circle. 

angle 
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Unit name 
Unit 

symbol 
Unit Equivalents Quantity name 

steradian sr 

The solid angle subtended 

at the center of a unit 

sphere by a unit area on its 

surface 

solid angle 

newton N kg×m×s–2 force, weight 

pascal Pa N/m2 = kg×m–1×s–2 pressure, stress 

joule J N×m = kg×m2×s–2 energy, work, heat 

watt W J/s = kg×m2×s–3 power, radiant flux 

coulomb C A×s electric charge 

volt V J/C = kg×m2×s–3×A–1 
voltage,  

electromotive force 

farad F C/V = A2×s4× kg–1×m–2 electrical capacitance 

ohm  or Ohm V/A = kg×m2×s–3×A–2 
electrical resistance, 

impedance 

siemens S 1/Ohm = A2×s3× kg–1×m–2 electrical conductance 

weber Wb V×s = kg×m2×s−2×A−1 magnetic flux 

tesla T Wb/m2 = kg× s−2×A−1 magnetic field strength 

henry H Wb/A = kg×m2×s−2×A−2 electrical inductance 

degree 

Celsius 
°C K 

temperature relative to 

273.15 K 

lumen lm cd×sr = cd luminous flux 

lux lx lm/m2 = cd×m–2 illuminance 

becquerel Bq s–1 radioactivity 

gray Gy J/kg = m2×s–2 absorbed dose 

sievert Sv J/kg = m2×s–2 equivalent dose 

katal kat mol/s = mol×s−1 catalytic activity 
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Table A5. Physical constants 

Quantity Symbol Value 

Avogadro constant AN  6.0221415(10)×1023 mol–1  

Boltzmann constant k  1.3806505(24)×10–23 J / K 

Electric constant 0  8.854187817×10–12 F×m–1  

Faraday constant F  96485.3383(83) C×mol–1  

Gravitational constant G  6.6742(10)×10–11 N×m2 / kg2 

Magnetic constant 0  4×10–7 T×m /A (exact) 

Molar gas constant R  8.314472(15) J/(mol×K) 

Planck constant h  6.6260693(11)×10–34 J×s 

Rydberg constant HR  1.0973731568525(73)×107 m–1  

Stefan-Boltzmann constant   5.670400(40)×10–8 W×m–2×K–4  

Wien displacement law constant b  2.8977685(51)×10–3 m×K 

Atomic mass unit u  1.66053886(28)×10–27 kg 

Electron mass em  9.1093826(16)×10–31 kg 

Neutron mass nm  1.67492728(29)×10–27 kg 

Proton mass pm  1.67262171(29)×10–27 kg 

Elementary charge e  1.60217653(14)×10–19 C 

Speed of light in vacuum c  2.99792458×108 m /s 

Bohr magnetron B  9.27400949(80)×10–24 J/T 

Bohr radius 0a  5.291772108(18)×10–11 m 

Compton wavelength                           C                  2.426310238(16)×10–12 m 
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Table A6. Astronomical data 

Body Mass, kg 
Equatorial 

radius, m 

Perihelion/ 

Aphelion, m 

Sidereal 

period 

Orbital 

speed, 

km/s 

Sun 1.9981030  6.955108  2.51020(*) 2.3108 y(*) 2.2102(*) 

Moon 7.3421022  1.738106  (3.63/4.05)108  27.321661 d 1.002 

Mercury 3.3011023  2.440106  (4.60/6.98)1010  87.9691 d 47.362 

Venus 4.8671024  6.052106  (1.08/1.09)1011  224.698 d 35.02 

Earth 5.9731024  6.378106  (1.47/1.52)1011  365.25636 d 29.783 

Mars 6.4171023  3.396106  (2.07/2.49)1011  686.971 d 24.007 

Jupiter 1.8981027  7.149107  (7.40/7.78)1011  11.862 y 13.07 

Saturn 5.6831026  6.027107  (1.35/1.51)1012  29.4571 y 9.68 

Uranus 8.6831025  2.556107  (2.75/3.00)1012  84.01 y 6.81 

Neptune 1.0241026  2.476107  (4.45/4.55)1012  164.79 y 5.4349 

(*) – Milky Way 

 

Table A7. Periodic table of elements 

Name 

ANSymbol 

(AN – atomic 

number) 

Standard 

atomic 

weight 

Name 

ANSymbol 

(AN – atomic 

number) 

Standard 

atomic 

weight 

1 2 3 1 2 3 

Actinium 89Ac 227 Californium 98Cf 251 

Aluminium 13Al 26.9815384 Carbon 6C 12.011 

Americium 95Am 243 Caesium  55Cs 132.905452 

Antimony 51Sb 121.760 Cerium 58Ce 140.116 
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1 2 3 1 2 3 

Argon 18Ar 39.948 Chlorine 17Cl 35.45 

Arsenic 33As 74.921595 Chromium 24Cr 51.9961 

Astatine 85At 210 Cobalt 27Co 58.933194 

Barium 56Ba 137.327 Copernicium 112Cn 285 

Berkelium 97Bk 247 Copper 29Cu 63.546 

Beryllium 4Be 9.0121831 Curium 96Cm 247 

Bismuth 83Bi 208.98040 Darmstadtium 110Ds 281 

Bohrium 107Bh 270 Dubnium 105Db 268 

Boron 5B 10.81 Dysprosium 66Dy 162.500 

Bromine 35Br 79.904 Einsteinium 99Es 252 

Cadmium 48Cd 112.414 Erbium 68Er 167.259 

Calcium 20Ca 40.078 Europium 63Eu 151.964 

Fermium 100Fm 257 Phosphorus 15P 30.9737620 

Flerovium 114Fl 289 Platinum 78Pt 195.084 

Fluorine 9F 18.9984032 Plutonium 94Pu 244 

Francium 87Fr 223 Polonium 84Po 209 

Gadolinium 64Gd 157.25 Potassium 19K 39.0983 

Gallium 31Ga 69.723 Praseodymium 59Pr 140.90766 

Germanium 32Ge 72.630 Promethium 61Pm 145 

Gold 79Au 196.966570 Protactinium 91Pa 231.03588 

Hafnium 72Hf 178.49 Radium 88Ra 226 

Hassium 108Hs 270 Radon 86Rn 222 

Helium 2He 4.002602 Rhenium 75Re 186.207 

Holmium 67Ho 164.930328 Rhodium 45Rh 102.90549 

Hydrogen 1H 1.008 Roentgenuim 111Rg 282 

Indium 49In 114.818 Rubidium 37Rb 85.4678 
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1 2 3 1 2 3 

Iodine 53I 126.90447 Ruthenium 44Ru 101.07 

Iridium 77Ir 192.217 Rutherfordium 104Rf 267 

Iron 26Fe 55.845 Samarium 62Sm 150.36 

Krypton 36Kr 83.798 Scandium 21Sc 44.955908 

Lanthanum 57La 138.90547 Seaborgium 106Sg 269 

Lawrencium 103Lr 266 Selenium 34Se 78.971 

Lead 82Pb 207.2 Silicon 14Si 28.085 

Lithium 3Li 6.94 Silver 47Ag 107.8682 

Livermorium 116Lv 293 Sodium 11Na 22.9897693 

Lutetium 71Lu 174.9668 Strontium 38Sr 87.62 

Magnesium 12Mg 24.305 Sulfur 16S 32.06 

Manganese 25Mn 54.938043 Tantalum 73Ta 180.94788 

Meitnerium 109Mt 278 Technetium 43Tc 98 

Mendelevium 101Md 258 Tellurium 52Te 127.60 

Mercury 80Hg 200.592 Tennessine 117Ts 294 

Molybdenum 42Mo 95.95 Terbium 65Tb 158.925354 

Moscovium 115Mc 290 Thallium 81Tl 204.38 

Neodymium 60Nd 144.242 Thorium 90Th 232.0377 

Neon 10Ne 20.1797 Thulium 69Tm 168.934218 

Neptunium 93Np 237 Tin 50Sn 118.710 

Nickel 28Ni 58.6934 Titanium 22Ti 47.867 

Nihonium 113Nh 286 Tungsten 74W 183.84 

Niobium 41Nb 92.90637 Uranium 92U 238.02891 

Nitrogen 7N 14.007 Vanadium 23V 50.9415 

Nobelium 102No 259 Xenon 54Xe 131.293 

Oganesson 118Og 294 Ytterbium 70Yb 173.045 
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1 2 3 1 2 3 

Osmium 76Os 190.23 Yttrium 39Y 88.90584 

Oxygen 8O 15.999 Zinc 30Zn 65.38 

Palladium 46Pd 106.42 Zirconium 40Zr 91.224 
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active power of alternating current 174 electromotive force  143 

Ampère's law 114 electromotive force of induction  143 

ball capacitance 41 electromotive force of mutual induction  145 

Biot-Savart-Laplace law  111 electrostatic induction 43 

charged capacitor energy  43 energy of n charges  43 

charged insulated conductor energy  43 equivalent magnetic resistance  113 

conductor capacitance 41 Faraday's law 143 

conductor surface boundary conditions  40 field lines refraction law 41 

Coulomb's law 6 flat capacitors capacitance 42 

current density 80 Hopkinson formula  113 

cylindrical capacitors capacitance 42 interaction force between conductors  114 

cylindrical conductor resistance 80 Joule-Lenz formula  83 

effective resistance  172 Kirchhoff's first law  82 

effective value of current 172 Kirchhoff's second law  82 

effective value of voltage  172 logarithmic decrement 176 

electric charge linear density  7 Lorentz force  115 

electric charge surface density 7 magnetic field energy 146 

electric current  80 magnetic field intensity circulation 113 

electric field  6 magnetic field volumetric energy density 146 

electric image 44 magnetic induction flux 113 

electric induction  8 magnetic moment of circuit with current 112 

electric induction flux vector  8 Ohm's law for alternating current  172 

electric potential  8 Ohm's law for circuit section  81 

electrical equilibrium  condition 12 Ohm's law for closed circuit  81 

electromagnet lifting force 115 Ostrogradsky-Gauss theorem 9 
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parallel-connected capacitors capacity  42 series-connected capacitors capacity  42 

partial capacitance  45 solenoid 174 

phase shift between current and voltage  173 solenoid inductance 144 

point charge 6 spherical capacitors  capacitance 42 

point charge energy 42 temperature coefficient of resistance 81 

potential gradient 10 Thomson formula 175 

Q factor 176 vector voltage diagram  176 

relative dielectric susceptibility 40 volumetric energy density  43 

relative permittivity  40 work of moving a conductor  115 

self-induction phenomenon 144   
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NAME INDEX 

 

Ampère 80 Laplace 111 

Biot 111 Lenz 83 

Coulomb 6 Lorentz 115 

Faraday 40 Ohm 81 

Gauß 9 Ostrogradsky 9 

Hopkinson 113 Savart 111 

Joule 83 Thomson 175 

Kirchhoff 82   

    

 


