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Abstract. A large number of composite structure testing methods are based on the Lamb wave 

method. The aim of this work is to develop a numerical model describing the features of the 
propagation of wave packets associated with the anisotropic characteristics of the local mole of 
mechanical shears and stresses in the volume of a laminated composite. The numerical method 
developed in this work allows rapid measurement of the frequency-wavenumber curves, phase 
velocity and group velocity for the Lamb wave mode A0 in anisotropic material using Snell's law and 
the time-of-flight concept. The numerical model was based on the assumption that the wave 
characteristics of the composite are determined by the physical characteristics of the layers and the 
oscillation frequency. In addition, the characteristics of the wave packets and the direction of their 
propagation in the composite also depend on the direction of the applied load and the local calculated 
shape of the volume of the composite structure. The dependences of wave interactions on the 
component properties, geometry, propagation direction and frequency for waves propagating in 
multilayer composites are analyzed in detail. It is shown that the exact dispersion relations of 
symmetric and antisymmetric wave modes in a laminated composite sample can be formulated from 
the three-dimensional theory of elasticity. This study demonstrates the possibility of extending the 
revealed features of the Lamb wave mode kinetics to composite laminates with arbitrary stacking 
sequences. It is found that the Lamb wave velocity can be used to analyze the properties of composite 
materials. Dispersion curves for the phase velocity of symmetric modes of Lamb wave packets are 
obtained.  

Key words: Lamb wave, laminated composites, symmetric modes, dispersion curve, elastic 
coefficients, shear moduli. 

Introduction. 

The widespread use of composite structures in various industries creates an urgent 

need for testing and evaluation methods. Such methods could monitor and characterize 

these complex materials. In addition, as a related goal, it is possible to describe the 

behavior of such materials during their service life. Numerous experiments and 

theoretical models have resulted in the development of a wide range of analysis 

methods, which have been categorized as destructive and non-destructive [1, 2]. 

However, non-destructive methods are often the most attractive, since they do not 

cause any damage or irreversible changes to the inspected part.  

Some non-destructive testing methods are based on Lamb waves. Lamb waves 
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are resonant acoustic excitations guided by the surfaces of a plate structure and are 

directed along the plate over large distances [3, 4]. These elastic waves are highly 

dependent on the geometric and material properties of the propagating medium, and 

thus, the analysis and characterization of Lamb waves propagating in a medium of 

interest will also help to analyze and understand the medium itself. Non-destructive 

testing methods using both Lamb waves and impact waves have been widely studied 

in various experimental and theoretical studies for the purpose of characterizing and 

evaluating various materials and inspecting various structures for any defects or 

damage [5, 6]. Improvement and further development of Lamb wave-based methods 

can be based on the results of experiments using ultrasonic waves and piezoelectric 

sensors. In addition, the study of elastic properties, temperature fields and moisture 

distribution in both laminated and reinforced composite samples can also be 

significantly improved by using wavelet pre-transforms, including Lamb wave 

transforms [7, 8]. A widely used experimental setup for using ultrasound to investigate 

composite plates is a completely non-contact hybrid system that uses air and laser 

propagation paths. The results of the experiments form the basis for Lamb A0 wave 

modes. The method allows the frequency-wavenumber, phase velocity, and group 

velocity curves for the Lamb A0 wave mode to be measured in anisotropic material 

quickly using Snell's law and the time-of-flight concept. Wave interactions depend on 

the properties of the components, geometry, direction of propagation, and frequency 

for waves propagating in multilayer composites. The exact dispersion relations of 

symmetric and antisymmetric wave modes in a plate can be formulated from three-

dimensional elasticity theory. The formulation can then be extended to composite 

laminates with arbitrary stacking sequences. The Lamb wave velocity can be used to 

analyze the properties of composite materials. The phase velocity depends only on the 

wave vector, its modulus and, consequently, the direction of wave propagation in the 

medium. In isotropic materials, phase velocity depends only on the modulus of the 

wave vector. One of the successful methods for describing mechanical stresses is the 

construction of the Fourier transform of the Green matrix, the poles of which determine 

the wave numbers of a composite consisting of N anisotropic layers, as well as the 
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study of the dispersion characteristics of the layered structure [9 - 11]. he algorithm for 

recursively calculating the Fourier transform of the Green matrix requires only the 

procedure of inversion of 6 x 6 matrices for any number of layers in the composite. 

This approach allowed us to obtain curves and surfaces describing the wave numbers, 

phase velocities, and group velocities of the wave front of Lamb waves. The set of 

Lamb waves can be considered as a network of wave packets that propagate in 

symmetric and antisymmetric composites with respect to the direction of propagation 

and the oscillation frequency. Wave packets propagate in an elastic medium and excite 

deformations that contain all three components of the displacement vector. 

Materials and results 

The basic equations of elasticity theory for each of the three-dimensional layers 

of a non-uniform anisotropic multilayer (packet of N layers) elastic medium have the 

form  
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where j = 1, 2, 3; n = 1, … , N. 

The composite sample has a volume of ∞ ≤ x, y ≤ ∞, zN+1 ≤ z ≤ 0, where zN+1 is 

the distance from the lower boundary of the N-th layer to the upper surface, z1 = 0, ρ(n) 

is the density of the n-th layer. The layer number will be designated by a superscript. 

The relationship between mechanical stresses and deformation can be described by the 

equations of the linear theory of elasticity  
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where 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛)  is a the stiffness tensor of the n-th layer. 

When the coordinate system changes, the tensor coordinates change according 

to the formula 
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where 𝐶𝐶′𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖
(𝑛𝑛)  are the coordinates of the stiffness tensor with respect to one coordinate 

system; 
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aij is a 3 x 3 rotation matrix. 

The wave characteristics of the composite according to such a model will be 

determined by the physical characteristics of the layers and the oscillation frequency. 

In addition, the characteristics of the wave packets and the direction of their 

propagation in the composite also depend on the direction of the applied load and the 

local calculated form for the volume of the composite structure. 

The calculation model uses a two-dimensional Fourier transform of the 

displacement vector of the n-th layer u(n)(x, y, z) 
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Fourier transforms allow us to write the following matrix relations 
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where U(n) is the Fourier transform of the vector of displacement components and their 

ordinary derivatives with respect to z 
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where A(n,ik) are the matrices with elements С𝑖𝑖𝑖𝑖
(𝑛𝑛);  
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            B(n) are matrices that characterize the interaction of layers. 

The matrices A(n), B(n) depend only on the material properties of each layer, the 

oscillation frequency ω and the Fourier variables α1 and α2. 

The method presented here is related to a linear problem, therefore it is possible 

to expand the Fourier transform of the displacement component vector with respect to 

the components of the applied load Q = {Q1, Q2, Q3} as follows 
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For each layer n in the Fourier domain, the solution to this problem can be 

represented in matrix form 
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where K(n) is the Green’s matrix of the problem. 

The displacement vector u(n) gives the solution to the problem as a result of the 

inverse Fourier transform to the displacements U(n) found in the Fourier domain 
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The phase velocity of the mode k can be found via 
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and the partial derivative is defined as a group velocity for a direction γ by 
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The calculation method is based on the consideration of dimensionless 

frequencies ωh/cT and dimensionless velocities cp/cT, with which symmetric and 

antisymmetric modes propagate. The wave packet velocity vectors were located in two 

directions: in the xy plane at an angle of c = p/6 relative to the x axis, and along a straight 

line at an angle of c = p/4 to the x axis in the xy plane. A significant number of studies 
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on the features of Lamb wave propagation in composite structures analyzed the phase 

velocity graphs depending on the propagation directions for fixed numerical values of 

the dimensionless frequency xh/cT (in particular, for the dimensionless frequency, the 

following values can be specified: 4 and 1.78). The theoretical analysis of the 

propagation features of Lamb waves is conveniently performed for the following 

package of dimensionless quantities: dimensionless frequency xh/cT, dimensionless 

wave numbers ζ⋅h, dimensionless phase velocity cp/cT and dimensionless group 

velocity of the wave front cg/cT, where x is the angular frequency in rad/s, h is the total 

thickness of the composite, f are the dimensional wave numbers, cp, cg are the phase 

and group velocities. 

The dispersion curves for the propagation of wave groups are characterized by 

dimensionless propagation velocities cp/cT of symmetric and antisymmetric modes for 

dimensionless frequency xh/cT.  

 
Figure 1 - Phase velocity dispersion curve c’p = c’p (f’) for S0 and S1 modes of 

Lamb wave 

 

The change in phase velocities depending on the direction of propagation was 

characterized by the values of the dimensionless frequency xh/cT equal to 3.4 and 1.72, 

respectively. For the experimental generation of Lamb waves, a laboratory technique 

of combining a piezoelectric transducer and a wedge was used. The angle of incidence 
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for the generation of Lamb wave modes was determined by Snell's law 
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Figure 2 - Phase velocity dispersion curve c’p = c’p (f’) for S2 and S3 modes of 

Lamb wave 

 

Spectral dependences for the phase velocity of Lamb wave modes S0 – S3 are 

illustrated in Figures 1 and 2 (c’p = cp / cch, f ’ = f / fch, where cch and fch are the 

characteristic speed and frequency, respectively) 

Summary and conclusions. 

The A1 mode is an independent incident mode, which is separated from the S1 

mode packet by the group delay method. It should be noted, however, that the two-

frequency Lamb mode (S2), which is controlled by the fundamental mode S1, depends 

on the fundamental mode (S1). The group packet of S1 modes, passing through the 

volume of the composite structure, transfers the fundamental and the two-frequency 

second harmonic wave. The analysis of the dispersion curves allows us to conclude 

that the fundamental mode (S1) and the second harmonic mode (S2) have the same 

phase velocity and group velocity. The detected tendency is similar to the phase 

condition in resonant vibration, since the generated S2 mode has the same phase and 
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group velocity as the fundamental mode S1. Separation of these two modes in the time 

domain spectrum is not an ordinary task. However, the study of the frequency spectrum 

allows us to obtain their amplitudes in the frequency spectrum. The spectra of the 

fundamental mode S1 and the second harmonic mode S2 are clearly separated in the 

frequency domain. A large number of experimental and analytical studies on the 

propagation characteristics of Lamb pulses in the bulk of composites lead to the 

conclusion that there are two main mechanisms of amplitude attenuation, which are 

"material attenuation or damping" and "wave packet propagation" corresponding to the 

wave dispersion effect.  
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