ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ РАБОТЫ ПРИОПОРНЫХ УЧАСТКОВ ЖЕЛЕЗОБЕТОННЫХ БАЛОК ПРИ ДЛИТЕЛЬНОМ ВОЗДЕЙСТВИИ НАГРУЗКИ

Дорофеев В.С., Карпюк В.М., Неутов С.Ф., Макарук В.П., Неутов А.С. (Одесская государственная академия строительства и архитектуры, г. Одесса)

Стаття присвячена експериментальному дослідженню роботи приопорних ділянок залізобетонних балок при тривалій дії навантаження високого рівня.

В настоящий момент накоплено значительное количество экспериментальных данных посвященных работе приопорных участков железобетонных балок при кратковременном нагружении[1,2 и др.]. Значительно меньшее количество публикаций посвящено изучению влияния на их напряженно-деформированное состояние длительно действующей нагрузки[3,4 и др.]. Комплексная оценка влияния класса бетона, продольного и поперечного армирования, величины пролета среза на прочность, жесткость и трещиноустойчивость исследуемых элементов при длительно действующих нагрузках еще не сделана. Отчасти это обусловлено тем, что большинство исследователей ограничивались одним-двумя факторами, что сильно затрудняет сопоставление полученных ими результатов.

В связи с этим на кафедре сопротивления материалов ОГАСА были начаты системные экспериментальные исследования [5] несущей способности приопорных участков обычных, предварительно напряженных и статически неопределимых железобетонных балок.

Рассматриваемые в статье экспериментальные исследования являются частью выполняемых системных исследований и направлены на изучение влияния различных факторов на работу приопорных участков железобетонных балок при высоких уровнях длительно действующей поперечной нагрузки порядка . Исследуемые факторы, уровни и интервалы их варьирования показаны в табл.1.

Так как исследуемые факторы могут влиять на функцию "выхода" нелинейно, а значит ее целесообразно аппроксимировать полиномом второй степени, то опытные образцы всех серий опытов изготавливали по пятифакторному трехуровневому, близкому по свойствам к Д - оптимальному, плану типа Ha5 [6], обеспечивающему одинаковую точность прогнозирования выходного параметра в области, описываемой радиусом, равным 1 относительно "нулевой" точки.

Таблица 1

Two may 1							
Исследуемые факторы I серии		Уровни варьиров.			Интервал варьиро- вания	Примеч.	
Код	Натуральные значения	«-1»	«0»	«+1»			
X_1	Относительный пролет среза, а/h ₀	1 (17,5см)	2 (35,0см)	3 (52,5см)	1 (17,5см)	L=9h ₀ =157,5см; h ₀ =17,5см;	
X_2	Класс бетона, В, мПа	B15	B25	B35	10	b=10,0см; s=8,25см.	
X ₃	Коэфф.поперечного армирования, μ_{sw} (BI)	0,0016 (2Ø3)	0,0029 (2Ø4)	0,0045 (2Ø5)	≈0,00145		

X_4	Коэффициент продольного рабочего армирования, µ _s (A500C)	0,0129 (2Ø12)	0,0176 (2Ø14)	0,0230 (2Ø16)	≈0,00505
X_5	Коэффициент прод. армирования сжатой зоны, μ_s (A500C)	(2 Ø8) 0,0058	(2 Ø10) 0,0090	(2 Ø12) 0,0129	≈0,00355

План эксперимента при длительном действии нагрузки в натуральных значениях факторов и общий объем экспериментальных исследований приведен в табл. 2.

Как видно из табл. 2, эксперименты выполняются не по полному плану типа На 5, а на так называемых "нулевых" опытах основной серии в виду большой трудоемкости проводимых исследований.

В качестве экспериментальных образцов были использованы железобетонные балки прямоугольного сечения с номинальными размерами 100x200x2000мм из тяжелого бетона, армированные двумя плоскими сварными каркасами, объединенными в пространственный каркас. Продольное армирование выполнено арматурой класса A500C. В качестве поперечной арматуры была принята арматура класса Вр-I.

Таблица 2

	Марка балки	План з					
			Vnanyyy				
№ опыта		a/h ₀	В, мПа	μ _{sw} ,(BI)	μ _{sh} , (A 500C)	$\mu_{s}^{/}$, (A 500C)	Уровни внешней нагрузки
1	2	3	4	5	6	7	8
17-д	17-д1 17-д2 17-д3 17-д4	3	B25	0,0029 (2Ø4см)	0,0176 (2Ø14см)	0,0090 (2Ø10см)	Q_u $0.95Q_u$ $0.90Q_u$ $0.85Q_u$
18-д	18-д1 18-д2 18-д3 18-д4	1	B25	0,0029 (2Ø4см)	0,0176 (2Ø14см)	0,0090 (2Ø10см)	Q_u $0.95Q_u$ $0.90Q_u$ $0.85Q_u$
19-д	19-д1 19-д2 19-д3 19-д4	2	B35	0,0029 (2Ø4см)	0,0176 (2Ø14см)	0,0090 (2Ø10см)	Q_u $0.95Q_u$ $0.90Q_u$ $0.85Q_u$
20-д	20-д1 20-д2 20-д3 20-д4	2	B15	0,0029 (2Ø4см)	0,0176 (2Ø14см)	0,0090 (2Ø10см)	Q_u 0,95 Q_u 0,90 Q_u 0,85 Q_u
21-д	21-д1 21-д2 21-д3 21-д4	2	B25	0,0045 (2Ø5см)	0,0176 (2Ø14см)	0,0090 (2Ø10см)	Q_u $0.95Q_u$ $0.90Q_u$ $0.85Q_u$
22-д	22-д1	2	B25	0,0016	0,0176	0,0090	Q_u

	22-д2			(2Ø3см)	(2Ø14см)	(2Ø10см)	$0,95Q_{u}$
	22-д3						$0.90Q_u$
	22-д4						$0.85Q_{u}$
	23-д1						Q_u
23-д	23-д2	2	B25	0,0029	0,0230	0,0090	$0,95Q_{u}$
23-д	23-д3	2	D23	(2Ø4см)	(2Ø16см)	(2Ø10см)	$0,90Q_{u}$
	23-д4						$0.85Q_{u}$
	24-д1						Q_u
24-д	24-д2	2	B25	0,0029	0,0129	0,0090	$0.95Q_{u}$
2.7	24-д3	2		(2Ø4см)	(2Ø12см)	(2Ø10см)	$0,90Q_u$
	24-д4						$0.85Q_{u}$
	25-д1	2	B25				Q_u
25-д	25-д2			0,0029	0,0176	0,0129	$0.95Q_u$
	25-д3			(2Ø4см)	(2Ø14см)	(2Ø12см)	$0.90Q_u$
	25-д4						$0.85Q_{u}$
	26-д1			0.000	0.04=	0.0070	Q_u
26-д	26-д2	2	B25	0,0029	0,0176	0,0058	$0.95Q_{u}$
	26-д3			(2Ø4см)	(2Ø14см)	(2Ø8см)	$0.90Q_u$
	26-д4						$0.85Q_u$
	27-д1	2	B25	0.000	0.01-	0.0006	Q_u
27-д	27-д2			0,0029	0,0176	0,0090	$0.95Q_{u}$
	27-д3			(2Ø4см)	(2Ø14см)	(2Ø10см)	$0,90Q_u$
	27-д4						$0.85Q_{u}$

Перед изготовлением опытных балок на продольную сжатую и растянутую арматуру одного из плоских каркасов серий I были наклеены тензорезисторы КФ5П1-5-200 (базой 5мм), с соблюдением рекомендуемой заводом-изготовителем (ООО "Веда", г. Киев) технологии. Цепочки тензорезисторов клеятся таким образом, чтобы была возможность определять продольные и поперечные силы, а также изгибающие моменты, воспринимаемые непосредственно арматурными стержнями. Показания тензорезисторов фиксируются в автоматическом режиме специально разработанной для этой цели приставкой к ПК. Частота опроса составляет от 1 сеукунды до 5 минут.

Для изготовления опытных балок использовали обычный тяжелый бетон класса В15, В25 и В35 на гранитном щебне фракций 5...10мм, кварцевом песке с модулем крупности 1,5. В качестве вяжущего использовали обычный портландцемент марки 400 без добавок. Для уменьшения водоцементного отношения, улучшения удобоукладываемости бетонной смеси и сокращения сроков набора прочности бетона во всех опытах использовали комплексную добавку Релаксол-Супер М (аттестат аккредитации НААУ № ИА 6.002.Н.592, сертификат соответствия ISO 9001 № 04.156.026) в количестве 1% от веса цемента в пересчете на сухое вещество.

До начала системных экспериментальных исследований были апробированы опытные составы бетонов, которые использовались в дальнейшем для изготовления опытных балок.

В процессе бетонирования балок в каждом опыте из той же бетонной смеси изготавливали по 6 бетонных кубиков 100x100x100мм и 6 призм 300x100x100мм, которые впоследствии испытывали в возрасте 28 суток и за один день до начала основных испытаний в соответствии с требованиями действующих Норм. Для уменьшения усадочных деформаций и обеспечения нормальных условий твердения бетона опытных образцов в течение 90...100 суток их выдерживали под целлофановой пленкой с влажными опилками при близкой к 100%-ной влажности и температуре 16...24°C.

Каждая серия состояла из 4х балок, одна из которых подвергалась кратковременному нагружению до разрушения, а остальные 3 - длительному нагружению, соответственно, с уровнем нагрузки 0,85; 0,90 и 0,95 от разрушающей.

Балки подвергались ступенчатому нагружению с выдержкой по 15 минут на каждой ступени до расчетного уровня.

Для испытания опытных балок была запроектирована и изготовлена специальная универсальная силовая установка.

Плоский поперечный изгиб опытных балок в силовой установке создается по общепринятой методике.

Для контроля постоянства приложенной нагрузки опоры балки выполнены в виде кольцевого динамометра и трубчатой стойки кольцевого сечения с наклеенными на нее тензорезисторами.

Деформации бетона и рабочей продольной арматуры в расчетных сечениях, измеряли тензодатчиками и контролировали механическим способом с помощью индикаторов часового типа.

В процесс испытаний тщательно следили за появлением и развитием нормальных а также наклонных трещин: при кратковременном действии нагрузки - на каждой ступени нагружения, при длительном действии нагрузки - с некоторой периодичностью. Ширину раскрытия нормальных трещин замеряли на уровне центра тяжести продольной арматуры, а наклонных трещин - на уровне продольной арматуры и посередине высоты балки. Замеры производились с помощью переносного микроскопа МПБ-2 с ценой деления 0.05мм.

Выводы, полученные на основании испытаний полного спектра фактора "X2"(класс бетона В, МПа) и неполного спектра фактора "X4"(количеству продольной рабочей арматуры μ_s):

1. По характеру образования и развития трещин (рис. 1, табл. 3):

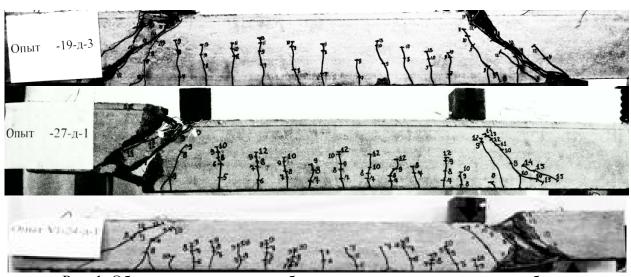


Рис. 1. Общая картина трещинообразования и разрушения опытных балок

Ширина раскрытия трещин в опытных балках

	Величина		нормальных	max a _{crc} наклонных трещин,		
Класс	нагрузки F , кН (после догружения)	треп	цин, мм	MM		
бетона		При	При длит.	При	При длит.	
Octona		кратковр.	нагр.	кратковр.	нагр.	
		нагр.	(после догр.)	нагр.	(после догр.)	
	144	0,1	-	1	-	
B15	128	0,05	0,1	0,95	1,55	
D13	120(144)	0,05	0,05(0,1)	0,5	1,3(2,5)	
	120(163,2)	0,1	0,1(0,1)	0,8	1,6(2)	
	192	0,15		0,85		
B25	178	0,15	0,2(0,2)	0,55	1,1(1,35)	
D23	173	0,1	0,1	0,7	1,55	
	168	0,15	-	0,5		
	232	0,2	-	0,7	-	
B35	216(248)	0,2	0,25(0,25)	0,75	1,3(1,55)	
ВЗЗ	232	0,15	-	1,1	-	
	216(248)	0,2	0,2(0,2)	0,75	1,5(1,6)	

1.1. Прослеживается влияние класса бетона на начальный момент образования нормальных и наклонных трещин: с увеличением класса бетона момент, соответствующий появлению нормальных, и поперечная сила, соответствующая появлению наклонных трещин несколько увеличивается, хотя ее рост и отстает от роста класса бетона.

Максимальная ширина раскрытия опасной наклонной трещины заметно уменьшается с ростом класса бетона.

1.2. Процесс трещинообразования в исследуемых балках начинался, как правило, с появления нормальных трещин в зоне чистого изгиба при уровне нагрузки (0,15...0,33) от разрушающей.

Наклонные трещины появлялись несколько позже, а именно, при уровне нагрузки близких к 0,5 от разрушающей. При минимальном проценте армирования наклонные трещины являлись продолжением нормальных. При относительно большом проценте рабочего продольного армирования первые наклонные трещины появлялись посередине высоты балки в "пролете среза".

При уровне нагрузки, близком к 0,7, процесс образования новых трещин, практически, прекращается, и, естественно, еще интенсивнее раскрываются уже существующие трещины.

1.3. Следует отметить, что, если при действии постоянной длительно действующей нагрузки ширина раскрытия нормальных трещин увеличивалась в среднем в 1,2-1,5 раза, то ширина раскрытия наклонных трещин - в 2,5-3 раза.

Экспериментально установлено также, что в процессе увеличения нагрузки до разрушения ранее длительно нагруженных балок ширина раскрытия нормальных трещин осталась практически неизменной, а ширина раскрытия наклонных трещин увеличилась в 1,2-1,7 раза. При этом разрушающая нагрузка для балок, ранее нагруженных длительно действующей нагрузкой уровня 0,85 от разрушающей выросла на 13-15% по сравнению с кратковременным нагружением.

- 1.4. Ширина раскрытия наклонных трещин по длине приопорного участка балки была разной. Наибольшая ширина раскрытия наблюдалась посередине высоты сечения приопорных участков балок.
 - 2. По развитию прогибов (Таблица 4):

- 2.1. С ростом класса бетона величина разрушающей нагрузки увеличивается и, как следствие, увеличиваются прогибы балок.
- 2.2. Прогибы опытных балок при длительной нагрузке превышают таковые при кратковременной нагрузке того же уровня, в среднем, на 10-15%.
- 2.3. При догружении балок со стабилизированными прогибами до разрушения величины максимальных прогибов превысили таковые при кратковременом нагружении балки той же серии до разрушения на 25-45% в зависимости от класса бетона: чем выше класс бетона, тем больше величина максимальных прогибов.

Summary

The article is devoted to the experimental research of the support sections of reinforced concrete beams under the high levels of steady loading.

Величина прогибов опытных балок

Таблица 4

V на се	Суммарная величина	Максимальный прогиб, мм			
Класс бетона	нагрузки F , к H (после	При кратковр.	При длит.		
ОСТОНа	догр.)	нагр.	нагр. (после догр.)		
	144	10,6			
B15	128	10,09	11,11		
D13	120(144)	8,62	11,43(14,18)		
	120(163,2)	9,04	10,76(13,2)		
	192	12,15			
B25	178	10,21	11,12(13,59)		
D23	173	9,60	11,125		
	168	9,01	10,87(15,71)		
	232	13,35	-		
D25	216(248)	12,6	16,03(19,22)		
B35	232	12,65	-		
	216(248)	12,9	14,6(16,45)		

- 1. Прокопович И.Е. Влияние длительных процесов на напряженное и деформированное состояние сооружений. М.: Стройиздат, 1963. 260 с.
- 2. Масюк Г. Х., Задачі та методика експериментальних досліджень міцності та тріщиностійкості похилих перерізів згинальних залізобетонних елементів, що зазнають впливу малоциклового знакозмінного навантаження.
- 3. Родевич В.П. Совершенствование метода расчета железобетонных балок по наклонным сечениям при статическом и кратковременном динамическом нагружении. Дис. на соиск. уч. степени канд. техн. наук. 2005. 174 с.
- 4. Залесов А.С. Максимов Ю. В. Исследование ширины раскрытия наклонных трещин в изгибаемых элементах // Бетон и железобетон. 1988. №3. с.25-27.
- 5. Дорофеев В.С., Карпюк В.М., Аветисян А.Г., Крантовская Е.Н., Карпюк Ф.Р., Шепетюк Н.И., Ярошевич Н.Н. О необходимости и постановке системных экспериментальных исследований прочности, трещиностойкости и деформативности приопорных участков изгибаемых железобетонных элементов, испытывающих сложные деформации с целью уточнения и развития методов их расчета. // Будівельні конструкції/ 3б. наук. праць. Вип. 62- Київ, НДІБК, 2005. С. 160-167.
- 6. Вознесенский В.А. Статистические методы планирования эксперимента в технико-экономических исследованиях 2-е изд., испр. и доп.- М: Финансы и статистика, 1981, С.215.