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An active area of experimental and theoretical research is to determine the 

relationship between microstructure and material properties such as mechanical, 
electrical, etc. [1]. Numerous studies have led to a better understanding of issues 
such as deformation, fracture, strength, electrical conductivity. However, it has 
been recognized that several open questions in this area could benefit significantly 
from recognizing that material heterogeneity (microstructure) is scale dependent, 
i.e. it is multiscale for (most) materials. Describing the relationship of material 
properties at different scales is quite a complex task [2]. Traditionally, problems of a 
multiscale nature, in particular the description of the porosity of inhomogeneous 
materials, are dealt with by different models using wavelet transforms. The 
composite wavelet matrix method consists of an approach in which different 
computational methodologies (molecular dynamics simulations, Monte Carlo 
simulations, and Potts Q-states) are applied to a region of a material simultaneously 
at coarse and fine spatial scales [3, 4]. 

Wavelet coefficient matrices are derived from energy maps representing the 
spatial distribution of local excess energy in microstructures. A complete 
description of the material is obtained by merging the wavelet coefficient matrices 
representing the material at different scales through a composite wavelet matrix. 
The composite wavelet matrix then characterizes the material over a range of 
different scales. This study complements the composite wavelet matrix method, 
since it deals with the definition of specific measures for comparing information at 
different scales. In addition, it is applicable to a general type of available data, such 
as from experiments, modeling, etc. Although the process is detailed in relation to 
multiscale porosity, it can be generally extended to various forms of material 
heterogeneity. The geometry of a porous medium can be described by a 
fundamental function, which is defined as one for spatial positions in the matrix 
and zero for positions in defects. The specific area of defects is defined as 
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where V is the infinitesimal volume; A is the portion of the solid–flaw interface 
crossing V;  is the autocorrelation function; q is the porosity; r is the spatial 
distance between two points.  
 
The wavelet  (x) transforms the function f (x) according to the formula 
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obtained from a single family, , called the mother wavelet, by expansion by a factor 
a and translation by a factor b. Here D denotes the spatial dimension of the problem 
and a  R+; a  0; and b, x  RD. 

Discrete wavelet analysis based on orthogonal decomposition of the signal 
can be performed using fast algorithms. Given a wavelet transform Wf (a, b), 
associated with a function f, it is possible to reconstruct f and/or construct its 
representation in a range of multi-scales between s1 and s2 (s1  s2) 
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By setting s1 → 0; s2 → 1; function f may be reconstructed. 
The magnitude of the variance Wf (a, b) can be used to estimate the energy of 

the wavelet transform as a function of the scale a. In this case, the estimate in 
Fourier space allows us to write the following relation 
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where Pf (k) is the power spectrum of f. 
 

As a special case, we can consider the influence of porosity on the 
representative property, i.e. mechanical failure. The ratio of the macroscopic 
(nominal) failure stress c to the failure stress of the background homogeneous 
system (matrix material without pores), 0 is expressed as 
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where q is the volume fraction of voids; 1/[2(D – 1)]    1. 
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Summary and conclusions. The general process of information binding is 
considered in this calculation method and is studied in detail with respect to 
statistically stationary and isotropic porous media. An example of application is 
mechanical failure; however, the process is general enough and can be extended 
to any properties where scale hierarchy is important. The definition of a dominant 
scale or range of scales is a natural consequence of the multiscale description. 
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