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Abstract. Vibration of laminated composite cylindrical shells can lead to undesirable 
resonance effects and even failure of mechanical system components. The aim of this study is to 
develop a discrete wavelet analysis of free vibrations of cylindrical shells under various boundary 
conditions. The study uses the basic concepts of the theory of mechanical shells. The relationship 
between mechanical stresses and shears is described by a system of partial differential equations. 
The partial differential equations are first transformed into a system of ordinal differential 
equations by separating the variables. The discrediting procedure is applied to the governing 
equations. Cylindrical shells were modeled from an arbitrary number of orthotropic plates, which 
were rigidly fastened together. The boundary conditions of the basic types are formulated using 
discrete wavelet analysis, which ultimately allows to describe a standard linear eigenvalue 
problem. This study extends the application of discrete wavelet analysis to the description of free 
vibrations of cylindrical shells. It modifies the traditional model by taking into account the 
influence of boundary conditions, lamination schemes, and elastic moduli on the natural 
frequencies of vibrations. The characteristics of free vibration modes of cylindrical shells predicted 
by this model can be used for laminated composite samples located on a non-uniform elastic 
foundation. In this case, data on the localized increase in the stiffness of the composite material can 
be used to calculate the intervals of vibration stability. A numerical model based on the discrete 
wavelet transform was applied to the analysis of free vibrations of composite laminated cylindrical 
shells under different boundary conditions. Calculations using this model were characterized by 
fast convergence and high accuracy. The effects of such essential factors as boundary conditions, 
the structure of laminated composites, and their effective stiffness moduli on the natural frequencies 
of free vibrations of the shells were analyzed.  

Key words: laminated composites, discrete wavelet analysis, cylindrical shells, free 
vibrations, modulus of rigidity. 

Introduction. 
Numerical analysis of the characteristics of beams, plates and shells of 

revolution in a static or dynamic state, resting on an elastic foundation, is usually 
based on approximate models of the elastic foundation [1]. The reaction of the 
foundation is described by differential operators acting on the deflections of elastic 
bodies. A large number of studies are devoted to the analysis of the influence of an 
elastic foundation on the linear or nonlinear vibrations of circular cylindrical shells 
[2]. In particular, natural frequencies of oscillations were obtained for simply 
supported cylindrical shells [3, 4]. Numerical values of characteristic coefficients of 
natural oscillations vary in a wide range for frequencies corresponding to radial, 
longitudinal and torsional modes [5, 6].  

The three-dimensional case of free vibrations of thick-walled cylindrical shells 
immersed in a two-parameter elastic medium can also be characterized by a limited 
number of modes with different boundary conditions and with different combinations 
of characteristic coefficients. It should be noted that such properties of the elastic 
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foundation as inertia also affect the natural vibrations of three-layer shells. In 
particular, the presence of an elastic medium significantly increases the frequencies 
of radial vibrations of three-layer shells with a thick filler [7, 8]. The numerical 
values of natural frequencies, as well as the form factors of vibrations, nonlinearly 
depend on the variable thickness of cylindrical isotropic and orthotropic shells. 
Experiments indicate an increase in the influence of an elastic foundation with an 
increase in the ratio of the maximum thickness to the minimum. 

Local gradients of mechanical stresses on the surfaces of the functionally graded 
shell of reinforced composites, split into several layers and immersed in an elastic 
foundation of the Winkler type, lead to a decrease in the frequencies of free 
oscillations. Analysis of the spectrum of nonlinear coefficients of the elastic 
foundation allows localizing the regions of increasing oscillation frequencies on the 
surface of cylindrical shells of laminar composites [9]. 

In the case of uniaxial tension, the effect of discretization of the graded layer 
into a number of homogeneous sublayers occurs, each of which is characterized by its 
own displacement coefficient. The increase in the rigidity of the elastic medium is the 
reason that the influence of geometric nonlinearity, material heterogeneity, the 
number of winding layers and the magnitude of the reinforcement angles on the 
oscillation frequencies is reduced. 

Most of these methods were first applied to isotropic cylindrical shells and then 
extended to study the dynamic behavior of anisotropic and layered composite shells. 
However, despite the various methods of analytical and computational analysis of 
cylindrical shell structures, finding reliable and efficient approaches for the 
considered structures with different boundary conditions still remains a big problem. 

Therefore, the aim of this paper is to introduce the Haar wavelet approach for 
the analysis of free vibrations of composite layered cylindrical shells. The free 
oscillation model used the Haar wavelet, which consists of pairs of piecewise 
constant functions and one of the simplest orthonormal wavelets with a compact 
support. A limited set of orthonormal wavelets generated from the same parent 
wavelet form a basis. The elements of the wavelet basis are orthonormal to each other 
and normalized to unit length. This property allows each wavelet coefficient to be 
calculated independently of other wavelets.  

Materials and results 
The Haar wavelet family hi(ξ) is defined for ξ ∈ [0, 1]. The matrix H of Haar 

characteristic coefficients based on l is defined as H(i, l) = hi(ξi). The corresponding 
matrix P(α)(i, l) of integral transformations has dimensions of 2M × 2M. Let us 
consider a model of a composite layered cylindrical shell. In this model, the length, 
average radius and thickness of the shell are designated as L, R and h, respectively. 
The main surface of the shell can be considered as the median surface on which the 
orthogonal coordinate system (x, θ and z) is fixed. The x, θ and z axes are taken in the 
axial, circumferential and radial directions, respectively. The displacements of the 
shell in the x, θ  and z directions are designated as u, υ and w.  

The deformation at the mean surface (ε0) and the change in curvature (χ0) during 
deformation with transposition operator T are functions of the displacement  
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The governing equations for vibrations can be expressed as in the following 
form of stiffness matrixes A, B and differential operators Lij = Lij(A, B, x, θ)  
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This model considers boundary conditions of the following types: ВС1 (clamped 
edge), ВС2 (simply supported edge) and ВС3 (free edge). They are defined as 
follows: 
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The Haar wavelet discretization method was used to discretize the derivatives in 
the control equations in terms of displacements and boundary conditions [10]. A 
necessary condition for solving the finite field problem is the transformation of the 
displacement field into a unit interval. Transformation of a series of wavelets leads to 
a discrete system of algebraic equations with respect to one normalized variable ξ. 
The higher-order derivatives of these solutions with respect to the axial coordinate 
can be expanded in terms of completed Haar wavelets [11]. Thus the following non-
dimensional variable is introduced 

Lx /=ξ .                                                       (10) 
Using this parameter, one can obtain a discrete system of algebraic equations 

with respect to one normalized variable n. The higher-order derivatives of these 
solutions with respect to the axial coordinate can be expanded using a series of 
complete Haar wavelets. Therefore, it is assumed that the solutions can be expressed 
as (n = 2M) 

( ) ( )∑
=

=
n

i
iiha

d
Ud

1
2

2
ξ

ξ
ξ                                           (11) 

( ) ( )∑
=

=
n

i
iihb

d
Vd

1
2

2
ξ

ξ
ξ                                           (12) 



 

 Modern engineering and innovative technologies                                                                    Issue 36 / Part 3 

ISSN 2567-5273                                                                                                                                    www.moderntechno.de 12 

( ) ( )∑
=

=
n

i
iihc

d
Wd

1
2

2
ξ

ξ
ξ ,                                          (13) 

where ai, bi, and ci are the unknown wavelet coefficients and hi (ξ) is the Haar 
wavelet series. 

In this case, the displacement amplitudes can be represented in the following 
form 
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where in the case i > 1 and ξ(2) < ξ < ξ(3) we get 
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For solving boundary value problems, the values Pn,i (0) and Pn,i (1) should be 
calculated in order to satisfy the boundary conditions. 

The evaluation of the system of equations at the collocation points can be 
written in matrix form as 
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In the matrix equation, the appearance of eight integration constants allows 
adding eight additional equations. Using boundary conditions, additional equations 
can be obtained. The current wavelet transform technique offers an exact solution for 
cylindrical shells with various boundary conditions. It should be noted that all types 
of classical boundary conditions can be easily implemented for the type of laminar 
composites under consideration. 

Using boundary conditions, additional equations can be obtained. The current 
method offers an exact solution for cylindrical shells with different boundary 
conditions. All classical boundary conditions can be easily calculated. The governing 
equations and the corresponding boundary condition equations were discretized using 
wavelet transforms. From the above procedures, a general relationship was obtained 
for the displacement vector X = [U, V, W], displacement matrix K, and local masses 
matrix M of laminated composites cylindrical shells 

( ) 02 =− XMK ω .                                                    (19) 
The following values of physical quantities were used in the calculation part of 

the model: R = 1.2 m; L/R = 4.5; h/R = 0.02; E2 = 12 GPa; E1/E2 = k, k ∈[2.5 – 20]; G12 = 
5.1 GPa (shear modulus); ρ = 1650 kg/m3. The following ratio was used as the 
reference frequency Ω = ωR(ρ0/E2)0.5. The base frequency was calculated for both the 
three main boundary conditions BC1, BC2 and BC3 and for the intermediate 
boundary condition BC1-BC2. 
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The calculation results showed that the frequency parameter of the shell with the 
boundary condition BC 1 is higher than ВС 2 when the circumferential wave number 
n is fixed at a constant value n = 1. The reason for this is that the boundary conditions 
have a noticeable effect on the shell's natural frequencies. However, it should be 
noted that the lowest fundamental frequency parameter occurs for the boundary 
condition BC 3 of the cylindrical shell. In other words, the fundamental frequency of 
composite cylindrical shells is not necessarily related to the lowest circumferential 
wave number. 

An additional numerical analysis was performed to investigate the effect of 
complex lamination patterns on the frequencies of laminated cylindrical shells. The 
frequency parameters were determined for cross-laminated cylindrical shells. These 
shells had a small thickness ratio (h/R = 0.02) and a moderate length (L/R = 4). In 
addition, for simplicity, it was assumed that all layers had the same thickness. 

Thus, it can be concluded that the developed method accurately predicts the 
natural frequencies of laminated cylindrical shells with different lamination schemes. 
Analysis of the calculation results allows us to state that the frequency parameters for 
the [90°/0°/90°] lamination are greater than for [0/0/0], and the frequency parameters 
for the [90°/90°/90°] and [0°/90°/0°] cases are between them.  

The frequency parameters are classified not according to their wave number 
value, but according to their order in the direction of the larger radius of curvature. 
The values of characteristic frequency Ω for the vibrations of cylindrical shells of 
laminated composites depending on the wave number n are shown in Table 1. 

 
Table 1 - Frequency parameter Ω for different boundary conditions 

n 
Boundary conditions 

BC1 BC2 BC3 BC1-BC2 
1 0.2012 0.3052 0.1053 0.2317 
2 0.2578 0.3667 0.1537 0.2828 
3 0.3001 0.4235 0.2074 0.3235 
4 0.3665 0.4578 0.2519 0.3821 
5 0.4019 0.5104 0.3039 0.4378 
6 0.4631 0.574 0.3541 0.4758 
7 0.5197 0.6287 0.4106 0.5331 
8 0.5690 0.6729 0.4583 0.5825 
9 0.6107 0.7342 0.5195 0.6308 

10 0.6655 0.7815 0.5528 0.6766 
11 0.7030 0.8382 0.6180 0.7253 
12 0.7599 0.8861 0.6504 0.7842 
13 0.8046 0.9411 0.7011 0.8306 
14 0.8611 0.9775 0.7544 0.8808 

 
The calculation results indicate that the frequency parameters for laminated 

composites with a large number of shells are significantly larger than the 
corresponding parameters for composites with two or three shells. This property can 



 

 Modern engineering and innovative technologies                                                                    Issue 36 / Part 3 

ISSN 2567-5273                                                                                                                                    www.moderntechno.de 14 

be explained by the fact that the orthotropic material is stiffer in the axial direction 
than in any other direction. The stiffness in the presence of a large number of shells 
can be maximum, and thus the frequency value is also the highest. 

Summary and conclusions. 
A computational model based on the Haar wavelet discretization method was 

applied to the analysis of free vibrations of composite laminated cylindrical shells. 
The vibrations of a laminated composite sample occurred under different boundary 
conditions. The characteristics of mechanical vibrations were calculated based on the 
classical shell theory. The discretization method of the control equations and the 
corresponding boundary conditions was implemented using discrete wavelet 
transforms. It was found that boundary conditions, length-to-radius ratios, lamination 
schemes, and elastic moduli ratios affect the natural frequency parameters of 
cylindrical shells made of laminated composites. The discrete wavelet analysis 
technique can also be used to describe vibrations of thick composite laminated and 
functionally graded shells. 
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