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Abstract. This study analyzes in detail the advantages of using an approximation method to 

describe the propagation of Lamb wave packets in multilayer structures using laminated composites 
as an example. It is shown that the approximation technique for a multilayer transversely isotropic 
material becomes most effective with a preliminary detailed analysis of the set of stiffness 
characteristics for each of the composite layers separately. This analysis assumes the possibility of 
approximation by polynomial interpolation functions for the displacement distribution throughout 
the volume of the laminated structure. In addition, as an addition, a hybrid method was considered, 
which assumes the use of a semi-analytical finite element. The finite element method was used to 
discretize the cross-section and described the displacement along the Lamb wave propagation using 
analytical simple harmonic functions. It was found that the most accurate method for calculating the 
propagation characteristics of Lamb waves in composites is the method of linear 3D elastic 
properties. A correct description of the propagation of Lamb wave packets is possible only for the 
case of orthotropic composite materials. 

Key words: multilayer material, Lamb waves, polynomial interpolation functions, finite element 
method, orthotropic composites. 

Introduction. 

Lamb waves are a type of guided elastic wave that propagate in solid plates with 

free boundaries. Due to their ability to travel long distances with relatively low 

attenuation, they are widely used in nondestructive evaluation (NDE) of materials, 

particularly thin-walled structures such as composite laminates [1]. In composite 

materials, the anisotropy and layered structure significantly affect Lamb wave 

propagation. The wave velocity, mode shapes, and attenuation depend on both the 

elastic properties and the geometry of the laminate. Lamb waves exist in two 

fundamental modes: symmetric (S) and antisymmetric (A) [2]. These modes further 

split into higher-order modes at increased frequencies. The S0 and A0 modes are the 

most commonly studied for low-frequency applications. 

The dispersion behavior of Lamb waves is critical for their application in 

composites. Dispersion curves, which relate frequency and phase/group velocity, are 

necessary for understanding how different modes behave in complex media.  
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Composite laminates introduce complexity in Lamb wave analysis due to their 

heterogeneous and direction-dependent properties. The stiffness matrix varies with 

fiber orientation and stacking sequence, making analytical solutions more challenging 

than for isotropic materials. Numerical methods, such as the finite element method 

(FEM) and the semi-analytical finite element (SAFE) method, are widely used to 

model Lamb wave propagation in composite plates [3, 4]. These models help in 

predicting wave modes, velocities, and their sensitivity to defects. Experimental 

techniques such as laser Doppler vibrometry, scanning acoustic microscopy, and 

piezoelectric transducers are commonly used to excite and measure Lamb waves in 

composites. The selection of the excitation frequency and sensor placement 

significantly influences the detectability of different modes. 

In composites, mode conversion is frequently observed due to the interaction of 

Lamb waves with discontinuities, such as delaminations or material interfaces. This 

phenomenon can provide valuable information about the type and location of defects. 

The presence of defects such as delaminations, voids, and fiber breakage alters the 

Lamb wave propagation characteristics. These changes manifest as variations in 

amplitude, phase, or arrival time, which can be used for damage detection. Wavelet 

transform techniques are often employed to analyze the nonstationary signals generated 

by Lamb waves in composites. These methods enhance the ability to extract time-

frequency features related to damage. 

Dispersion compensation algorithms are sometimes applied to improve signal 

clarity and facilitate the identification of specific Lamb wave modes. This is 

particularly useful when working with broadband excitation signals. The directionality 

of Lamb wave propagation in anisotropic media affects the energy distribution and 

sensitivity of inspection methods. Understanding this behavior is crucial for optimizing 

sensor layouts in structural health monitoring (SHM) systems. 

Temperature effects can influence Lamb wave velocities and mode shapes. 

Therefore, compensation or calibration is often necessary when applying Lamb wave-

based techniques in varying environmental conditions. Recent advancements in 

machine learning and signal processing are being integrated with Lamb wave analysis 
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to improve defect classification and localization in composite structures. Overall, the 

propagation of Lamb waves in composites is a complex but powerful tool for NDE and 

SHM. By accounting for material anisotropy, mode behavior, and wave interactions, 

engineers can develop effective diagnostic systems for maintaining the integrity of 

composite structures. 

One of the simplest methods for generating Lamb wave dispersion curves is to 

use the effective stiffness approach. In this methodology, a geometrically weighted 

average of the component property values is used as the average material constants for 

the entire laminate. An additional methodology is based on the classical laminated plate 

theory. It should be noted that the classical laminated plate theory cannot accurately 

predict the dispersion behavior of Lamb waves at sufficiently high frequencies.  

Both analytical techniques have high computational efficiency. However, the 

classical laminated plate theory and higher order theories are only approximations and 

cannot accurately predict the higher modes of Lamb waves at higher frequencies. The 

solution to this problem, at least partially, is the approximation method for a multilayer 

transversely isotropic material. The approximation method is based on the analysis of 

a set of stiffness characteristics. Such an analysis assumes the possibility of 

approximation by polynomial interpolation functions for the thickness displacement 

distribution. 

An additional hybrid method involves the use of a semi-analytical finite element, 

which uses the finite element method to discretize the cross-section and describes the 

displacement along the wave propagation using analytical simple harmonic functions. 

The most accurate method for calculating the propagation characteristics of Lamb 

waves in composites is the linear 3D elastic properties method. 

Approximation method for a multilayer material. 

The computational method uses the partial wave method in combination with the 

global matrix approach to numerically solve the Lamb wave equations. A robust step-

by-step solution for generating Lamb wave dispersion curves is the main objective for 

this part of the Lamb wave packet propagation analysis. 
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First of all, it is necessary to consider the shear-stress relationship. The tensor 

form of the stress-strain relationship in a Cartesian coordinate system for an anisotropic 

solid medium assuming linear elastic behavior is as follows 

klijklj c εσι = ,                                                       (1) 

klijklij s σε = ,                                                       (2) 

where 

cijkl is the stiffness tensor; 

sijkl is the compliance tensor. 

The dependence of the linear elastic deformation on the mechanical displacement 

can be determined by the following relationship 
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In turn, the generalized equation of motion is determined by the components of 

the displacement 
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Each layer in the laminar composite according to the calculation model is 

described by a local {x1*, x2*, x3*} and global {x1, x2, x3} coordinate system. 

The mechanical stress in the global system is equal to 

{ } { }*][ σσ σT= ,                                                    (5) 

where [Tσ] is the stress transformation matrix. 

The transformation of the stiffness matrix from the local to the global coordinate 

system can be performed using the following algorithm 

[ ] [ ][ ][ ] 1* −= εσ TcTc .                                              (6) 

The propagation of Lamb wave packets is described by the governing equations 

for the case of composite materials that exhibit orthotropic and higher degrees of 

symmetry. 

It should be noted, however, that it is necessary to consider lower monoclinic 

symmetry for the excitation and propagation mode of wave packets in an orthotropic 



SWorldJournal                                                                                                                        Issue 31 / Part 2 

 ISSN 2663-5712                                                                                                                                                                                    www.sworldjournal.com 23 

or transversely isotropic laminate along a non-principal direction, or if the stacking is 

symmetric but not balanced. For example, this will be observed as a result of the 

installation of wave signal generators that can be fixed in a non-principal direction of 

the commonly used orthotropic or lower symmetry of the plate. 

These factors lead to the fact that the Lamb wave equations will be derived for 

monoclinic symmetry, which can be used for any material symmetry that is higher than 

monoclinic. 

The stress-strain relationship for monoclinic composite material can be expressed 

as 
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Let us consider in more detail the model of Lamb wave propagation in a 

monoclinic material in order to derive representative equations. At the first stage, we 

will analyze the displacement field in all three directions in comparison with the 

consideration of only the propagation of wave packets along the principal directions. 

The consideration of Lamb waves can be non-isotropic for all directions in a 

laminar composite sample. Substituting the displacement fields Uj with the general 

equilibrium equations for the displacement field have the form 

( ) 03 =jij UkK ,                                                           (8) 

where the matrix elements have the form 
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( ) ( ) 32442331453623 kkcckkccK +++= ,                                       (13) 
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The condition for the presence of a set of non-trivial solutions to a system of 

equations can be reduced to the form 

( ) 0det =ijK                                                     (15) 

or 
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The three roots of 𝑘𝑘32 correspond to one pair of quasi-longitudinal and two pairs 

of quasi-shear modes. The six roots of k3 can be divided into three pairs, with the 

constituent elements of each pair being negative with respect to each other. Each pair 

represents an ascending and descending traveling wave making the same angle with 

the x1 axis. 

The relationship between mechanical stresses and stiffening elements for the case 

of boundary conditions without tension takes the form 
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Free boundary conditions at the top and bottom surfaces of lamina composites are 

0
333

231333 === ±=±=±= hxhxhx σσσ .                             (20) 

In turn, displacements can be expressed as a function of amplitude. 

Summary and conclusions. 

The dependence of the linear elastic deformation on the mechanical displacement 

is not of a very complex polynomial nature. However, the correct recording of the 

generalized equation of motion requires the most complete data on all components of 

the displacement in each layer. A limitation of the approximation method can be 
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considered that a correct description of the propagation of Lamb wave packets is 

possible only for the case of orthotropic composite materials. The possibility of taking 

into account only low monoclinic symmetry for the excitation mode and propagation 

of wave packets in a transversely isotropic laminate along a non-principal direction 

should be attributed to the advantages of this method. 
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