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Abstract. This paper studies the effect of frequency-dependent damping of composite materials 

on the kinematic characteristics of rotating laminated composite cylindrical shells. Based on the 
Haar wavelet method, the dynamic equations and corresponding boundary conditions were 
discredited, and a standard equation for eigenvalues was obtained. The dispersion characteristics of 
the attenuation parameters of composite materials were determined using the complex moduli 
method. The eigenvalue equation is solved by iterative calculation to obtain the modal frequency and 
damping characteristics of rotating composite cylindrical shells. The influence of frequency, rotation 
speed, lamination and geometric parameters on the damping properties of a laminated composite 
shell is determined for four typical boundary conditions. The calculation results indicate the need to 
take into account the frequency dependence of attenuation of composite materials, especially when 
analyzing low-order modes. Numerical experiments show the presence of direct and reverse 
attenuation, corresponding to the modes of direct traveling wave and reverse traveling wave, and the 
motion of the direct wave is more stable. It was found that certain characteristics of rotation and self-
damping of the material can lead to loss of rotational stability of the composite cylindrical shell. 

Key words: composite shells, Haar wavelet method, free vibrations, boundary condition. 
Introduction. 

The widespread use of multilayer composite structures in various applications is 

due to their specific properties, namely high stiffness-to-weight and strength-to-weight 

ratios [1, 2]. On the other hand, some undesirable properties (typical of multilayer 

composite structures), i.e. transverse shear deformability and transverse anisotropy, 

must be accurately described in order to correctly predict their structural response. A 

large number of studies have been devoted to vibration analysis of cylindrical shells, 

aimed at providing an understanding of the dynamic behavior, optimal design, and 

avoidance of unpleasant, inefficient, and structurally damaging resonance of complex 

composite cylindrical shells [3]. 

Due to the mechanical complexity of shell structures, various shell theories have 

been proposed and extensive research has been conducted based on these theories. It 

was of great interest and technical importance for researchers to develop an accurate 

and efficient method that could be used to determine the vibration characteristics 
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(natural frequencies, modes, etc.) of composite layered cylindrical shells.  

One of the promising approaches is the use of the Haar wavelet to analyze free 

vibrations of composite laminated cylindrical shells [4]. Current wavelet-based 

approaches include wavelet collocation, wavelet finite elements, etc. In most wavelet 

methods, calculating the coupling coefficients of wavelets is a complex task [5, 6]. It 

is obvious that attempts to simplify solutions based on wavelet methods are required. 

Recently, sufficient interest has been paid to the Haar wavelet functions, which 

are the mathematically simplest wavelets. 

In this paper, a numerical discretization procedure based on Haar wavelets is 

applied to the analysis of vibrations of composite layered cylindrical shells subject to 

various boundary conditions. 

It is important to study the dynamic characteristics of composite shell considering 

the internal damping of the material for the optimal design and improvement of the 

service life of the structure. Damping is an important parameter of fiber-reinforced 

composite materials, and accurate prediction of the damping characteristics of 

composite structures is the basis for identifying the behavior of the dynamic response 

under various loads [7, 8]. 

As frequently used methods, the complex modulus method and the strain energy 

method can be used to predict the damping characteristics of composite structures. This 

method involves the procedure of expressing the elastic modulus of the material in 

complex form, where the damping loss factor is the ratio of the imaginary part to the 

real part of the complex modulus. 

The mechanical properties of typical viscoelastic materials, which include 

composite materials, are obviously frequency dependent. The traditional complex 

constant modulus model cannot adequately describe the mechanical properties of 

materials, which will lead to overestimation of predicted attenuation values [9, 10]. 

It is necessary to take into account that cylindrical multilayer composite shells 

sometimes operate in a rotational state, which is usually accompanied by a process of 

increasing speed. Since the viscoelasticity of composite materials will affect the 

stability of the rotating cylindrical shell during the process of increasing and decreasing 
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speed, it is necessary to study the damping characteristics for this case. 

The present study plan uses the shell theory and Hamilton's principle to construct 

the equation of a rotating cylindrical shell. Then, the modal frequency and damping 

behavior of the rotating composite cylindrical shell are determined using the Haar 

wavelet method. Finally, the influence of various aspects including the rotation speed, 

circumferential wave number, frequency, lamination patterns and geometric 

parameters on the damping properties of the composite cylindrical shells under 

different boundary conditions is investigated. 

Equations of motion and boundary conditions. 

Let us consider the movement of a cylindrical shell consisting of a multilayer 

composite. The motion of the structure can be reduced to rotation around its axis with 

a constant angular velocity Ω, length L and thickness h. The radius of the middle 

surface of the cylindrical shell is R. An orthogonal curvilinear coordinate system (x, θ, 

z) is fixed on the middle surface of the cylindrical shell, where u, v and w represent the 

displacement in the axial x, circumferential θ and radial z directions, respectively. The 

number of laminated layers of the composite cylindrical shell is N, and the coordinates 

of the upper and lower surfaces of layer k are represented by zk and zk-1, respectively.   

According to the linear theory of thin shells, the strain in any joint depends on the 

shape strain εx
0, εθ

0, εxθ
0 and the curvature components κx

0, κθ
0, κxθ

0 between the planes, 

the relationship between the strain and the stability displacement, as   
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The mechanical stress at any point of the k-th layer of the shell can be described 

by the following relationship 

           ( ) [ ] ( )θθθθ εεεσσσ xxikxx QF ,,,, 2 Ψ=Ψ ,                              (4) 
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where F2 is numerically equal to the reduced off-axis stiffness matrix, which satisfies 

the following transformation relation with the reduced on-axis stiffness matrix [Qij] 
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in this case the transformation matrix T can be expressed as 
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In equation (4), the numerical value β can be equated to the angle between the 

fiber direction and the coordinate direction. The reduced stiffness matrix is 

characterized by elements [Qij], which correspond to the following relations 
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The internal force N = {Nx, Nθ, Nxθ}T and internal moment M ={Mx, Mθ, Mxθ}T of 

the cylindrical shell are defined as 
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As a result, the matrix relationship between the internal forces and mechanical 

stresses in a cylindrical laminated shell, taking into account the previous equations, has 

the following form 
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in which ε0 = {εx
0, εx

0, εx
0}T, κ0 = {κx

0, κx
0, κx

0}T, and A, B and D respectively represent 

the matrices of tensile stiffness, adhesion stiffness and bending stiffness. The elements 

of the specified quantities are defined as follows 
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 The strain energy of the composite cylindrical shell can be expressed as 
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In this paper, several types of boundary conditions are considered, namely, fixed 

at both ends (A), fixed at one end and free at the other end (B), fixed at one end and 

simply supported at the other end (C), and simply supported at both ends (D). The 

constraint equations corresponding to these four boundary conditions are given by 

boundary condition A 
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boundary condition C 

0=u ,   0=v ,   0=w ,   0=
∂
∂

x
w ,   0=x ;                           (17) 

0=u ,   0=v , 0=xN ,   0=xM ,   Lx = ;                         (18) 

boundary condition D 

0=u ,   0=v , 0=xN ,   0=xM ,   0=x ;                         (19) 

According to the method of separation of variables and the Haar wavelet discrete 

space technique, the solution to the displacement of a traveling wave with a 

circumferential wave number n can be represented as follows: 
 

( ) ( ) ( )tnxUtxu ωθθ += cos,, ,                                 (20) 

( ) ( ) ( )tnxVtx ωθθν += sin,, ,                                 (21) 

( ) ( ) ( )tnxWtxw ωθθ += cos,, ,                                 (22) 
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in which U(x), V(x) and W(x) represent, respectively, the forms of axial vibrations in 

three directions of deformation, the forms of which are associated with the boundary 

conditions. 

The highest order derivatives of the displacements U, V, and W in the above 

equation are expressed by the Haar wavelet series 
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where ai, bi, and ci denote the unknown wavelet coefficients, and hi(ξ) is Haar wavelet 

function. M is the quality defined by M = 2J, in which J is the maximal level of 

resolution. 

As a result, the dynamic equation can be transformed into algebraic equations for 

the eigenvalues in the following form 

02 =++  XKGM ][ ωω ,                                           (24) 

where M and G are the mass matrix and the gyroscopic matrix, respectively, and K is 

the stiffness matrix due to elastic deformation and rotation. 

The equation of eigenvalues can be reduced to the canonical form 
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The loss coefficient is proportional to the ratio of the imaginary and real parts of 

the corresponding frequency 

( )
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2 Im

= .                                                   (26) 

Forward and backward attenuation correspond to the forward and backward 

motion of the traveling wave. The relationship between their values and the stability of 

the system is as follows: for positive values of the loss factor η > 0, the system is stable; 

when η < 0, the system is unstable; when η = 0, the system is in a critical state between 

stability and instability. This model considers the generalized case of composite 

materials that depend on frequency. Accordingly, it makes sense to use an iterative 

algorithm to determine the m-th order natural frequency (m is also known as the axial 

half-wave number) and the loss factor for a certain circumferential wave number n. 



SWorldJournal                                                                                                                        Issue 27 / Part 1 

 ISSN 2663-5712                                                                                                                                                                                    www.sworldjournal.com 179 

Table 1 illustrates the variation of forward ωf and backward ωb frequencies of 

cross-reinforced [00/900/00] rotating composite cylindrical shells with resolution 

parameter J under different boundary conditions A, B, C and D (J is the resolution 

number, m = 1, n = 6, Ω = 0.7 rev/s). 

 

Table 1 – Variation of frequency parameters   

J 
ωf ωb 

A B C B C D 

3 0.3527 0.3108 0.2671 0.3128 0.2689 0.2130 

4 0.3515 0.3106 0.2604 0.3127 0.2634 0.2147 

5 0.3522 0.3101 0.2638 0.3154 0.2677 0.2114 

6 0.3541 0.3107 0.2684 0.3162 0.2691 0.2128 

7 0.3578 0.3105 0.2616 0.3191 0.2652 0.2175 

 

Figures 1 and 2 show the variation of modal attenuation and natural frequencies 

of a rotating composite cylindrical shell depending on the rotation speed for a fixed 

number of wave numbers and axial waves. These figures represent the forward and 

backward traveling wave modes, respectively. The presented results indicate that the 

effect of rotation speed on modal attenuation is not the same for different numbers of 

axial waves. The modal attenuation of the forward traveling wave initially increases 

and then decreases with increasing rotation speed, while the modal attenuation of the 

backward traveling wave always decreases with increasing rotation speed. 

The change in damping is opposite to the change in natural frequency with 

increasing rotation speed, that is, the damping decreases with increasing natural 

frequency. It can be concluded that the damping property of the composite cylindrical 

shell will decrease with increasing rigidity.  
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Figure 1 - Variation of modal damping with rotating speed 
 

 

Figure 2 - Variation of frequency parameter with rotating speed 
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Figure 3 - Variation of modal damping with length-to-radius ratio 

 

In addition, the damping value of the forward traveling wave of the rotating shell 

is always greater than the value of the backward traveling wave, indicating greater 

stability of the forward wave motion. 

Figure 3 illustrates the curves of the modal damping with the length-to-radius ratio 

L/R for different thickness-to-radius ratios h/R, where the boundary condition A is 

taken as an example. The modal damping of the forward and backward traveling waves 

decreases with the increase of h/R and sometimes decreases to negative values at 

certain parameters. In this case, the rotating shell will become unstable. It can be seen 

that increasing h/R will not only obviously improve the damping characteristics, but 

also transform the unstable state of the system into a stable state. In addition, the modal 

damping curve drops sharply near the instability. This phenomenon may be due to the 

fact that the system is very sensitive to the change of parameters when it is close to the 

critical state. 

Summary and conclusions. 

The damping properties of rotating laminated composite cylindrical shells are 

investigated under four different boundary conditions with frequency-dependent 

damping of composite materials. The results of thin shell theory and the Haar wavelet 
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discretization method allow obtaining the eigenvalue equation for the analysis of free 

vibrations.    

The damping properties of rotating laminated composite cylindrical shells are 

investigated under four different boundary conditions with frequency-dependent 

damping of composite materials. The thin shell and Haar wavelet discretization 

techniques allow obtaining the eigenvalue equation for the analysis of free vibrations 

of the composite shell. 

The numerical values of the attenuation coefficient of rotating composite 

cylindrical shells continuously increase with increasing frequency. The effect of 

rotation speed on modal attenuation is not the same for different circumferential wave 

numbers. The modal attenuation of the forward traveling wave of a rotating shell is 

greater than that of the backward wave, indicating that the forward wave motion is 

more stable. Both an increase and a decrease in modal attenuation with increasing layer 

angle were found. Attenuation corresponding to a smaller number of circumferential 

waves is more sensitive to changes in lamination patterns. 
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