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Abstract: Low cost, the possibility of online monitoring and high sensitivity distinguish the
method of structural monitoring using Lamb waves from other available methods. Structural analysis
based on Lamb waves in heterogeneous materials requires fundamental knowledge of the behavior of
Lamb waves in such materials. This basic knowledge is critical for signal processing in determining
possible damage that can be detected by the propagating wave. Recently, Lamb wave methods have
been used to simultaneously survey large areas of composite structures. However, such methods are
more complex than traditional ultrasonic testing because Lamb waves have dispersive characteristics,
namely, the wave speed varies depending on the frequency, modes and thickness of the plates.
Experimentally measured group velocities of Lamb waves in composite materials with anisotropic
characteristics do not coincide with theoretical group velocities, which are calculated using the
dispersion equation of Lamb waves. This discrepancy arises because in anisotropic materials there is
an angle between the direction of the group velocity and the direction of the phase velocity. This work
investigates the propagation characteristics of Lamb waves in composites, focusing on group velocity
and characteristic wave curves. For symmetric laminates, a robust method is proposed by imposing
boundary conditions on the mid-plane and top surface to separate symmetric and antisymmetric wave
modes. The dispersive and anisotropic behavior of Lamb waves in two different types of symmetrical
laminates is theoretically studied in detail. The dispersion of Lamb waves was studied for 10
symmetric and asymmetric modes. It is shown that only fundamental modes are not characterized by a
cutoff frequency, which indicates the interaction of fundamental modes with composite layers in the
low-frequency range. A high level of group velocity dispersion was discovered for the SHO and SO
modes. It is concluded that in isotropic laminates, dispersion is characteristic of symmetric modes. It is
shown that the frequency dependence of the group velocity of Lamb waves of laminar composites can
be represented in polynomial form.

Keywords: Lamb wave, group velocity dispersion, wavelet analysis, laminar composites.

JUCHEPCIA XBUJIb IEMBA Y BAI'ATOIIAPOBUX
CTPYKTYPAX

Mucapenko O. M. 1!

1 . . .
Odecvka Oepocasna akademis OyOisHuymea ma apximexmypu

AHoTanin: 3 pi3HUX JOCTYIMHUX MiAXOIB CTPYKTYPHOT'O MOHITOPUHTY KOMITO3UTHUX MAaTepiaiB
BUKOPHCTaHHS XBHJIb JlemOa € ayxke IiKaBUM METOIOM Yepe3 HOro HU3bKY BapTiCTh, OHJIAWH-
MOHITOPHHT 1 BHCOKY WyTJIMBICTh. CTPYKTYpHHUIl aHami3 Ha OCHOBI XBHIb Jlemba y reTeporeHHHuX
Marepianiax morpedye GhyHIaMEHTaIbHUX 3HaHb IIPO TOBEIIHKY XBHJIb Y TaKuX Marepianax. 11i 6a3osi
3HaHHS MalOTh BHUpIMIAIbGHE 3HAYCHHS i1 OOpPOOKHM CHUTHATIB TPH BHU3HAYCHHI MOMIIUBUX
MOIIKO/KEHbB, SIKI MOXKYTh OYTH BHSBIICHI XBWJICIO, IO MOMIMPIOETHCSA. OCTaHHIM 4YacoM METOIU
XBUJIb JlemOa cTanu BUKOPUCTOBYBATHCS JIJIsl OTHOYACHOTO OOCTEIKEHHSI BEJIMKOI IO KOMITO3UTHHX
KOHCTpyKIii. OJHaK Taki METOH CKIIQHIII 3a TPAJAUIIKHHI yIbTPa3ByKOBI BUIPOOYBAHHS, OCKUIBKH
XBHJII MaIOTh JTUCTIEPCiHHI XapaKTepuCTUKU, TOOTO. IIIBHAKICTh XBHIII 3MIHIOETHCS B 3aJIEKHOCTI Bijl
YacTOTH, MOJ Ta TOBIIMHHW TUIACTHH. EKCIEepUMEHTAN-HO BHUMIPSHI TPYIOBI IIBUKOCTI XBHJIb B
KOMIIO3UIIIIHUX MarepiajiaXx 3 aHi30TPONHUMU XapaKTepUCTHUKaMU He 30iraloTbcsi 3 TPYHOBUMH
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TEOPETUYHUMH IIBUAKOCTSIMH, SIKI PO3PAXOBYIOTHCS 32 AOMOMOIOI0 AWCHEPCIHOTO PIBHSHHS XBHJIb
Jlemba. L1 HEBIAMOBIHICTH, BUHHKAE UYepe3 Te, IO B aHI30TPOITHUX MarepiallaX iCHYE KyT Mix
HampsIMKOM TPYMOBOI HMIBUIKOCTI Ta HampsMKOM (a3oBoi MBUAKOCTL. Y i poOOTi JOCIiIKEHO
XapaKTEePUCTUKU TIOIIMPEHHS XBWIb JlemOa B KOMIO3MUTAax 3 yIMOPOM Ha TPYNOBY IIBUIKICTH 1
XapakTepHi XBHJIEBI KpuBi. IS CUMETpUYHMX JlaMiHATIB MPOMOHYETHCS HAAIWHUI METOJ MUIIXOM
HAKJIAIaHHS TPAHMYHAX YMOB Ha CEPEJIHIO TUIOLIMHY Ta BEPXHIO MOBEPXHIO JJISI OALTY CHMETPUIHUX
Ta AaHTUCHUMETPUYHUX XBHIBOBUX MOJ. JleTanbHO TEOpPETMYHO MOCIHIPKEHO JUCHEpCiiHy Ta
aHI30TPONHY MOBEAIHKY XBWJb Jlem0Oa y NMBOX pPI3HMX THUNAX CUMETPHUYHMX JiamiHaTiB. Jlucmepcis
XBHJIb ITPY MOMIMPEHHI MK [IapaMH B JIAMiHApPHUX KOMIIO3UTaX JocipKeHa Ut 10 cuMeTpudHuX Ta
acuMmeTpuyHuX MoJ. [lokazaHo, 110 NHIlle OCHOBHI MOJM HE XapaKTePH3yIOTHCS YacTOTOK 3pi3y, 110
BKa3ye Ha B3aeMOJi10 (PyHAaMEHTAIbHUX MO/ 13 IIIapaMy KOMITO3UTY Y HU3bKOYaCTOTHOMY Jiara3oHi.
BusiBiieHo BUCOKHMIA piBeHB Auctepcii rpymoBoi mBuakocti Mox SHo i So. 3po6iieHo BUCHOBOK, IO B
130TPONMHUX JaMiHaTax JuCIepcis MpH MOWMPEHHI XBHJIBOBOTO IPOLECY XapakTepHa IS
cuMeTpudHMX MoiA. Iloka3aHo, 110 YacTOTHA 3aJIeKHICTh T'PYNOBOI IIBHJIKOCTI XBWUJb JlemOa
JaMiHApHUX KOMITO3UTIB MOKe OyTH Mpe/ICTaBIICHA B MOJIIHOMIiaNbHIH (Gopmi.

KirouoBi cioBa: xBuist JlemOa, nucriepcis rpyloBoi HIBHOKOCTI, BEHBIJIET-aHAI3, JaMiHApHI
KOMITO3UTH.
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1 INTRODUCTION

Non-destructive testing [1, 2] and structural health monitoring [3, 4] have traditionally
been the two main wavelet transform methods for assessing the integrity and degradation of
composite systems widely used in construction. Implementation of an active diagnostic
procedure that uses ultrasonic waves to detect damage, localize and subsequently evaluate
damage involves understanding the propagation characteristics of these waves in composites.

Factors that influence the speed of wave mode propagation include the laminate laying
features, wave direction, frequency and interface conditions. The dependence of the wave
front speed on frequency leads to the need for a detailed study of the dispersion properties of
directed waves propagating along the plane of an elastic composite plate with boundaries free
from mechanical stress (Lamb waves).

As a rule, the direction of waves in laminar composites is classified by polarization
perpendicular to the composite plate (symmetric S waves, antisymmetric A waves) and
parallel to the plate (shear horizontal SH waves).

For waves propagating in multilayer composites, wave interactions depend on the
properties of the constituents, geometry, direction of propagation, frequency, and interfacial
conditions. If the wavelengths significantly exceed the dimensions of the constituent
composites (the diameters of the fibers and the distance between them), each plate can be
considered as an equivalent homogeneous orthotropic or transversally isotropic material with
an axis of symmetry parallel to the fibers.

2 ANALYSIS OF PUBLICATIONS

The study of Lamb waves (wavelet analysis) in composites [5] is most often carried out
using two theoretical approaches, namely, exact solutions using three-dimensional elasticity
theory and approximate solutions using plate theory.

Saito and Okabe [6] investigated the dispersion relation of Lamb waves propagating in a
cross-ply CFRP laminate. Using a formalism of the multi-layer Lamb wave model, they
compared a homogeneous single-layer model and multi-layer models.

Liu and Huang [7] examined the effect of inclusion shapes, inclusion contents, inclusion
elastic constants, and plate thickness on the dispersion relations and modes of wave
propagation in inclusion-reinforced composite plates. They determined the dispersion
relations and the modal patterns of Lamb waves using the dynamic stiffness matrix method.

Orta et al. [8] introduced the new computational framework which allows to estimate the
dispersion curves for the first nine symmetric and nine anti-symmetric Lamb modes.
Analytically calculated dispersion curves using 5-SDT for different propagation directions
and polar plots for selected frequency of different materials are compared with the results
from both the semi analytical finite element method, and lower order shear deformation
theories.

Ma et al. [9] constructed dispersion relations using the formulas of reverberation rays in a
three-dimensional Cartesian coordinate, and numerically solved the transcendental equations
using an improved mode tracking method.

Peddeti and Santhanam [10] formulated a semi-analytical finite element method (for the
acoustoelastic problem of guided waves in weakly nonlinear elastic plates). It was shown that
the formulation of this method provides phase velocity dispersion curve results identical to
the results obtained for the problem of a plate under uniaxial and uniform tensile stress.

The character of the elastic waves causes that damage detection based on the analysis of
the dynamic response of an interrogated structure becomes rather difficult [11, 12].
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However, in a relatively small number of studies, dispersions of not phase, but group
velocities of Lamb waves are considered [13-17].

So, the knowledge of moduli and group velocity dispersion enables the optimal location
of the sensors in order to detect the potential damage.

The purpose of this work is to study the group velocity dispersion of symmetric and
antisymmetric Lamb waves in laminar composites with different stacking structures.

3 PURPOSE AND OBJECTIVES OF THE STUDY

In general, transition waves propagating in anisotropic composites cause disturbances for
all three displacement components. It is necessary to separately analyze the propagation of
waves along the symmetry axes, namely, to take into account the splitting of S-, A- and SH-
waves. The ultimate goal of the study is to compare the polynomial and exponential forms of
the dispersion law for laminar composites. A Cartesian coordinate system is used in which the
z-axis is perpendicular to the mid-plane of the composite laminate. The distance between the
two outer surfaces of the laminate is z= +d /2. Let us consider the case of propagation of a
packet of Lamb waves in the direction of 6. Each layer of the composite laminate is
considered as a monoclinic material with a plane of symmetry (x—y). The relationship

between mechanical stress and deformation takes the following matrix form
A =G;Dy, (1)

where {(a =a;) ~\(d, =5 )li.ke(x v, 2)}\{(& =7) ~\(d, =7 )li.k e(yz, Xz, xy)}
are the matrices A and D coefficients; G is the stiffness matrix.
The equations of motion in the absence of body forces are governed by

Oux T Ty T T, =P (2)
Ty 0y +Tp, = P2 3
Tux T Ty T0,, =P 4

where p isthe mass density of the lamina, and dot denotes time derivative; «,,c, and
a, are the displacements in the X,y and z— directions.
Boundary conditions on the top and bottom surfaces of the laminate

o,=1,,=1,,=0,atz=45/2 (5)

Lamb waves can be considered as standing waves in the z-direction of the plate. The
result of this assumption is a model of wave motion in the form of a superposition of plane
harmonic waves. Each plane harmonic wave moving in the k direction is represented by
displacement coefficients

(o, 05} ={B.(2).8,(2). B, (2)}exp i (kx+k,y) et} (6)

where k =[kx,ky]T and its magnitude k = k| =wlv,=2x/ A is the wave number; o is
the angular frequency; A is the wavelength and v, is the phase velocity. In the x-y plane,
k = k[cos n,sin 77]T , Where 7 is the direction of wave propagation.

In an off-axis laminar composite plate, solutions to the equation of motion can be simply
separated into symmetric and antisymmetric waves. This consideration allows us to write
down a fairly simple analytical representation
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B, = E,cosz, B, = Fcosz, B, = G,cosz

: : o 7
B, =E.sinz, B, = Fsinz, B, , =G,sinz (7)
where u is the variable to be determined by Lamb wave kinematics; subscripts “s” and
“a” represent symmetric and antisymmetric modes, respectively.
Substituting equation (7) into the equations of symmetrical wave motion, leads to an
expression in matrix form

Ay - pa)z Ay A E,
/_\12 Azz__ pa)z Ay K =0, (8)
A Ay Ay — pwz G,

where the overbar denotes complex conjugation.
The relationship between the elements of matrix (A — pw?®l) (8), stiffness matrix, and 3x3

identity matrix 1 have a polynomial form.
Nontrivial solutions Es, Fs and Gs in equation (8) lead to the following sixth-order
polynomial in u

e’ +e,u’ +e,=0, 9

where e, (i =1,2,3) are real-valued coefficients of Gj;, k, and pew?.

For each fixed u (k = 1,2,3), solutions Es, Fs and Gs are interrelated according to the
equations

(An - po’ ) Ags = Ay

B —
Ay (Azz —po’ ) —ApAy

S

E, =RE (10)

S S

G - AL _(An _pa’z)(Azz _Pa)z) E
s 2
Ay (Azz - po )_A12A23

. =iSE,. (11)

Antisymmetric modes make it possible to obtain similar relations: F, =RE, and
G,= — iSE,.
Equations (5), (7), (10), and (11) can be rearranged as

3
=Z[H1jsin(yjz+go), szcos(yjz+go),

(Gziryz’axz ) 12512

H3J-COS(,L1J-Z+¢))]AJ- =0, (12)

where phases @ =0 and ¢ =7/2 correspond to symmetrical and asymmetrical Lamb
wave modes, respectively, and

Hy; =Gk, + Gk Ry +Gypp;S; + Gy (ky + kXRi) (13)
H, =G, (4R, +k,S; )+ Gy (1, +k,S)) (14)
Hyj = Gus (4R; +K, S )+ G (11 +K,S; ). (13)
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The simplified Lamb wave propagation model assumes ideal coupling between layers of
the laminated composite in the z-direction. Accounting for laminate heterogeneity requires an
exponential change in the displacement components

B, =Eexp(iuz), B, = Fexp(iuz), B, =—Gexp(iuz). (16)
For each wi, values F and G can be expressed in terms of E as F =RE, and

G, =-SE, (i=16). In addition, Rj:1 = Rjand Sj:1 = - S;.
Finally, the equation of motion for each layer is

Y AE exp{i [(kxx+ kyy)—a)t]}i:Ej {LR;,S; exp(inz). (17)

The stress components oz, 7, and 7, between adjacent composite layers can be
expressed as

(6,177} = ikexp{i[(kxx+kyy)—wt]}iEj {H,, Hyj Hyy fexp(ingz) (18)

By imposing displacement and stress continuity conditions along the interfaces between
laminate layers. The solution of equation (18) leads to the dispersion relations of Lamb waves
in symmetrical laminates.

Implicit functional forms J (@, k) = 0 and J (w, k,7) = 0 allow us to represent the
dispersion relation between @ and k. These relations can be solved explicitly in the form of
real roots of @ =Q(k), or @ =Q(k,7).

The phase velocity of plane waves is defined as

o)k w
”p—(ﬂm—(vjk' 9

The group velocity, determined from the envelopes of the wave packet, can be calculated
using the implicit function G

oJ 1 ok
=— 20
% "5 0w (20)
Cartesian projections of group velocity are determined by grad 2
Uy cosn —sin oQ [ ok
’ { o UH } (21)
Uy, sinp cosn ||0Q/kon

The current point on the wave-front curve represents the distance traveled by the elastic
disturbance per unit time. Thus, the wave-front curve determines the location of the wave-
front per unit time from the disturbance emitted by the point source at the initial time. Thus,
waveforms are of great importance for detecting mechanical damage in laminar composites.

The relationship between the slowness curve and the direction of the group velocity
allows wave curves to be calculated. The dispersion law of each Lamb wave mode can be
expressed as an explicit function of €2 (k,7). The slowness curve is geometrically a level
surface of Q (k,n) at 220(k,77) = wo. Differentiating both sides of the equation with respect to

nyields
Mk 20_, 2
ok on On
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The group velocity dispersion for a given direction of wave propagation 7: can be
obtained by using two dispersion relations @ = 2 (k,7) , the directions of which differ slightly
m £ An /2. Then derivative term 0£2 /07 can be approximated by finite central difference
Q(k)ﬂﬁAﬂ/z _Q(k)

m—An
= —= 23
A (23)

o0
on

nm=m
The dispersion contribution 642/0k can be calculated using the calculation formula

Q
ok

W, —,

Ko (7)—k (1)

4 RESEARCH RESULTS

The laminated composite material used in this study was characterized by the following
properties: tensile stiffness E; = 1.276-10 Pa, E; = E3 = 1.13-10%° Pa; shear moduli G, =
5.97-10° Pa; Gi3 = 5.97-10° Pa; G23 = 5.97-10° Pa; Poisson's ratios v12 = 0.3, v13=0.3; v23 =
0.34; density p = 1.578-10% kg/m3; stacking sequences [+45s/-456]s (specimen A;), [+45/-
45/0/90];s (specimen Ay).

Spectral dependences of the dimensionless group velocity v'g = vg/vT for fixed values of
the dimensionless frequency f ' = wdlvT along the @ direction of laminates A1 and Az are given
in Tables 1 - 4. The value vt defined as (Gi12/p)°° is the transverse wave velocity in lamina
(associated with shear in plane).

Table 1

Spectral profile of Lamb waves for laminate A:
(symmetric modes)

!

2z vy 2 vy

So SHo S1 Sz SH>
05 | 3.325 | 2.384 | 5.0 | 0.962 | 0.001 | 0.001
10 | 3.218 | 2.321| 5.6 | 0.921| 0.002 | 0.003
15 | 3.085 | 2305 | 6.2 | 0.824| 1512 | 1.264
20 | 2798 | 2.208 | 6.8 | 0.841 | 2.358 | 1.587
25 | 2237 | 2126 | 7.4 | 0.935| 2.857 | 1.698
30 | 1.749 | 2111 | 8.0 | 1.045| 3.042 | 1.762
40 | 0387 | 1564 | 8.6 | 1.018 | 3.110 | 1.852
50 | 1.400 | 0.631 | 9.2 | 1.089 | 3.043 | 1.964
6.0 | 1.310 | 0.735| 9.5 | 1.088 | 3.002 | 1.993
70 | 1.182 | 0.786 | 10.1 | 1.070 | 2.804 | 2.057
8.0 | 1.087 | 0.811 | 10.8 | 0.993 | 2.220 | 2.125
9.0 | 1.010 | 0.832|11.4 | 0.968| 0.995 | 2.173
10.0 | 1.000 | 0.846 | 12.0 | 0.970 | 0.484 | 2.186
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Table 2

Spectral profile of Lamb waves for laminate A:

(asymmetrical modes)

O L T R vlg
Ao A1 Az As SHs
05 |0.651|25 | 1.882 | 85 | 0593 | 0.003 | 0.001
1.0 0847 |29 | 2456 | 8.6 | 0.612 | 0.227 | 0.001
15 10.851 |33 | 2,614 | 87 |0.715|0.418 | 0.002
20 [0.856 |37 | 2913 | 88 | 0.783 | 0.623 | 0.003
25 1062341 | 3.111 | 89 |0.805|0.701 | 0.003
30 | 067845 | 3.152 | 9.0 | 0.890 | 0.862 | 0.004
35 (069949 | 3112 | 9.1 [0.904 | 0.871 | 0.125
40 1073453 | 3.087 | 9.2 |0.928 | 0.885| 0.364
45 10790 |57 | 2924 | 9.3 | 0.957|0.889 | 0.541
50 /080261 | 2631 | 94 |0.981|0.896 | 0.683
55 1081365 | 2185 | 95 | 1.061 | 0.900 | 0.754
6.0 [0.845|69 | 1598 | 9.6 |1.082 | 0.882 | 0.974
65 [ 0887 |73 | 1.273 | 9.7 |1.106]|0.874 | 1.116
70 10902 |77 | 0832 | 9.8 | 1.125|0.856 | 1.277
75 1088381 | 0401 | 99 |1.143|0.830 | 1.452
80 [0.879 |85 | 0.368 | 10.0 | 1.162 | 0.795 | 1.5833
85 (087289 | 0420 | 10.1 | 1.175] 0.791 | 1.986
90 |0.870]9.3 | 0468 | 10.2 | 1.188 | 0.784 | 2.178
95 |0.868]9.7 | 0502 | 10.3 | 1.205 | 0.781 | 2.376
10.0 | 0.867 | 10.2 | 0.539 | 10.7 | 1.203 | 0.791 | 2.715
Table 3
Spectral profile of Lamb waves for laminate A
(symmetric modes)
f! U'g f! UIQ
So SHo St Sz SH>
05 | 3.042 | 1.803| 5.0 | 1527 | 0.041 | 0.005
1.0 | 3.005 | 1.752 | 5.6 | 1.832 | 1.184 | 0.679
15 | 2910 | 1.685| 6.2 | 1.709 | 0.913 | 1.563
20 | 2805 | 1599 | 6.8 | 1.564 | 1.286 | 2.037
25 | 2609 |1485| 74 [1301]1.701 | 2311
30 | 2308 |1.361| 8.0 |1.105]| 1.723 | 2.325
40 | 0.726 | 1.100 | 8.6 | 0.984 | 1.600 | 2.297
50 | 0948 | 0556 | 9.2 |0.826 | 1.417 | 2.137
6.0 | 0911 | 0.674| 9.5 | 0.794 | 1.284 | 2.000
7.0 | 0926 |0.725|10.1 | 0.731 | 1.142 | 1.806
8.0 | 0937 |0.792 | 10.8 | 0.701 | 0.984 | 1.658
9.0 | 0.945 | 0.805| 11.4 | 0.702 | 0.900 | 1.052
10.0 | 0.954 | 0.815| 12.0 | 0.704 | 0.898 | 0.854
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Table 4

Spectral profile of Lamb waves for laminate A
(asymmetrical modes)

fr U’g fr U'g f! UIQ

Ao A1 A2 Az SH3
05 (0898 |25 1.218 | 85 |0.924 | 0.003 | 0.002
10 ]0.898| 2.9 1530 | 8.6 | 0.895| 0.008 | 0.164
15 0897 | 3.3 1.809 | 8.7 | 0.861 | 0.012 | 0.308
20 |0.897 | 3.7 2184 | 8.8 | 0.837| 0.016 | 0.407
25 10897 4.1 2.394 | 8.9 | 0.820| 0.021 | 0.593
3.0 {0896 |45 2426 | 9.0 | 0.815| 0.028 | 0.699
35 [0.895|49 2385 | 9.1 |0.793| 0.089 | 0.715
40 ]10.894 |53 2.288 | 9.2 | 0.765| 0.187 | 0.805
45 10894 |57 2235 | 93 |0.737 | 0.352 | 0.881
50 |0.893|6.1 1980 | 94 | 0.718 | 0.605 | 0.973
55 [0.893| 6.5 1684 | 95 | 0.694 | 0.831| 1.113
6.0 | 0.893|6.9 1295 | 96 | 0.711 | 0927 | 1.188
6.5 0892 7.3 1.064 | 9.7 | 0.725| 1.164 | 1.246
70 0892 | 7.7 0.845 | 9.8 | 0.740 | 1.235 | 1.358
75 |0.891 8.1 0555 | 9.9 | 0.756 | 1.380 | 1.455
8.0 {0891 |85 | 0485 | 100 | 0.768 | 1.486 | 1.557
85 |0.891 8.9 0.316 | 10.1 | 0.773 | 1.604 | 1.618
9.0 |0.890 9.3 0.484 | 10.2 | 0.791 | 1.728 | 1.735
95 |0.890| 9.7 0.587 | 10.3 | 0.804 | 1.872 | 1.882
10.0 | 0.890 | 10.2 | 0.615 | 10.7 | 0.809 | 1.914 | 1.912

5 DISCUSSION OF RESEARCH RESULTS

Five symmetric (Tables 1 and 3) and five asymmetric (Tables 2 and 4) modes illustrate
the dispersion of Lamb waves curves in the layered composites A; and A,. The analysis
showed that only the fundamental modes (Ao, So and SHo) are not characterized by a cutoff
frequency. This fact indicates the interactionof fundamental modes with composite layers in
the low-frequency range. The frequency ' = xd/vt can be considered as the boundary
frequency for SHo and Sp modes, which have low dispersion in the range o < o'.

The calculation results show that the Ao mode provides higher resolution than the So and
SHo modes. One of the reasons can be pointed to the fact that the Ao mode wavelength is
always shorter than that of the So mode, especially in the low frequency range. Lamb wave
propagation in a relatively thick symmetrical corner laminate (+45¢/-456)s for the high
frequency range has a rather complex behaviour.

The SHo and So modes are characterized by a fairly high level of group velocity
dispersion. Analysis of the numerical data allows us to conclude that there is a higher level of
symmetric mode dispersion for the quasi-isotropic laminate A, (+45/-45/0/90)s. On the other
hand, the dispersion of the antisymmetric wave mode Ao in both laminates is weaker for
w'# 1.

The results of calculations of group velocity dispersion surfaces for wave modes in the
laminar composites used make it possible to represent the polynomial dependence

L'g= Vg (f") in matrix form

v =0, () k=1...5ie(S

g,

S SHQA,SHQ%)

0,A'v0,A
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0,076 —0,631 1467 -1514 3,798
0,009 0,182 -1,096 1813 2,264
“~|_0,004 0,092 -0,0637 1231 1,759
0,002 0,047 -0,307 0,0469 1,584

6 CONCLUSIONS

Exact solutions of Lamb waves in a plate can be established on the basis of three-
dimensional elasticity theory and subsequently extended to a laminate with an arbitrary
structure. For symmetrical laminates, a reliable wave mode separation method is used. A
numerical method for obtaining group velocity dispersions and wave curves is proposed. The
dispersions and characteristic wave curves of Lamb waves are analyzed for two types of
laminates. The proposed methods effectively model the dispersive and anisotropic behavior of
Lamb waves in laminates. It was found that the Ao mode has the best characteristics for
structural monitoring of laminar composites.

The speed of propagation of multi-frequency components within the wave packet
remains almost unchanged, which causes only slight deformation of the wave packet shape
when moving in the composite layers. In addition, the significantly low attenuation of Ag
mode and high sensitivity to the growth of delamination in the sample indicate the practical
value of using symmetric modes as a diagnostic tool.
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