ПРЕОБРАЗОВАНИЕ ЭНЕРГИИ МЕЖАТОМНЫХ СВЯЗЕЙ ВЫСОКОПРОЧНОГО ГИПСА

Кучеренко А.А. (Одесская государственная академия строительства и архитектуры)

Енергія міжатомних зв'язків складових визначає якість високоміцного гіпсу. Знання технології перетворення її від вихідної сировини до кінцевого продукту, вміння слабкі зв'язки замінити на сильні — шлях до конструювання гіпсобетону заданих властивостей.

Химическая связь — это взаимодействие атомов, в результате которого высвобождается энергия. Количество этой энергии служит мерой оценки силы связи. Множество связей и их величин, трансформирующихся в процессе превращения вяжущего (порошка) в конечный продукт (камень), определяют и технические (прочностные и др.) характеристики последнего. Необходимость разработки теоретических и практических основ компьютерного бетоноведения очевидна, а потому знание трансформации энергии связей в технологии бетона актуально. К тому же знание этого может позволить технологу убрать слабые связи и обратить внимание (а возможно и добавить) на сильные связи.

Известно, что полная энергия межатомных связей складывается из кинетической и потенциальной. Наше внимание обращено к потенциальной энергии, характеризующейся силами притяжения (отталкивания) при синтезе атомов исходного сырья, полуфабриката и бетона. При этом оценивается конечное состояние каждой системы (гидратация, отвердевание) и не учитывается кинематическое движение одной системы к другой или нахождение их в тех или иных условиях.

В исследованиях предполагается изучить потенциальную энергию межатомных связей гипсового, известкового и цементного вяжущих с целью более глубокого понимания процессов их как отвердевания, так и поведения их в разных эксплуатационных средах. Присутствие определенной идеализации в подходе к решению поставленной задачи объясняется отсутствием некоторых литературных данных: например, точной энергии связей одного и того же типа, но в разных молекулах, минералах, разных исследователей и т.п. Неизбежностью принятия неординарных решений: невозможно одну молекулу, например, воды отделить от другой, точно подсчитать количество разных минералов в объеме зерна вяжущего и др. Однако на данный момент у технолога-строителя два выбора: или вообще ничего не считать или считать с перспективой улучшения методов и качества теоретических расчетов.

В наших расчетах и последующих исследованиях принят метод СТРЭМ (системнотехнологическое расчетно-экспериментальное моделирование) объекта, находящегося в технологическом режиме или в окружающей среде. В общем случае это система под названием «объект-среда», состоящая из мелких локальных систем, изменяющихся (преобразующихся в другие) в технологической последовательности, теоретический расчет физико-химического взаимодействия объекта со средой и на основе последнего, экспериментальной проверки результатов расчета [1].

Мы исходим из того, что окислительно-восстановительные процессы вяжущего с водой, с окружающей средой или с условиями эксплуатации служат не только единственным источником электрической энергии. Они протекают и при участии всегда существующей в вяжущем внутренней электрической энергии. Что есть две технологии преобразования потенциальной энергии межатомных связей: физико-химическая и химико-физическая.

Физико-химическая, когда физические процессы предшествуют химическим, когда энергетический процесс направлен к сближению и к сокращению расстояния между

соседними атомами (частицами), что ведет к химическому процессу - к синтезу – с последующим процессом гибридизации с уменьшением и стабилизацией длины межатомных связей. Физико-химическая технология ведет к созиданию, конструированию продукта.

Химико-физическая технология процессов преобразования потенциальной энергии межатомных связей, когда минералы и новообразования зрелого бетона химически взаимодействуют с окружающей средой и образуют новые твердые вещества. Вслед за химическим процессом наступает физический: новые твердые вещества требуют себе место, не находят его, раздвигают соседние атомы, удлиняют и разрывают связи между ними. Это приводит к разрушению, коррозии бетона. Здесь нет места адаптации.

При физико-химической технологии надо привносить активное вещество или создавать условия, способствующие сокращению связей, при химико-физической - сохраняющие длину связей и их энергию.

Системы «электронные связи — гипс» и «электронные связи - вода затворения» отражают качество исходного сырья, (CaSO₄ и H_2O) его внутреннюю потенциальную энергию. Поэтому рассмотрены схемы взаимодействия атомов, например H_2O как H-O-H с двумя связями, энергией этих связей, количеством их и др. B расчетах принят 1 кг $CaSO_4$ и необходимое для его гидратации химически связанное количество воды согласно уравнения $CaSO_4 + 2H_2O = CaSO_4 \cdot 2H_2O$. Левая часть уравнения отнесена к статье «расход исходного сырья», а правая - «приход конечного продукта». Результаты расчетов по электронным связям приведены в таблице 1, а по энергии ковалентных связей из расчета на 1 кг $CaSO_4$ — в таблице 2.

Таблица 1 Характеристика электронных связей составляющих гипсового вяжущего

Вид веществ реакции	Количество их, $n \cdot 10^{22}$, шт	Количество электронных связей, $n \cdot 10^{23}$, шт	Электрический заряд $n \cdot 10^5$,Кл	Работа электронных связей, кВт.час					
Расход исходного сырья									
CaSO ₄	441	265	113	11,3					
H_2O	882	176	56	5,6					
Сумма	1323	441	169	16,9					
Приход новообразований									
CaSO ₄ 2H ₂ O	441	485	169	16,9					

Таблипа 2

Энергия межатомных связей исходных компонентов и продуктов реакции

		Расход	ι CaSO ₄ +	2H ₂ O	Приход CaSO ₄ ·2H ₂ O				
Реагирующие вещества и	Вид связи	Число связей, шт.	Энергия свзей		Число связей,	Энергия свзей			
продукты			кДж	%	шт	кДж	%		
	Ca-O	2	18897	30,9	2	18885	29,8		
CaSO ₄	S-O	2	6157	10,1	4	12308	19,4		
	S=O	2	7697	12,6	1	3846	6,1		
H_2O	Н-О	2	28400	46,4	2	28404	44,8		
Расход энер	61151	100							
Приход новообразований и энергии их связей							100		
Σ расхода = 61151 кДж; Σ прихода = 63443 кДж. Расхождение 3,7%.									

Количество электронных связей воды в 1,5 раза меньше, чем у безводного гипса, однако их заряд и выполняемая работа ниже в 2 раза. И если у конечного продукта количество электронных связей увеличивается на 10%, то величины заряда их и производимая работа не изменяются. Энергия же ковалентных связей атомов молекул в расходной части 61151 кДж ниже на 3,7% чем в приходной – 63443, что свидетельствуют о том, что средний уровень потенциальной энергии молекул продукта реакции (CaSO₄·2H₂O) выше среднего уровня энергии молекул исходных веществ (CaSO₄ + 2H₂O). Значит процесс гидратации эстрих-гипса протекает с поглощением энергии из окружающей среды. Окружающей средой являются ионы гипса и воды. Положительно и отрицательно заряженные ионы притягиваются друг к другу, поглощая энергию. На поглощение тепла уходит энергии по величинам энергии связи 3,7%. Эта разность равна тепловому эффекту процесса гидратации.

Если суммарную энергию связей в 1 кг безводного гипса принять за 100%, то на долю связей H-O, которые дает только химически связанная вода, приходится 44-46%, а Ca-O – 30%. Это значит, что энергетически роль химически связанной воды практически такая же, как и высокопрочного гипсового вяжущего. Кроме того, это означает, что прочность конечного продукта на 74-76% обеспечивается связями Ca-O и H-O. Однако, определив массу химически связанных молекул H_2O и минералов вяжущего находим истинное водотвердое отношение $B_{x,c}/\Gamma$ =0,26. Для гипсового теста нормальной густоты - $B_{\text{H.г.}}/\Gamma$ =0,35, [2] а готовят гипсовые изделия при B/Γ =0,6 [2], Это означает, что 1 кг гипса затворяют водой в 2,3 раза большим количеством, чем необходимо для химических связей. Следовательно, количество потенциальной энергии с водой затворения привносится практически столько же, что и с гипсовым вяжущим. Поэтому умение использовать хотя бы только потенциальную энергию H_2O в процессах отвердевания $CaSO_4$ (очевидно, как и других вяжущих) – проблема актуальная.

Двойные связи в исходном сырье в результате синтеза с водой убывают: их становится меньше в 2 раза. Это ведет с одной стороны к ослаблению энергии межатомных связей в конечном продукте (больше слабых связей атомов S-O вместо более сильных S=O), а с другой — к разветвлению каркаса (остова) твердого тела и вовлечения большего количества атомов со слабыми связями.

Самые слабые связи (S-O) и (S=O) составляют 22,7-25,5% всей энергии. Этих связей в составе конечного продукта (двуводного гипса) содержится практически 50% (остальные 50% - связи Са-O и H-O). Усредненная энергия этих связей 472 кДж/моль, а связей H-O вместе с Са-O - 1076 кДж/моль, т.е. в 2,3 раза больше. Поэтому негативные свойства гипсового вяжущего (пониженные водостойкость и др.), очевидно, обеспечиваются связями серы с кислородом. Свести к минимуму это значит заменить их на более сильные и стойкие в воде, например на связи Са-O (известь и др.) [2], силоксановые –Si-O-Si-, (ГКЖ-94 [3], жидкое стекло, микрокремнезем и др.) или добавить сильные связи А1-О (метакаолин и др) с образованием новых связей: более прочных, объмнопакующих серу и ускоряющих сроки твердения. Уменьшить количество слабых связей можно снижением валентности серы в процессе трансформации ее энергии. Возможен вариант вытеснения атомов серы из остова (внутреннего объема) твердого тела к периферии, т.е. в состав функциональных групп.

Выводы

Изучение процессов трансформации потенциальной энергии межатомных связей высокопрочного гипса позволило выявить характер (сильные Ca-O и H-O и слабые S-O и S=O) связи, количество (соотношение: сильных 74-76%, слабых – 24-26%) их, наметить пути уменьшения слабых и увеличить количество сильных связей, теоретически обосновать полученные и уже имеющиеся практические результаты. Рекомендовать

технологам обратить внимание на энергетически мощную (44-46% от суммы всех межатомных связей) составляющую – воду затворения.

Summary

The energy of interatomic bonds determines the quality of high-strength gypsum. Knowledge of technology transforming it from raw material to a finite product, the ability to replace the weak links on the strong - the way to constructing gypsum concrete specified properties.

- 1. Кучеренко А.А. Системно-технологическое моделирование бетона / А.А.Кучеренко // Вісник ОДАБА. -2008. -№ 31. C. 189–194.
- 2. Волженский А.В. Минеральные вяжущие вещества/А.В.Волженский, Ю.С.Буров, В.С.Колокольников –М.: 1973, -480с.
- 3. Кучеренко А.А. О механизме гидрофобизации бетона / А.А. Кучеренко, Р. А. Кучеренко // Вісник ОДАБА. 2009. N 35. С. 207—213.