УСТОЙЧИВОСТЬ УПРУГИХ ОБОЛОЧЕК С ЛОКАЛЬНЫМИ ОГРАНИЧЕННЫМИ НЕСОВЕРШЕНСТВАМИ СРЕДИННОЙ ПОВЕРХНОСТИ

Дорофеев В.С., Коломийчук Г.П. (Одесская государственная академия строительства и архитектуры)

Визначені найменші критичні навантаження й форми втрати стійкості симетричних моделей пологих оболонок додатної кривизни з локальними недосконалостями форми при шарнірному обпиранні. Виявлений вплив обмежених локальних вм'ятин (4,4), (6,6) на поведінку пологих оболонок у пружній стадії роботи матеріалу.

Решение задачи о потере устойчивости упругих оболочек двоякой кривизны для объяснения различий теоретических и экспериментальных данных выполненных с использованием метода начальных несовершенств. Согласно этому методу вместо совокупности всех начальных несовершенств оболочки, вводится начальное эквивалентное отклонение от идеальной формы W_0^3 [1]. Обычно величина W_0^3 раскладывается в функциональный ряд с неизвестными коэффициентами и исследуется их влияние на величину W_0^3 критической нагрузки [2]. Но так как начальные несовершенства носят случайный характер, то задание этих коэффициентов становится некой самостоятельной задачей, связанной с конкретной технологией изготовления и статистическим анализом несовершенств. Более перспективным представляется другой путь [3]. Можно задать ограничения на величину (рис. 1) и найти такие значения коэффициентов, которые в наибольшей степени уменьшают критическую нагрузку при этих ограничениях.

Многочисленные обмеры реальных конструкций показали, что фактически начальные несовершенства не имеют регулярного распределения, а носят локальный характер, распространяясь в ограниченной области [4 - 9].

Выделим форму несовершенства в виде локальной ограниченной вмятины (рис. 2). Здесь k – максимальное амплитудное значение в центре вмятины ($k \le h$, где h – толщина оболочки). Положение вмятины на плане оболочки определяется точками конечно-разностной сетки, совпадающими с центром вмятины (i, j). Минимальные размеры вмятины на плане оболочки зависят от расстояния между узлами конечно-разностной сетки и назначаются таким образом, чтобы количество узлов в направлении координатных осей X(Y) было не менее трех внутри области вмятины. В узлах определяются аппликаты отклонения геометрии вмятины от срединной поверхности оболочки и служат исходными данными при формировании разрешающей системы уравнений [10].

оболочки

Гладкие оболочки положительной гауссовой кривизны при действии равномерно распределенной «мертвой» нагрузки теряют устойчивость по-разному, в зависимости от параметра кривизны [11].

Будем различать пологие оболочки по величине параметра кривизны / $\bar{k} = a^2/(R_1 h) + b^2/(R_2 h)$ / так: $\bar{k} \le 60$ – малая; $60 < \bar{k} \le 200$ – средняя; $200 < \bar{k} \le 1000$ – большая; $\bar{k} > 1000$ – очень большая.

Оболочки малой кривизны $\bar{k} < 60$ теряют устойчивость с прощелкиванием всего поля; средней, большой и очень большой кривизны выпучиваются с образованием изолированной одиночной вмятины в углу, захватывающей не более 10% поверхности оболочки.

Для числового эксперимента выделим симметричный случай расположения вмятины на плане оболочки. Закрепление на контуре – шарнирное. Изменение параметра кривизны в диапазоне от $\bar{k} = 40$ до $\bar{k} = 800$.

Влияние положения вмятины на деформирование квадратной оболочки при малых нагрузках определялось для всех точек 1/8 части плана и трех параметрах кривизны: $\bar{k} = 26$ (малая), $\bar{k} = 120$ (средняя) и $\bar{k} = 600$ (большая). Результаты приведены в таблице 1.

Из таблицы 1 следует, что локальные вмятины сильно влияют на деформирование оболочки малой кривизны, увеличивая прогиб в 2,8 раза в сравнении с совершенной оболочкой. Максимальный прогиб, при разных положениях вмятины, чаще всего наблюдается в центре оболочки. Наибольший прогиб оболочки средней кривизны возрос в 2 раза и его расположение перемещается по полю оболочки за центром локальной вмятины. Оболочки большой кривизны на несовершенства формы реагирует слабо.

В таблице 2 приведены значения максимального относительного дополнительного прогиба для разного положения вмятины на плане оболочки в момент потери устойчивости. На рисунках 3 – 5 показаны формы потери устойчивости совершенной и двух несовершенных оболочек с локальными вмятинами в узлах (4,4) и (6,6).

Самой неблагоприятной вмятиной для оболочек с кривизной $(\bar{k}) = 40$ оказалась вмятина (6,6); для оболочек с кривизной $(\bar{k}) = 120 - (3,3)$; для остальных подъемистостей – вмятина (2,2). Вмятины (4,4), (6,6) и (7,7) при кривизнах $(\bar{k}) > 600$ увеличивают значение критической нагрузки.

Таблица 1

Узел центра	Относительный дополнительный прогиб (\overline{w})							Узел конечно-		
							разностной сетки с			
	в центре			максимальный			максимальным			
вмятины (<i>i</i> , <i>j</i>)							прогибом			
(13)	кривизна (к)			кривизна ($ar{k}$)			Кривизна (к)			
	26	120	600	26	120	600	26	120	600	
1	2	3	4	5	6	7	8	9	10	
Совершенная	0,137	0,129	0,193	0,137	0,134	0,193	7,7	4,4	7,7	
2,2	0,133	0,109	0,184	0,133	0,123	0,206	7,7	3,3	2,2	
2,3	0,135	0,104	0,185	0,135	0,171	0,208	7,7	2,3	2,3	
2,4	0,154	0,094	0,184	0,154	0,172	0,204	7,7	2,4	3,4	
2,5	0,186	0,090	0,181	0,186	0,155	0,197	7,7	2,5	3,5	
2,6	0,205	0,091	0,183	0,205	0,143	0,193	7,7	2,6	3,6	
2,7	0,165	0,105	0,186	0,165	0,160	0,199	7,7	3,7	3,7	
3,3	0,126	0,126	0,191	0,126	0,253	0,225	7,7	3,3	3,3	

Относительный прогиб по точкам конечно-разностной сетки расчетной модели оболочки

3,4	0,135	0,130	0,195	0,135	0,267	0,230	7,7	3,4	3,4
3,5	0,151	0,129	0,193	0,151	0,236	0,222	7,7	3,5	3,5
3,6	0,169	0,130	0,193	0,169	0,210	0,214	7,7	3,6	3,6
3,7	0,158	0,126	0,192	0,158	0,246	0,221	7,7	3,7	3,7
4,4	0,124	0,126	0,201	0,124	0,260	0,237	7,7	4,4	4,4
4,5	0,138	0,121	0,198	0,139	0,239	0,230	5,6	4,5	4,5
4,6	0,174	0,124	0,195	0,188	0,216	0,225	5,7	4,6	4,6
4,7	0,156	0,121	0,190	0,164	0,245	0,229	5,7	4,7	4,7
5,5	0,128	0,098	0,193	0,138	0,211	0,223	5,5	5,5	5,5
5,6	0,194	0,104	0,180	0,211	0,198	0,219	5,7	5,6	5,6
5,7	0,181	0,107	0,171	0,191	0,222	0,225	6,7	5,7	5,7
6,6	0,375	0,148	0,187	0,375	0,181	0,215	7,7	6,6	6,6
6,7	0,282	0,180	0,198	0,282	0,204	0,220	7,7	6,7	6,7
7,7	0,211	0,222	0,225	0,211	0,222	0,225	7,7	7,7	7,7

Таблица 2

Максимальный относительный прогиб потери устойчивости оболочек разной подъемистости

x 7	Максимальный относительный дополнительный прогиб (w)								
Узел центра вмятины	а кривизна ⁽ k)								
	40	120	200	400	600	800			
1	2	3	4	5	6	7			
	1,199 /7,7/	0,827 /3,3/	0,655 /3,3/	0,656 /2,2/	0,844 /2,2/	1,056 /2,2/			
2,2	1,254 (7,7)	0,715 (3,3)	0,208 (2,2)	0,351 (2,2)	0,562 (2,2)	0,787 (2,2)			
3,3	1,053 (7,7)	0,570 (3,3)	0,570 (3,3)	0,684 (2,2)	0,844 (2,2)	1,053 (2,2)			
4,4	1,526 (7,7)	0,605 (4,4)	0,671 (4,4)	0,991 (4,4)	0,998 (4,4)	1,127 (4,4)			
6,6	0,706 (7,7)	0,801 (6,6)	0,706 (6,6)	0,742 (6,6)	0,859 (6,6)	1,056			
						(2,2)			
7,7	0,902 (7,7)	0,626 (7,7)	0,647 (7,7)	0,881 (7,7)	0,917 (7,7)	1,062			
						(7,7; 2,2)			

Рис. 3. Формы потери устойчивости: совершенные оболочки

Рис. 4. Формы потери устойчивости: оболочки с вмятиной /4,4/

Рис. 5. Формы потери устойчивости: оболочки с вмятиной /6,6/

Выводы

1. Определены наименьшие критические нагрузки и формы потери устойчивости симметричных моделей пологих оболочек положительной кривизны с локальными несовершенствами формы при шарнирном опирании.

2. Выявлено влияние ограниченных локальных вмятин (4,4), (6,6) на поведение пологих оболочек в упругой стадии работы материала.

Summary

The minimal critical loadings and forms of the stability lost of the symmetric positive gayssian curved models of the shells with local imperfections were determinated.

Литература

1. Доннелл Л.Г. Балки, пластины и оболочки. – М.: Наука, 1982. – 568 с. 2 Григолюк Э.И., Кабанов В.В. Устойчивость оболочек. М.: Наука, 1978. - 360 с. 3. Якушев В.Л. Определение экстремальных критических нагрузок при заданных ограничениях на начальные неправильности // Вопросы гидродинамики, аэрофизики и прикладной механики. – М.: Изд. МФТИ, 1985. – С. 117-123. 4. Волосович О.В., Тимашев С.А. Начальные несовершенства и форма потери устойчивости прямоугольных выпуклых оболочек // Труды 8 Всесоюзной конференции по теории оболочек и пластин. – М.: Наука, 1973. - С. 254-258. 5. Зингер И. Колебания и устойчивость полкрепленных оболочек с начальными прогибами – новые результаты // Потеря устойчивости и выпучивание конструкций: теория и практика. Труды Лондонского симпозиума. – М.: Наука, 1991. – С. 348-375. 6. Кантор С.Л. Экспериментальное исследование несовершенных пологих оболочек положительной кривизны при действии распределенной нагрузки // Надежность и качество строительных конструкций. - Куйбышев, 1982. - С. 44-47. 7. Тимашев С.А. Устойчивость подкрепленных оболочек, – М.: Стройиздат, 1974. – 256 с. 8. Тонкостенные оболочечные конструкции: теория, эксперимент и проектирование // Сборник трудов. -М.: Машиностроение, 1980, - 607 с. 9. Чуриков Б.В., Шишалов Ю.П. Учет влияния начальных несовершенств на устойчивость штампованных сферических оболочек // Строительная механика и расчет сооружений, 1978. – № 6. – С. 28-31. 10. Коломийчук Г.П., Ярцев А.В. Влияние локальных ограниченных вмятин на трещинообразование пологих железобетонных оболочек // Вісник ОДАБА. – Одесса: ВМК «Місто майстрів». – 2001. – № 3. – С. 54-57. 11. Тимашев С.А. Рекомендации по расчету подкрепленных положительной оболочек кривизны устойчивость. Свердловск: на Уралпромстройниипроект, 1974. – 76 с.