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Composites belong to those kinds of heterogeneous materials for which 

application in industry and everyday life is still expanding. The transient 
and steady-state temperature distribution in composite configurations 
consisting of several distinct thermally anisotropic subdomains have 
numerous applications to heat transfer problems in re-entry vehicles, air 
frames, nuclear reactors, etc.  The increased use of composite materials in 
the automotive, aerospace, and construction industries has motivated 
research into experimental techniques and solution methods to determine 
the thermal properties of these materials. Thermal processes occur in 
composite materials during their production or application. Heat transfer in 
composites is mainly due to heat conduction. Other modes of heat transfer 
are of importance only in special cases.   Studies carried out on composite 
media proved that effective properties of heat transfer in heterogeneous 
materials greatly depend on their microstructure. A large number of 
theoretical and numerical studies are devoted to obtaining a generalized 
formula for the thermal conductivity of composites, which would take into 
account the influence of geometric and thermophysical characteristics of 
inclusions on heat transfer processes. 

Numerous models have been proposed to predict macroscopic properties 
of composite material, knowing the properties and volume fractions of the 
constituents. The Maxwell model (model 1 - models whose formulas will be 
used in this paper are numbered for convenience) should be attributed to the 
first attempts to analytically describe the thermal conductivity coefficient of 
two-component media. He considered the problem of dilute dispersion of 
spherical particles of conductivity 1κ  embedded in a continuous matrix of 
conductivity mκ , where thermal interactions between filler particles were 
ignored. 

Rayleigh (model 2) considered material in the form of spherical 
inclusions arranged in a simple cubic array, embedded in a continuous 
matrix. The thermal interaction between particles had been taken into 
consideration in his study. 

 Hasselman and Johnson (model 3) emphasized that for a composite 
with a given shape of inclusion, the effective thermal conductivity depends 
on not only the filler volume fraction, but particle size as well. The authors 
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derived expressions for a continuous matrix phase with dilute 
concentrations of dispersions with spherical, cylindrical and flat plate 
geometry.   

Bruggeman assumed that a composite material may be constructed 
incrementally by introducing infinitesimal changes to an already existing 
material. The advantage of his scheme is that it covers a large number of 
materials, e.g. composites, nanofluids, porous materials, aerosols etc. Using 
Bruggeman’s approach, Every and Tzou obtained an expression for 
effective thermal conductivity of particulate composites. The formula has 
been verified by experimental measurements on ZnS/diamond composites 
with two particle sizes and varying percentages of filler. The advantages of 
Lewis-Nielsen empirical model (model 4) are its simplicity and coverage of 
a wide range of particle shapes and patterns.  

Chen et al. [1] proposed a model for polymer composites containing 
aligned hexagonal boron nitride (h-BN) platelets. They derived the model 
based on the unit cell selection and calculation of anisotropic thermal 
conductivity. Xu et al. [2] reconstructed the Maxwell model using a 
continuum approach with contact resistance among particles. They also 
developed a statistical model using a circuit network approach. 

Accounting for the effect of shape and size of fillers was the next 
obvious stage in the development of heat transfer models in composite 
materials, which contain an explicit analytical expression for effective heat 
conductivity. Chauhan et al. find out the effect of geometrical shapes such 
as spherical, elliptical and hexagonal fillers (graphite, copper and aluminum 
oxide) particles on the thermal conductivity of two-phase system [3].  

Kumlutas and Tavman the numerical study of variation of effective 
thermal conductivity for spheres in cube and cubes in cube systems for 
different conductivity ratio of filler and matrix [4].  

Most theoretical and experimental studies conclude that the effects of 
the shape and concentration of the filler on the effective thermal 
conductivity of the composites are decisive in comparison with the effects 
of the size of the filler particles on the processes of heat transfer in 
heterogeneous media. However, the experimentally discovered effects of 
contact heat transfer between the filler particles, especially for high 
concentrations indicate that the dispersion of the particle size of the filler 
should also be taken into account in analytical formulas for effective 
thermal conductivity. 

The purpose of this work is a comparative analysis of characteristic 
analytical expressions for the effective thermal conductivity of particle-
reinforced composites. In addition, the work plans to develop 
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recommendations for the unification of formulas for thermal conductivity 
while taking into account primarily the geometric parameters of the filler. 

The following explicit expressions for the effective thermal conductivity 
eκ  of composites are presented in the above models.  

Model 1.  
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where fκ  is the thermal conductivity of the filler; mκ  is the thermal 
conductivity of matrix; ϕ  is volume fraction of the filler.  

Formula (1) was found to be valid only in the case of low ϕ. 
Model 2. 
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Formula (2) includes an infinite series in the dominator in which higher 
order components are ignored. When ignoring all of them, equation (2) 
reduces to equation (1). Nevertheless, equation (2) is important as it 
includes analytical expressions of another type of composite – a continuous 
matrix reinforced with parallel cylindrical fibers arranged in uniaxial cubic 
array.  

Model 3. 
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where a  is filler particle radius; cκ  is thermal boundary conductivity. 
Model 3 formulas assume the following types of geometries: spherical 

(3), cylindrical (4) and flat plate (5). 
Model 4.  
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where α = rK /a; rK is Kapitza radius. 
A comparative analysis of the formulas for effective thermal 

conductivity was made using the following dimensionless values: κf /κm = 
10, κf /aκc = 5, α = 0.2. Therefore, it is necessary to take into account the 
geometric and thermophysical parameters associated with particle sizes, 
effects at the filler-matrix interface, and contact interparticle interaction 
when generalizing formulas 1-5 to the case of large values of filler 
concentrations. 

The experimental data performed by Tsekmes et al. [5] were analyzed in 
order to obtain an example of dependence κe = κe (a). The authors 
investigated composites of epoxy resin with alumina (Al2O3)  and silica 
(SiO2) microfillers. In the case of high filler concentrations (ϕ > 0.3) 
composites exhibit much higher thermal conductivity compared to neat 
polymers. Two important parameters can be claimed that play a major role 
in determining the thermal conductivity of composites, i.e. the thermal 
conductivity of the fillers and interaction between them.   

The results of the analysis led to the following analytical form of 
dependence )Km/(W,e ⋅κ  on m,a µ   

21 A)a(LnAe +=κ , 091201 .A = , 210202 .A −= , 681202 .R = .       (7) 
Summarizing the above, it can be argued that the considered models 1–4 

give similar expressions for the effective thermal conductivity of 
composites. To eliminate the discrepancies of the dependences 34 at high 
concentrations, it is necessary to take into account the nonlinear dependence 
of the effective thermal conductivity on the particle size of the filler. 

Therefore, formulas (1) – (6) can be written in the following generalized 
polynomial-logarithmic form 
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where ρm is matrix density; cm is the specific heat of matrix; υm is Debye 
velocity for matrix. 

Conclusions. Analytical expressions for the effective thermal 
conductivity of composites are analyzed according to basic homogeneous 
theories. Maxwell's and Rayleigh's models indicate higher values of 
effective thermal conductivity compared to Hasselman-Johnson and Lewis-
Nielsen models for high values of volume fraction of the filler. 
Discrepancies found in model predictions can be eliminated by taking into 
account the functional dependence of the thermal conductivity coefficient 
on the particle size of the filler. Approximate processing of experimental 
data indicates that such a dependence should be nonlinear. It is convenient 
to generalize the analyzed formulas for thermal conductivity in a 
polynomial-logarithmic form. 
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