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NON-FOURIER HEAT CONDUCTION IN TWO-DIMENSIONAL
MEDIA
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Abstract: Real-time heat distribution and phase transformation based on operating conditions
and material properties can be estimated using heat equations. The corresponding characteristic
functions are used to analyze heat conduction processes in various fields, including laser and electron
beam processing. A powerful universal analytical and numerical method that transforms partial
differential equations into a coupled system of ordinary differential equations is the wavelet transform
method. Fourier and non-Fourier heat equations can be implemented for both equilibrium and non-
equilibrium thermodynamic processes, including a wide range of processes such as the two-
temperature model, ultrafast laser irradiation, and biological processes. The ultrafast laser heating
process of nanofilms is characterized by ultrashort duration and ultrasmall spatial size, in which the
classical Fourier law based on the local equilibrium hypothesis is no longer applicable. Based on the
Cattaneo-Vernotte model and the double phase delay model, two-dimensional analytical solutions of
thermal conductivity in two-dimensional structures under the action of ultrafast laser are obtained
using the integral transform method. The results show that there is a thermal wave phenomenon inside
the film, which becomes increasingly obvious as the temperature gradient delay time elapses. In this
paper, non-Fourier heat conduction problems with temperature and heat flux relaxations are studied
based on the wavelet finite element method and solved by the central difference scheme for one-
dimensional and two-dimensional media. The heat wave model and the double phase delay model are
used to formulate the finite elements, and a new formulation of the wavelet finite element solution is
proposed to solve the computational optimization problem. Compared with the current methodologies
for the heat wave model and the dual phase delay model, the present model is a direct model that
describes the thermal behavior with a single equation with respect to temperature. The developed
method can be used for arbitrary shapes. A new iteration update methodology is also proposed for the
dual phase delay model to solve the computationally efficient problems. The time iteration algorithms
do not use the global stiffness matrix. This allows for optimized calculations. Numerical calculations
were performed in comparison with the classical finite element method and the spectral finite element
method. The comparisons in accuracy, efficiency, flexibility and applicability confirm that the
developed method is an effective and alternative tool for thermal analysis of local volumes of two-
dimensional materials.

Keywords: heat wave, heat flux, wavelet-transform, non-Fourier heat conduction, two-
dimensional material.

TEIUIONPOBIIHICTH HE-®YP'€ TUITY Y JIBOBUMIPHUX
CEPEJOBMILAX

Iucapenxo O. M.}

Y0oecvra oeporcasna akademis bydienuymea ma apximexmypu

AHoTamisi: Posnoxin Terura B peanbHOMY 4Yaci Ta (pa3oBe IMEPETBOPEHHS Ha OCHOBI YMOB
eKCIUTyaTaIlii Ta BIACTHBOCTEH MaTepially MOKHA OI[IHUTH 3a JIOTIOMOT'O0 PiBHSIHB TEILIONPOBIIHOCTI.
BinmoBinHi xapakTepucTuyHi (hyHKIIII BHKOPUCTOBYIOTHCS JUIS aHAJI3y MPOIIECIB TEIUIONPOBIAHOCTI B
pi3BHHX 00NAcTSAX, BKIIOYAIOYHM JIa3epHY Ta EIEKTPOHHO-IPOMEHEBY 00poOKy. [loTyxHuM
YHIBEPCAIbHUM aHAIITHYHUM 1 YUCEIbHUM METOAOM, SIKMH IepeTBopioe nudepeHLianbHi piBHIHHS B
YaCTUHHHUX MOXiIHUX Yy MOB’5I3aHy CHCTEMY 3BUYalHUX JuepeHIiabHUX PiBHSHB, € METOJ BEHBIIET -
neperBopeHHs. PiBHSHHSA TEMJIOEMHOCTI, IIO ONUCYIOTHCS Ta HE OMMCYIOThCSl Dyp’e piBHAHHIM
MOXYTh OYyTH peani3oBaHi SIK Uil PIBHOBAXHHX, TaK 1 Ui HEPIBHOBAXXHUX TEPMOIUHAMIYHHX
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MPOLIECiB, BKIIOYAIOUN IIHUPOKUN CIIEKTP MPOLECIB, TAKHX SIK TBOTEMIIEpaTypHa MOZEb, HaAIBHIKE
Ja3epHe ONMpOMiHEeHHs Ta OionoriuHi mporecu. HagmBuakuii mporec Ja3epHOro HarpiBy HaHOIUTIBOK
XapaKTePU3YETbCS HAJKOPOTKOIO TPHBAJICTIO Ta HAJMajlMM TPOCTOPOBHM PO3MIPOM, Yy SIKOMY
kinacuyHui 3akoH ®yp’e, 3aCHOBaHMI Ha TiMOTE31 TOKaIbHOI piBHOBAry, Oinblie He 3acTOCOBHUN. Ha
ocHoBi mozeni Katraneo-Beprotra Ta Mozeni monBiitHOI (a30BoOi 3aTpUMKH METOJOM iHTErPaTbHOTO
MEpEeTBOPEHHSI OTPUMAHO JBOBUMIpHI aHANITWYHI PIMIEHHS TEMJIONPOBIIHOCTI y JBOBHMIPHUX
CTPYKTypax Wi Ji€l0 HaIIMBUIKOrO Jiazepa. Pe3ynbraTé MOKasyloTh, IO BCEPEIHHI IUTIBKH ICHYE
SIBHIEC TEIUIOBOI XBWJI, SIKE€ CTa€ BCE OUIBII OYEBUIHHM Yy MIpy TOTO, SIK MHHA€ 4Yac 3aTPUMKHU
rpafieHTa TemmepaTypu. Y i poOoTi gocmimkyrorbess He @Dyp’e-TermonpoBimHi 3agadi 3
penakcalliero TeMIepaTypy Ta TEIIOBOTO MOTOKY Ha OCHOBI BEUBIIET-METONY CKIHUCHHUX CIIEMEHTIB 1
PO3B’SI3YIOTHCS LIEHTPAIbHO-PI3HUIIEBOIO CXEMOIO JJISI OTHOBHMIPHOTO Ta ABOBUMIPHOTO CEpEIOBHILL.
Mogenb TemIoBOi XBWJII Ta MOJIENb NOABIHHOI (a30BOi 3aTPUMKH BHKOPHUCTOBYIOTHCS LIS
(hopMyITIOBaHHSI CKIHUEHHUX €JIEMEHTIB, a TaKOX MPOMOHYETHCSI HOBE (POPMYIIOBAHHS BEHBIETHOT'O
CKIHUEHHO-EJIEMEHTHOI'0 PIillIeHHS JUIs BHPIIIEHHs NpoOJIeMH OOYHCIIOBANBHOI onTuMmizamii. Y
MOPIBHSAHHI 3 TOTOYHMMM METOAOJIOTIAMU JJIi MOJENi TEIIOBOI XBWJl Ta Mopaeiai aBodasHol
3aTPUMKH, IS MOJICNb € MPSIMOI0 MOJIEIUIIO, SIKa OMKCYE TEIUIOBY IMOBEIIHKY 32 JOMOMOIO0 €JMHOTO
PIBHSHHS 1IONIO TeMIiepaTypu. Po3pobnennii Mero MOKHAa BUKOPUCTOBYBATH ISl JIOBUTBHUX (OPM.
HoBa meronomnoris oHOBIIEHHs iTepallii TakoX MPOMOHYEThCs A 1B0(}HA30BOI MOAENTI 3aTPUMKHU JIJIsI
epekTHBHOrO BUpINICHHS OOYHCIIOBAIBHUX MpoOieM. ANTOpUTMH 4YacOBUX  iTepallii  He
BUKOPUCTOBYIOTh TJIO0AJbHY MATPHIIO >KOpcTKocTi. Lle o3Boisie onTUMI3yBaTH pO3paxyHKH.
UmcenbHi po3paxyHKH MPOBOJIWINCH Y TOPIBHSIHHI 3 KJIACHYHAM METOJIOM CKiHYCHHHUX €JIEeMEHTIB Ta
CIIEKTPaJbHUM METOJIOM CKIHYEHHUX eneMeHTIB. [opiBHSIHHS TOYHOCTI, €EKTUBHOCTI, THYYKOCTI Ta
3aCTOCOBHOCTI MIATBEP/PKYIOTh, IO pO3po0IeHuil MeToJ € ePEeKTHBHUM Ta albTepHATHBHUM
THCTPYMEHTOM JIJIsl TEPMIYHOTO aHAITI3y JJOKAIBHUX 00’ €MIB IBOBHMIPHUX MaTepiaiB.

Kuro4uoBi ciioBa: XBUJIS TEIUIA, TEIJIOBHM TOTIK, BEWBJIET-IIEPETBOPECHHS, TCILIOMPOBITHICTh HE
®dyp'e Ty, IBOBUMIPHHUI MaTepia.
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1 INTRODUCTION

The treatment of some film materials with high-intensity and ultrashort laser radiation
leads to the appearance of microscale hot spots of heat transfer. In this case, experiments
indicate the appearance of sharp wave fronts responsible for the temperature rise, which are
difficult to interpret by the classical Fourier model. The macroscopic heat wave model can be
considered as the first attempt to describe heat transport at the microscale. A subsequent
modification led to the hyperbolic equation of thermal state and assumed the description of
heat transport by a wave with a finite velocity. A number of attempts to describe heat
transport at the microscale were supplemented by the Cattaneo-Vernotte model and the dual-
phase model with delay.

However, the two-stage model and the later proposed pure phonon field model suggest
that the microscale thermal behavior follows neither the pattern given by the thermal wave
model nor the Fourier diffusion model. To fill the gap between the microscopic and
macroscopic theories, a double-phase-lag model was proposed according to two time
constants in the thermal evolution equation. The double-phase-lag model aims to eliminate the
precedence assumption made in mesoscale heat transport models. The basic procedure in
these considerations is to fix the cause-and-effect relationship between the temperature
gradient and the heat flux. It should be emphasized that the models for the meso- and
microscales are derived using a Taylor series expansion. In fact, this method of derivation is
incompatible with the second law of thermodynamics. Moreover, the equations of the double-
phase-delay model are a special, linearized version of the Jeffrey equation and use
interdependent parameters.

2 ANALYSIS OF LITERATURY DATA AND RESOLVING THE PROBLEM

Compared to the parabolic diffusion equation, the Fourier model and the double phase
delay model are hyperbolic methods. As a result, there is a resurgent interest in solving heat
equations given by a model that takes into account the finite speed of heat wave propagation
in the tested media. The set of numerical schemes for solving the heat conduction equation
can be divided into both analytical and numerical solutions. The most widely used
methodologies are those using the Laplace transform [1, 2], Green function [3, 4] and the
integral equation method [5, 6]. The rather complex mathematical transformations that are
necessary in analytical methods represent the main obstacles to their practical application.
Due to the complexity of the hyperbolic equation, which leads to ambiguity in the tested
domain, only very few simple cases can be solved analytically. Consequently, numerical
solutions and methods attract more attention.

However, the exact solution for the two-dimensional film material is still sometimes not
easy to obtain. One of the most common techniques for analyzing this problem is the finite
difference method [7-10]. A significant improvement of this approach was the finite
difference algorithm, based on which a convergent three-level finite difference scheme was
developed [11-13] and a high-accuracy finite difference method for solving the two-
dimensional problem [14-16]. The discontinuous finite difference model [17, 18] has enabled
the analysis of heat wave propagation in one-dimensional and two-dimensional media using a
double-delayed phase model. Modification of the finite difference method by wavelet
transforms is not widely used in analytical methods of studying heat conduction processes in
two-dimensional structures. However, it should be noted that the effectiveness of wavelet
transforms has been previously tested for dynamic analysis and elastic wave problems.
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This study aims to develop a wavelet transform formulation for the finite difference
method and corresponding solution methodologies for non-Fourier heat conduction, in
particular, for the heat wave model and the double phase delay model.

3 PURPOSE AND OBJECTIVES OF THE STUDY

Since the heat diffusion equation is parabolic in nature, it is easy to see from the idea of
wave motion that this equation implies an infinite speed of heat wave propagation. In turn,
this indicates that a local change in the heat flux gspatial rand temporal t coordinatescan

lead to an instantaneous perturbation of the temperature field ®. It was verified that the
conclusion is inconsistent with experiments. With the development of materials processing
using pulsed sources and the requirement of laser-induced guide waves in structural health
monitoring, the classical Fourier law has been shown to be inadequate in modeling high-
frequency response. The above problems have led to many attempts to improve the classical
model, the most famous of which is probably the thermal wave model, which takes into
account thermal "inertia".

In this model, the approximation of the heat transfer process can be described by a
Jeffreys-type constitutive relation

7,0, (1 1)+0,(r,t)—aA®=Q(r,t)/(pc)+7,Q (r,t)/(pC),
where 7, — is the relaxation time; Q — depicts the heat source; p — is the density; c— is

the specific heat of the material, a=x/(pc)—is the thermal diffusivity; x— is the

conductivity for thermal medium.

It should be noted that this equation cannot be considered as a real approximation of the
single-phase delay relationship, which leads to ill-posed problems. A series of experimental
studies have confirmed that the thermal wave model performs better than the classical Fourier
law in numerical prediction. At the same time, it has been found that the model only takes into
account fast transient effects, but not microstructural interactions. These two effects can be
reasonably represented by the double-phase-delay model as the relationship between the heat
flux g and the temperature gradient VO

7,0, (1,1)+ 0, (1,t)—aAB(r1,t) —ar [AO(r,1)], =Q(r,t)/(pc)+7,Q,(r.t)/(pC),

where 7, is the delay time caused by the micro-structural interactions (phase-lag of the

temperature gradient).

The extreme nature of the thermal parameters used in numerical calculations of pulsed
thermal action by a laser leads to difficulties at the stage of modeling the processes. As a rule,
the models of the thermal wave and double phase delay are usually transformed into the
corresponding normalized forms. At the first stage, the parameters of the excited pulse are
subjected to a non-dimensionalization procedure. Next, a Gaussian profile is used to model
the light intensity of laser pulses

_(1_R)|o 42742
Q= \/;tp exp(l t/tp),

where R —is the reflectivity of irradiated surface; 1, — is the laser output intensity;
t, — is the full-width-at-half-maximum of pulse.

The set of dimensionless parameters of length (X,Y,R.), time (7,7,,7,), temperature

(), heat flux (¢), and heat source (W) were used in this study
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X=X y-_Y R fe _t b _To
2,/ar, 2\/ar,

C:2 arO' 7—2—10, 7/1:2_70, 72_270’
5= ’72’2'0 k(©-0,) . TO\/; _ 2ry\maz,
Na (1-R)I, "’

@-R)1, " Y TRy,
where T, — is the reference temperature.

In this case, the dimensionless model with a phase delay of the Jeffreys constitutive type
IS rewritten as

B, +2B,—AB—y,[ABl, =2y +y,,

and for the value ¥ the following relation can be written

l//:

@exp(l—yzlyf).
7

Both models contain partial differential equations which, after transformation, can be
used in the finite difference method to describe heat transfer processes for boundary
conditions of different types.

The finite element method involves first partitioning the domain Q into a grid in terms
of a set of non-overlapping subdomains Q.. Subsequently, each subdomain is mapped onto a

unit interval taking into account the dimensionality of the problem being analyzed. The finite
element method is complemented by wavelet transforms. In the unit interval, some wavelets

of the m-th order B -spline jon the interval 7, , (&) are used to construct wavelet finite
element formulations for the heat transfer problem. According to the m-th order B -spline
functions corresponding wavelets with m-th order (BSWImj) can be determined. In this case,
the inner B -spline describes a mesh of m segments for the cases Al (no boundaries), A2
(internal nodes), and A3 (presence of one boundary):

ol oyl oyl
Al:x! L =x ==X =0,

m+2
A2:x) =k2*, k=01,.,2),

yl vyl —
A3 X2j+1 - X2j+2 e X2j+m—1 =1

An arbitrarily specified scale j immediately fixes the discretization step, which in this

case is equal to 1/2'. At the next stage, in order to introduce at least one internal B-spline
function into the working area, the following condition is checked for feasibility

2/ >2m-1.
Assuming that j, is the initial scale, for each previously considered case (A, i=1 2,3)
for j> j, we get:

ALind, (€)=nk (270&) k=-m+1..,~1
A2:775, (€)= 1125 m (1—2j7j°§),k =2l -m+1..,2" -1,

A3:n), (&)=nk, (27 E-277k),k=0,...,2) —m.
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The scaling functions 7, ., (£) satisfy the relation:
Moy =nr (270¢) k=—m+1,..,-1;

Mo =TTzjm s (2j7j°§), k=2'-m+1,..,2' -1,

= (278 E~27k) k =0,...,2) - m.

The system of primary scaling functions allows for a full scaling of the wavelet
transforms, which fix both the main interpolating function and the shape function in the parent
wavelet. For the two-dimensional case, we then define the horizontal and vertical
interpolating vectors based on the equation:

N = {1 i (VM 2 (€))7, = {0t ()7 i ()12, ()]

where &, 7 belong to the interval [0, 1], which depict the normalized x and y coordinates,
respectively.

The two-dimensional interpolating function is formulated based on the Kronecker
product between two vectors in the characteristic equation. The basic procedures of two-
dimensional analysis can be carried out for the basic functions of wavelet transforms. Within
the framework of the finite element method, the unknown continuous function of the

temperature field ®(&, y,t) can be interpolated in the elementary domain as
O(&, x.t)=506°,

where S is the interpolating function; ®° is the nodal temperature in an element.

The analysis of the variants of constructing the computational grid showed that there is
more than one node in the element. Only for such a case the interpolating function and nodal
temperature can be written in matrix form. In this work, the third-order wavelet transform
function is chosen as the interpolating function S .

The physical field of two-dimensional composite structures can be written in terms of
wavelet coefficients. In this case, for the convergence of the calculation procedure in wavelet
interpolations, an additional transformation matrix is required. This matrix © is used to
transform the wavelet coefficients into the physical domain. After the specified steps, the
interpolation of the value S can be carried out, namely

n®=_S.

and for the transformation matrices we get

O={n2 (&) (&) ®n (m)n* (2,)-)

The system of partial differential equations fixed for the heat wave model is transformed
into a wavelet transform formula for finite elements using a trial function. The requirement of
two-order continuity of £, namely the Af component, complicates the choice of the trial
function in the wavelet transform. Therefore, the weak form is usually used. By writing the
characteristic equation with the trial function 9 and integrating it by parts over the region of
interest O, we get

[ B,d0+2 Bdo+| vavpda=| 9(2y+y,)dO.

The weak form of the heat wave propagation model can be obtained in matrix form based
on Hamilton's principle, namely

-0

O. Pysarenko
https://doi.org/10.31650/2618-0650-2025-6-1-90-102 95




MexaHika Ta MaremMaTHuHi meromu / | VI1/1/2025
Mechanics and mathematical methods e a Crop. 90-102 / Page 90-102

PB,+YB, +UB=W,

where the matrices included in this equation can be defined as follows

P=an+l:nz+l:a),a)jSTSdet(J), Y=an+1:nil:2a),a)jSTSdet(J),
e i j e i
n+l n+l n+l n+l

U=222 00Vs'VSdet(J), P=3> > oS’ (2w +y,)det(d),

where e is the symbol that defines the total number of finite elements used in the
simulation; i and j are the element indices that correspond to different directions in the two-

dimensional medium; @, and ; are the corresponding weights of the Gaussian integrations;

J is the Jacobian matrix.

The methodology for calculating the reduced matrix parameters refers to the basic theory
of the finite element method. The methodology for calculating the reduced matrix parameters
refers to the basic theory of the finite element method. The structure of the equation
containing the matrix parameters is the same as that of a typical wave propagation equation or
dynamic reactions in elastic interactions. Based on these assumptions, it can be stated that the
temperature change propagates in a wave-like mode.

The same weak form process for the heat wave propagation model is used to construct
the corresponding weak form for the double phase delay model, where P,Y,Z,U and W are

defined by the following relation
PR, +(Y+Z)B,+UB=W.

The matrix Z, which defines the damping parameters, is essentially the key element that
contains the difference between the double phase delay model and the model of body wave
propagation in a two-dimensional medium. The relaxation time ratio y, =7, / z,7v2 determines

the properties of Z, matrix in double phase delay model

n+l n+l

Z=y,2.>.> 00,VSTVSdet(J)=yU.
e i j

The equations for W and Z represent the basic formulation of the solution of wavelet
transforms for the heat wave model and the double phase delay model. However, numerical
experiments have shown that these basic formulations are only suitable for calculations that
rely on a computational grid with small cells. As a result, this places a strong limitation on the
number of degrees of freedom.

The mode superposition scheme and the central time difference integration scheme are
well suited for solving the systems of equations of the double phase delay model. These
schemes, however, are limited in the case of small degrees of freedom. To analyze this
problem, a 1000-degree-of-freedom structure could be considered. Weak forms can be used to
obtain matrices P,Y,Z and U of size 1000 x 1000 and a vector W of size 1000 x 1. After
this, the superposition of modes can be performed. In general, for the inverse matrix of 1000
x 1000, the improved numerical method of Lankoz should be used. It should be noted that for
the problem of heat wave propagation, direct time iteration, namely, the scheme of integration
over the central difference time, is more effective. Let us write the basic equations for the
propagation of a heat wave in accordance with the central difference time integration scheme:

ﬁ;/JrA;/ B Zﬂy + ﬂ}/—A}/ ﬂy+A7 - ﬂy—Ay N
P( A j+Y[ Ay ]+Uﬂ7 =Wpg,,
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1 1 2 1 1

where Ay is the step between the neighbor integration slice in time domain.

Accordingly, for the dual phase delay method the last equation should be modified using
the following substitutions

pi tyv, ety oy tp  ty, tp Ly A

Ay? 2Ay Ay? 20y 2Ay T AyP 2Ay Ay? 20y 2Ay u.

For the analysis of heat wave propagation, it is important to fix both the boundary and
initial conditions. Thermal boundary conditions can be divided into three types: the Dirichlet
condition for temperatures of some regions (condition 1); the Neumann condition for heat
flows; (condition 2); a mixture of the first and second boundary conditions (condition 3).

It is worth noting that the exact definition of the boundary condition of the second type in
the given calculation algorithm is impossible. The reason for this statement is that the heat
flux in non-Fourier problems is not directly proportional to the temperature gradient,
especially in heterogeneous materials or for low-temperature phenomena. Implicit calculation
scheme, allows to describe experimental results beyond Fourier. In this technique, the initial
condition constraint is to set the initial value to £, and f,, and thus the initial value of
temperature and heat flux can be controlled. Of course, a higher-order modification of the first
and second derivatives of temperature can be considered in the calculation scheme. But such a
calculation technique is not accurate enough. For this reason, the heat flux is usually
considered as an independent state variable in the calculations.

Conditional stability is a drawback of the central difference method. This stability can be

formulated as a requirement that the time step length Ay be less than some critical value y,,
closely related to the dynamic properties of the discretized system

Ay <Ay, =2lw,,

where @, — is the shortest period of eigenvalue of the discrete system.

4 RESEARCH RESULTS

Model calculations for the case of heat wave propagation assumed the use of the
boundary condition of the second type. In particular, the heat flux through local boundary
surfaces was zero. For the one-dimensional case, the boundary is set at the two ends of the
domain. The Neumann boundary in the case of a two-dimensional medium was limited by the
lateral surfaces. For both the one-dimensional and two-dimensional cases, an initial condition
is used for which the initial changes in temperature and heat flux were negligible.

The calculation of the physical parameters of heat transfer before the non-
dimensionalization procedure was performed for the following characteristic values. Thermal
and kinematic parameters: « =0,23-10*m?/s, r, = 0,172 ps. Geometrical characteristics:

x=5mn (equivalent to 1.257 in the dimensionless domain) for the 1D case, radius r =6 nm
(equivalent to 1.508 in the dimensionless domain) for the 2D case. Energy characteristics:
excitation parameter, 7, =100 fs (equivalent to y, =0,29), the reflectivity of the irradiated
surface is simply assumed to be R=0. Spatial and temporal computational grid
characteristics: for the one-dimensional case, t=3 ps (equivalent to ¥ =8,72), divided into
10,000 time steps; for the two-dimensional case, t=1,5 ps (equivalent to y =4,3604),
divided into 10,000 time steps.
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Temperature changes at the excited point (X,=0), the middle of the medium
(X, =0,657) and at the end of the one-dimensional region (X, =1,293) were calculated

using the thermal wave propagation and double phase delay methods. Tables 1-3 illustrate the
calculated dependencies 7 =7(y) obtained using wavelet transforms for cases C1 — C6

(,=0;0,10,4;0,8;1,2; and 1.5, respectively).

Table 1

Wavelet performances for different y, (point X,)

4

n

C1

C2

C3

C4

C5

C6

0

0

0

0

0

0

0.5

1.104

1.259

1.340

1.365

1.418

1.468

1

0.712

0.867

0.939

0.984

1.021

1.077

1.5

0.562

0.717

0.794

0.830

0.870

0.921

2.0

0.482

0.641

0.710

0.752

0.787

0.838

2.5

0.401

0.554

0.622

0.663

0.717

0.763

3.0

0.367

0.526

0.603

0.628

0.675

0.736

3.5

0.322

0.476

0.542

0.592

0.626

0.675

4.0

0.295

0.459

0.535

0.568

0.604

0.648

4.5

0.241

0.409

0.470

0.503

0.547

0.602

5.0

0.237

0.399

0.473

0.514

0.547

0.590

5.5

0.230

0.394

0.466

0.491

0.546

0.599

6.0

0.228

0.390

0.452

0.506

0.548

0.580

6.5

0.221

0.387

0.451

0.488

0.523

0.574

7.0

0.216

0.373

0.437

0.496

0.528

0.575

7.5

0.214

0.372

0.446

0.484

0.518

0.569

8.0

0.211

0.371

0.445

0.478

0.530

0.569

Table 2

Wavelet performances for different », (point X, )

/4

n

C1

C2

C3

C4

C5

C6

0

0

0

0

0

0

0

0.5

0

0

0

0

0.026

0.031

1

0

0

0.042

0.050

0.054

0.058

1.5

0.081

0.110

0.253

0.293

0.405

0.471

2.0

0.342

0.264

0.407

0.454

0.554

0.631

2.5

0.275

0.252

0.390

0.441

0.538

0.611

3.0

0.264

0.247

0.390

0.432

0.531

0.605

3.5

0.253

0.245

0.381

0.432

0.543

0.607

4.0

0.258

0.241

0.386

0.429

0.533

0.602

4.5

0.256

0.237

0.377

0.423

0.526

0.598

5.0

0.252

0.235

0.368

0.423

0.527

0.596

5.5

0.250

0.232

0.376

0.418

0.529

0.581

6.0

0.248

0.230

0.375

0.422

0.528

0.572

6.5

0.241

0.228

0.364

0421

0.511

0.566

7.0

0.239

0.226

0.357

0.417

0.509

0.564

7.5

0.236

0.224

0.361

0.413

0.507

0.560

8.0

0.233

0.221

0.366

0.403

0.501

0.558
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Table 3

Wavelet performances for different y, (point X,)

¥ n
C1 C2 C3 C4 C5 C6
0 0 0 0 0 0
0.5 0 0 0 0 0 10.020
1 0 0 0 0 ]0.021 | 0.044
1.5 0 0 ]0.022 | 0.034 | 0.063 | 0.085

2.0 0 0 0.036 | 0.082 | 0.127 | 0.234
25 | 0.032 | 0.083 | 0.133 | 0.251 | 0.337 | 0.399
3.0 | 0.226 | 0.187 | 0.238 | 0.338 | 0.447 | 0.502
3.5 | 0.241 | 0.236 | 0.301 | 0.399 | 0.495 | 0.540
4.0 | 0.252 | 0.261 | 0.313 | 0.427 | 0.515 | 0.564
45 | 0.260 | 0.270 | 0.340 | 0.438 | 0.531 | 0.583
5.0 | 0.262 | 0.272 | 0.334 | 0.442 | 0.528 | 0.586
55 | 0.260 | 0.273 | 0.337 | 0.441 | 0.537 | 0.592
6.0 | 0.258 | 0.271 | 0.327 | 0.426 | 0.541 | 0.596
6.5 | 0.256 | 0.268 | 0.323 | 0.429 | 0.523 | 0.598
7.0 | 0.254 | 0.265| 0.329 | 0.416 | 0.518 | 0.602
7.5 | 0.253 | 0.264 | 0.321 | 0.433 | 0.527 | 0.604
8.0 | 0.252 | 0.263 | 0.326 | 0.413 | 0.519 | 0.606

5 DISCUSSION OF RESEARCH RESULTS

The calculation results indicate a shift of the extreme values of 7 relative to X =0 to
the region of large values . In addition, the increase in dispersion near the maximum

n=n(y) is smeared with increasing y,. The diffusive behavior becomes more dominant. The
tendency for the dispersion to increase becomes more and more pronounced for the responses
at X =X, and X =X,. At the midpoint (X ~ X, /2) the responses for y, =0 exhibit

typical wave behavior similar to an elastic wave, and the wave arrival time is instinctively
close to y =1,25. The propagation pattern of the thermal wave corresponds to the existence of

two regimes for the diffusion (y,=0,5) and superdiffusion cases (y,=15). For these

regimes, the time for the wave to completely pass through the sample is calculated with a
large error, since the thermal behavior is not wave-like. Comparison of the responses at
X =0,6283 with X =1,257 allows us to state that the temperature disturbance arrives at
almost the same time for these two positions. Consequently, the speed of the heat wave is
large enough for the diffusion and superdiffusion cases.

The changes in the temperature distribution in the computational domain have a clearly
expressed wave-like character. In this case, the pulsed thermal disturbance propagates in the
wave form. The value y=2,16 corresponds to a clear circular wave front, on which the
energy of the pulsed thermal disturbance is mainly concentrated. With increasing
dimensionless time ( = 4,38), the thermal energy is slowly absorbed by the medium.

Due to the increase of y,, the matrix Z plays a more important role in the damping term.

As a consequence, the temperature changes in the region after the wave front become sharper
compared to the wave-like behavior. When y, =0,5, all wave-like features disappear, the

disturbance caused by the pulse is completely transferred by diffusion. The wave front shape
is smoothed out and the characteristic temperature in this case is always the hot spot.
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Increasing y, to 1.5 is the reason for the occurrence of the super-diffusion regime. Compared
with normal diffusion, this value provides a higher diffusion rate at an early stage.

6 CONCLUSIONS

In this paper, an improved formulation of finite difference wavelet transforms is
developed to perform numerical experiments to describe the thermal characteristics in one-
dimensional and two-dimensional media. The simultaneous use of the central difference
scheme in time and the wavelet interpolation technique for spatial coordinates allowed us to
develop a hyperbolic model of thermal conductivity in two-dimensional structures. In order to
verify the calculations, the proposed algorithm was tested by comparing with classical finite
difference and spectral finite difference methods. The comparison was made taking into
account the parameters of accuracy and efficiency.

For the case of 2D media, different mesh geometries were tested for different types of
boundary conditions. The improved methods of describing thermal wave propagation and
double phase delay can be considered as an alternative tool for thermal analysis. It should be
noted that the use of the heat flux boundary condition in this calculation method requires
further development due to the accumulation of calculation errors of the finite difference
method. The wavelet-transforms of the state variable expressed in terms of finite differences
can provide a solution to this problem.
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