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Prediction of transient responses, characterization of mechanical properties
and non-destructive evaluation is achieved by analyzing wave propagation in elastic
composite structures. Laminar composites are widely used in many industries,
including transportation, wind energy due to a number of advantages. These
advantages include higher specific strength and modulus, fewer joints, improved
fatigue life and higher corrosion resistance. Lamb wave-based structural health
monitoring allows for non-destructive evaluation using integrated actuators and
sensors [1]. Having a physical model of wave propagation in combination with
experimental measurements is a prerequisite for a complete characterization
(presence, location and severity) of damage.

Modeling shear wave propagation in composites is significantly more
challenging than modeling for isotropic structures [2, 3]. Analytical solutions for
wave propagation are not available for most practical laminar composite structures
due to the complex nature of the governing differential equations and boundary/initial
conditions. The finite element method is the most popular numerical method for
modeling wave propagation phenomena [4]. However, for accurate predictions
using the finite element method, usually a significant number of elements must span a
wavelength, which leads to a very large system size and huge computational costs for
wave propagation analysis at high frequencies. The spectral finite element method,
which follows the transformed frequency domain finite element modeling procedure,
Is very suitable for wave propagation analysis. The frequency domain formulation
of the spectral finite element provides a direct relationship between the output and
the input through the system transfer function (frequency response function). The
spectral finite element has very high computational efficiency because the nodal
displacements are related to the nodal tractions via a frequency-wave stiffness matrix
dependent on the number of waves. The mass distribution is accurately captured and
an accurate elemental dynamic stiffness matrix is derived.

In this paper, a 2-D wavelet finite element technique based on first-order shear
strain theory is advanced for high-frequency analysis of finite-size waveguides with
anisotropic material properties. The governing partial differential equations for the
wave motion and their time approximation using high-order Daubechies scaling
functions with compact support are presented. An eigenvalue analysis is performed
to separate the reduced partial differential equations in the spatial dimensions.
The separated partial differential equations are then approximated in one spatial
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dimension using Daubechies low-order scaling functions, followed by an eigenvalue
analysis similar to the time approximation. The resulting ordinary differential
equations are solved exactly in the frequency-wavenumber domain and the solution is
used as a shape function for a 2-D spectral element. Numerical relationships between
first-order shear deformation theory and classical laminated plate theory in dispersion
curves provide spectral relationships and represent the time-domain responses. The
results for the new wavelet-based spectral finite element formulation are validated by
simulations using shear flexible shell elements.

The improvement of the shear wave propagation model was based on the
modification of the governing differential equations for wave propagation. For this
purpose, a laminated composite plate of fixed thickness with the global coordinate
system origin in the mid-plane of the plate and a normal axis that is perpendicular
to the mid-plane was chosen as the working model. In particular, the first-order shear
deformation model leads to governing differential equations in partial derivatives for
wave propagation that have five degrees of freedom.

Without loss of generality in all essential aspects of the problem, a laminate
consisting of an arbitrary number of orthotropic layers such that the axes of symmetry
of the material are parallel to the lateral surfaces of the laminated composite plate.
The time approximation of the governing partial differential equations and the
boundary conditions have three independent spatial variables and their derivatives,
which makes them very complex to solve. Therefore, compactly supported
Daubechies scaling functions are used to approximate the time variable. This
procedure reduces the set of equations to partial differential equations with only
two spatial variables associated with the side surface of the composite specimen.
Compactly supported scaling functions have only a finite number of filter coefficients
with nonzero values, which allows for easy handling of finite geometries and
imposing boundary conditions.

Numerical calculations indicate that each shear wave mode corresponds to
a corresponding degree of freedom, which is present in the governing equations
based on the first-order deformation theory. The mode numbers represent the cutoff
frequencies for each degree of freedom, where the wave numbers change from
Imaginary to real. These cutoff frequencies record the progression of the shear wave
modes through the local volume of the laminated composite. Comparisons of the
group and phase velocity dispersion for the fundamental antisymmetric shear wave
mode revealed a large discrepancy at high frequencies, especially in the case of
composite laminates, which have a lower transverse shear modulus (compared to
isotropic materials).
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Haniiinicte cymHoBoi eHepretudHoi yctaHoBku (CEVY), mo ckiamgaerbes
3 n-CHCTEeM 13  HOMEpaMH  «i», BHU3HAYa€TbCd  TUIBKKM  BHUIAJIKOBHMH,
HEKOHTPOJIbOBAaHUMH (DaKTOpaMHu, TOOTO MOMEHTOM BHXOAY 3 JIaay il CHCTEM,
gKa MOXe IepedyBaTu TUIBKM B OJHOMY 3 JIBOX CTaHIB: mpaie3fgaTrHomMy abo
Henpate3garHomy. bynemo BBakatu, 1o ii cucreMu (MajvBHA, CUCTEMa 3MAIllCHHS,
CHUCTEMa OXOJIOJUKEHHS TOINO) 3'eAHaHl mociigoBHo. HemparnesgarHicTs (BuUXig 3
naay) onHiel cucTteMu TATHE 3a coboro Buxin 3 nany Bciei CEY. Tlo3naunmo uepes
ti — MoMmeHT Buxoay 3 nany i-toi cucremu. Tomi W kputepiit edexruBrocTi CEY,
akuil mokazye, mo g0 momeHTy t CEY mepeOyBana B mpare3gaTHOMy cTaHi a0o
B [0, 1] BTpaTuia mparne3narHicTb, MOYKHA 3aITUCATH Y BUTJISII:

W(t)=1’HpH t<minft] ,1<i<n.

1)
W(t)zo’ pi t2m|n[ti]’ 4 1<i<n
ne 1 — o3nauae nparnesnaraicts CEY.
Sk xpuTepiii MOKHa BUKOPUCTOBYBATH 1 caMm yac 1 6e3BimMoBHOT podotu CEY,
KU JTOPIBHIOE:

Bennunan ti € BumamkoBumu 13 3akoHamu posmomuty Pi(t), mo maroTh
iMOBIpHICTh Buxoay neBHOi cuctemu CEVY 3 nmany no momenty t. Takum yuHOM,
MPUCYTHI HEKOHTPOJbOBaHI BUMNAAKOBI (hakTtopu. OJHAK, CTparerisi MOKU TUIbKU
onHa, ockiibku KoHCTpyKuiss CEY moBHicTiO 3amana. IlinBuiieHHS HaIIMHOCTI,
t00TO Mpane3nariocti CEY no ganoro momenty tp abo 30uiblieHHs1 yacy pobotu 7,
MOKe OyTH JIOCATHYTO 32 paxXyHOK JyOIIOBaHHSI B KOXKHIM cuUCTeMI ii arperaris, sIKIIO
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