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Abstract. This study is devoted to the theoretical analysis of the kinetic features of Lamb wave 

propagation in laminar composites. In particular, the dispersion dependences for the group and 
phase velocities, as well as the characteristic wave curves, were analyzed. The theoretical analysis 
was based on the assumption of the existence of multiple Lamb wave modes. Numerical solutions for 
an infinite number of possible wave modes were obtained based on the three-dimensional (3-D) 
theory of elasticity. Transcendental equations, which are the governing equations of the exact 
dispersion relations, were obtained. For symmetric laminates, a numerical calculation technique is 
proposed based on the possibility of imposing boundary conditions on the middle plane and the upper 
surface to separate symmetric and antisymmetric wave modes. A new semi-exact method for 
calculating Lamb wave group velocities in composites is developed. The analysis of the angular 
dependence of Lamb wave propagation was performed for the characteristic wave curves of the phase 
and group velocities. A detailed calculation was performed for the dispersive and anisotropic 
behavior of Lamb waves in two different types of symmetric laminates. The kinetics of Lamb wave 
propagation suggested the presence of symmetric and antisymmetric wave modes with narrow-band 
signals. In addition, the Gabor wavelet transform was used to extract the group velocities from the 
Lamb wave propagation time. The numerical values of group velocities obtained on the basis of the 
developed technique are in good agreement with data from the three-dimensional elasticity theory.  

Key words: Lamb wave, laminated composites, dispersion relations, symmetric wave modes, 
group velocity, phase velocity. 

Introduction. 

Modern composite materials are quite often used in a wide variety of industries. 

There are several reasons for the popularity of composites. These include high specific 

rigidity, specific strength, and fatigue strength. Fiber-reinforced composite materials, 

which have high mechanical strength, have naturally anisotropic characteristics, since 

such materials are made from carbon fibers and a matrix. On the other hand, composite 

materials have a high probability of developing defects due to complex manufacturing 

processes, unexpected external influences, and deterioration of mechanical properties 

during operation [1, 2]. An effective technique for performing inspection of large 

structures, including wave propagation over several meters depending on the material 

and geometry of the structure in question, is Lamb wave testing [3, 4]. High-speed 

monitoring of large structures such as pipes and trusses is not possible without the use 

of the basic equation for Lamb wave packets. It should be noted that the experimental 
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ultrasonic test tests a local part of the structure containing composite inserts and 

elements only in the immediate vicinity of the ultrasonic wave sources. Therefore, such 

a technique requires the placement of wave sources over the entire surface of a large 

structure to perform a structural test, and the results are usually displayed as a C-scan 

[5, 6]. This testing process can be laborious and time-consuming. The advantage of 

using Lamb waves is the ability to simultaneously monitor large surfaces of structures. 

However, such methods are more complex than conventional ultrasonic testing, since 

Lamb waves have dispersive characteristics, i.e. the wave speed varies depending on 

the frequency, modes and plate thickness [7, 8]. Experimentally measured group and 

phase velocities of symmetric and antisymmetric Lamb waves in composite materials 

with anisotropic characteristics do not coincide with theoretical values, in particular, 

group velocities, which are calculated using the Lamb wave dispersion equation [9]. 

The reason for the existence of such a difference is the presence of a non-zero angle 

between the direction of the group velocity and the direction of the phase velocity in 

anisotropic materials. The standard technique involves calculating the values of group 

velocities of symmetric modes from the dispersion curves of the Lamb wave in an 

anisotropic plate of a laminar composite without taking into account the direction and 

magnitude of propagation of the wave packet. 

This study analyzes the difference between the experimentally measured Lamb 

wave group velocities and the theoretical group velocities in laminar composite 

materials. In isotropic materials, Lamb waves can propagate in a circular pattern in the 

same direction of the wave vector and the direction of the energy flow. However, the 

direction of the wave vector in a composite plate having anisotropic characteristics due 

to the fiber arrangement is different from the direction of the energy flow except for 

the main axis [10]. It is necessary that wave propagation in composite materials with 

anisotropic characteristics be considered not only in terms of direction but also in terms 

of amplitude. When taking into account the difference in amplitudes, it is necessary to 

take into account that the fundamental symmetric mode S0 is characterized by reduced 

dispersion values for small values of the frequency multiplied by the thickness value.  

Experiments on the analysis of the S0 mode in unidirectional laminated composite 
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plates revealed a difference in the directions between the group velocity and the phase 

velocity. In addition, it was found that the direction of the energy flow coincides with 

the direction of the fibers of the laminated composites, with the exception of the 

perpendicular direction of the fibers. Theoretical analysis showed that the symmetric 

mode S0 of the group velocity for low frequencies can be used as a phase velocity in 

the region of low dispersions. The numerical values of the group velocities obtained as 

a result of processing the diagrams for the reciprocal values of the phase velocities are 

in good agreement with the measured values of the group velocity in unidirectional 

composite plates. In this study, the S0 mode dispersion properties of phase velocity are 

analyzed using Lamb wave equations for unidirectional, bidirectional and quasi-

isotropic composite plates. The characteristic parameters of phase velocity dispersion 

are used to calculate the theoretical group velocity in the volume of the laminar 

composite. The retardation surface, which is related to the inverse of the phase velocity, 

is used to calculate the magnitude and direction of the group velocity. A rescaled group 

velocity curve, i.e., a curve from which the magnitude and direction of the group 

velocity are re-modified from the retardation surface, is obtained. The difference 

between the measured group velocities and the calculated group velocity from the 

dispersion curves is due to the direction and magnitude of the wave vector and the 

direction of the energy flow.  

Materials and results 

The numerical calculation methodology for Lamb wave propagation in laminated 

composite structures assumes that the interfaces between layers are ideally coupled. 

For each layer, the displacement components in the corresponding z-axis equation must 

be modified into exponential forms to account for the inhomogeneity of the multilayer 

laminate 

( )xiAU ξexp= ,      ( )yiBV ξexp= ,       ( )ziiCW ξexp−= ,         (1) 

where  

U is the displacement in the x direction (control coefficient A); 

V is the displacement in the y direction (control coefficient B); 

W is the displacement in the z direction (control coefficient -iC); 
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z is the coordinate perpendicular to the fixed layer of the composite; 

ξ is the fixed variable. 

The general solution in each lamina is 

{ } ( )[ ]{ } { } ( )∑⋅−+=
j

jjjjyx ziSRAtykxkiWVU ξω exp,,1exp,, ,          (2) 

where 

ω is the angular frequency; 

kx, ky are the projections of the wave vector onto the Cartesian x and y axes; 

R, S are the characteristic coefficients of the layer. 

Symmetrical and asymmetrical Lamb wave modes in conventional laminates 

cannot be separated. It should be noted that symmetrical laminates are used in 

engineering practice when designing composite structures. A reliable method for 

separating the two types of wave modes is to generate boundary conditions on both the 

upper and middle planes of the surface. For the upper boundary of the laminate, the 

boundary conditions can be written as follows 

{ } 0,,
2/
=

=hzxzyzz ττσ ,                                            (3) 
where 

σ is the normal mechanical stress; 

τ is the tangential mechanical stress; 

h is the layer thickness. 

The symmetry conditions for the entire laminate allow only half of the entire 

sample to be analyzed. In a subsequent step, the following conditions are imposed on 

the stress and displacement components in the mid-plane for symmetric modes 

{ } 0,, 0 ==zzu συ ,                                                  (4) 
The implicit functional form G (ω, k) = 0, or G (ω, k, θ) = 0 can be used to 

formulate the dispersion relation between ω and k. This dispersion relation can be 

explicitly solved in the form of real roots ω = W (k), or ω = W (k, θ). 

The number of possible solutions with different functions W tends to infinity. 

Such solutions correspond to different wave modes. The phase velocity vector for plane 

modes is defined as cp = (ω/k)⋅(k/|k|)=(ω/k2)k. Therefore, its magnitude is cp = ω/k. The 
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set of all statistical samples k from the origin for cp at a given frequency forms the so-

called velocity curve. The radius vectors of the velocity curves in the direction of a 

given k represent the admissible dispersion of the phase velocity of the different wave 

modes. 

A set of points in phase space or a slowness curve can be defined by fixing the 

slowness vector s = k/ω. The characteristics of the set of phase points can be simply 

formed from the velocity curve by geometric inversion, i.e. by mapping through the 

inverse radius. 

The directions of the slowness and phase velocity vectors coincide. Thus, the 

inverse phase velocities can be measured from the origin to the slowness curves. The 

distance traveled per unit time is defined as the phase velocity. On the other hand, time 

as slowness is numerically equal to the time required to travel a unit distance. For 

volume (non-dispersive) waves, it is convenient to use the slowness curve. The reason 

for this is the fact that this group velocity curve does not depend on x. 

In isotropic materials, the phase velocity depends only on the magnitude of the 

wave vector k. The phase velocity of anisotropic materials depends on the wave vector 

k, its magnitude, and the direction in which the wave propagates. For experimentally 

measured wave packets, the phase velocities are measured by tracking the wave peaks. 

The numerical value for the group velocity can be determined by tracking the 

wave packet envelopes, namely cg = gradkW  = ∂W/∂k. Provided that the closed form 

of the implicit function G has been previously determined, the group velocity can also 

be calculated as 
1−


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The gradient W (gradk W) in the polar coordinate system has a radial component 

∂W/∂k in the direction k and an angular component ∂W/k∂θ, perpendicular to k. After 

the coordinate transformation, the group velocity in the Cartesian coordinate system is 

equal to                              
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where indexes “x” and “y” represent the components in x- and y-axes, respectively. 

The magnitude and direction of group velocity represents this system of equations 

22
gygxg ccc += ,      

gx

gy
g c

c1tan−=θ .                            (7) 

The skew angle θ or steering angles defined as 

θθθ ′−= g .                                                   (8) 

It makes sense to introduce the concept of a wave curve (or wave front curve) as 

the geometric locus of the group (radial) velocity vectors along all choices cg from the 

origin at a given frequency. The radius vector connecting the origin (or source point) 

with a point on the wave curve is numerically equal to the distance traveled by the 

elastic disturbance per unit time. 

In other words, the geometric concept of a wave curve essentially comes down to 

the concept of a geometric locus of points (or wave front) recorded per unit time by a 

disturbance emitted by a point source acting through the origin at time t = 0. Wave 

curves are of great importance in detecting mechanical damage. 

The dispersion relation written for each Lamb wave mode can be expressed as an 

explicit function of W (k; h). This function is associated with a conical surface in a 

three-dimensional domain. In addition, the deceleration curve W (k; θ) = ω0 is 

geometrically a level surface of W (k; θ). Differentiating both sides of the equation with 

respect to θ, the following relation can be obtained 

0=
∂
∂

+
∂
∂

θθ
W

d
dk

k
W ,                                             (9) 

As an example of the use of numerical and symbolic methods for recording 

mechanical damage in a composite material, we can consider the results of the Lamb 

wave propagation analysis in graphite/epoxy resin AS4/3502. Two laminates are used 

in the tests: L1 ([+456/456]s) and L2 ([+45/45/0/90]s). The numerical results consist of 

dispersion curves (phase and group velocities) and three characteristic wave curves in 

two different types of laminates. The characteristic dispersion curves are illustrated in 

Fig. 1, 2. The dimensionless frequency fd = ωh/cT and the dimensionless velocity υd1 = 
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cp/cT and υd2 = cg/cT are used to normalize the physical frequency and velocity, 

respectively. In addition, cT is defined as (G12/ρ)0.5 is the velocity of the transverse (in-

plane shear) wave in the plate. 

 
Figure 1. Dispersion curves υd1 = υd1 (fd) of Lamb waves along θ = 450 

(symmetric modes) 

 

The group velocity of the SH0 and S0 modes has pronounced dispersion 

characteristics. However, even greater dispersion is observed for symmetric modes in 

the quasi-isotropic laminate [+45/45/0/90]s. In contrast, the dispersion of the A0 mode 

in both laminates is weaker beyond ωh/cT = 1. This feature is effectively used for 

structural monitoring of laminar composites. 

Summary and conclusions. 

The calculation method of the phase and group velocity kinetics of the laminated 

composite allowed us to obtain a general control equation that relates the mechanical 

normal and tangential stresses for each layer. The dispersion relations are written for 

the middle layer of the laminate sample for the case of propagation of both symmetric 

and antisymmetric modes of the Lamb wave packet. The observed dispersion 

dependences of the phase velocity were obtained as a result of numerical analysis of 
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the velocity curve. The analysis showed that for non-isotropic composites, the 

characteristic value of the phase velocity depends both on the amplitude value of the 

wave vector and on the direction of propagation of the symmetric modes of the Lamb 

waves.  
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