НЕКОТОРЫЕ ОСОБЕННОСТИ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ ПОРТОВЫХ ПРИЧАЛЬНЫХ СООРУЖЕНИЙ В ВИДЕ ТОНКИХ СТЕНОК

Рубцова Ю.А., Мишутин А.В.

Одесская государственная академия строительства и архитектуры, г. Одесса

Эффективная техническая эксплуатация морских и речных портовых гидротехнических сооружений должна обеспечивать работоспособность объектов в течение всего срока службы при их наиболее безопасном и безаварийном использовании по прямому назначению.

Для поддержания работоспособности сооружений должен предусматриваться комплекс организационных и инженерно-технических мероприятий по соблюдению установленного режима эксплуатации, а также требований по оптимальному техническому обслуживанию и ремонту.

В свою очередь, для создания и эффективного функционирования портовых гидротехнических сооружений необходимы информационная и технологическая основы — данные о техническом состоянии сооружений, современная научно-исследовательская база гидротехнического строительства и производства строительных материалов, разработка индивидуальных инженерных решений при проведении ремонтно-восстановительных работ для каждого объекта с учетом природно-климатических факторов, особенностей конструктивных схем и условий эксплуатации.

В процессе выполнения работ должны использоваться неразрушающие методы контроля технического состояния сооружения, а также инновационные методы анализа современного технического и деформативного состояния конструктивных элементов, позволяющие оценить их долговечность и спрогнозировать срок службы.

При исследовании работы сооружения используются численные методы математического моделирования, позволяющие усовершенствовать расчетные схемы и оценить фактические резервы (дефициты) несущей способности.

В данной статье рассматриваются гидротехнические сооружения в виде тонкой стенки, которые представлены следующими конструктивными решениями (рис. 1):

- уголковые стенки контрфорсного типа;
- уголковые стенки с внешней анкеровкой, имеющие в вертикальной плоскости две опоры: верхнюю в точке крепления анкера и нижнюю на низком пороге фундаментной плиты;
 - уголковые стенки с внутренней анкеровкой;
 - из оболочек большого диаметра.

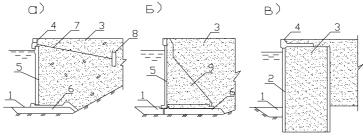
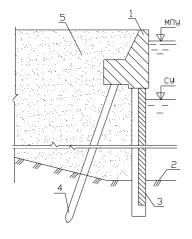



Рис. 1. Типы причальных сооружений уголкового типа:

а - уголкового типа с внешней анкеровкой; б - уголкового типа, контрфорсное; в - из оболочек большого диаметра; 1 - каменная постель; 2 - разгрузочная каменная призма; 3 - песчаная засыпка; 4 - надстройка; 5 - лицевая стенка уголкового блока; 6 - фундаментальная плита; 7 - анкерная тяга; 8 - анкерная плита (стенка); 9 - контрфорс; 10 - оболочка большого диаметра.

- Рис. 2. Стена из железобетонного таврового или прямоугольного шпунта с наклонными анкерующими сваями:
 - 1 верхнее строение из сборно-монолитного железобетона;
 - 2 проектное дно;
 - 3 шпунт прямоугольного или таврового сечения;
 - 4 железобетонная свая;
 - 5 засыпка песчаным грунтом.

Сооружения уголкового типа из сборных железобетонных блоковмодулей с внутренней анкеровкой или с контрфорсами монтируют из

укрупненных блоков (рис. 2), смонтированных на берегу из отдельных элементов.

Для реализации задач мониторинга технического состояния существующих конструкций необходим обзор имеющихся методов обследования и разработка индивидуальных решений для конкретных объектов.

Инженерные обследования портовых гидротехнических сооружений в виде тонких стенок (далее по тексту сооружений) проводятся с целью /1/:

- обнаружения и фиксации дефектов, определения их категории;
- определения сохранности и технического состояния элементов сооружения по установленной классификации;
 - определения технического ресурса и физического износа сооружения в целом;
 - оценки объемов работ для выяснения видов, сроков и способов выполнения операций ремонта;
 - определения возможности проведения технического перевооружения или необходимости реконструкции;
- прогнозирования оптимальных сроков дальнейшей эксплуатации и определения режима эксплуатации сооружения.
- В общем случае при инженерном обследовании сооружения необходимо предусматривать выполнение следующих основных работ:
- подбор и изучение проектной, исполнительной и др. технической документации, а также материалов предыдущих обследований;
- инструментальные наблюдения за перемещениями и кренами с использованием высокоточных средств измерения;
 - наблюдения за местными деформациями и определение причин их возникновения;
 - исследование материалов конструктивных элементов;
 - надводное обследование конструктивных элементов;
 - подводное (водолазное) обследование конструкции;
 - изучение поверхностных грунтов на акватории, а также состояния дна, примыкающего к сооружению;
- анализ данных о нагрузках, действовавших на сооружение за время эксплуатации между предыдущим и выполняемым обследованиями, а также определение интенсивности эксплуатационных нагрузок в период обследования;
 - обработка и анализ результатов обследования, выполнение поверочных расчетов;
- разработка рекомендаций по дальнейшей эксплуатации, определение необходимости уточнения инженерно-геологических, гидрологических и др. условий, а также проведения испытаний сооружения или его элементов:
- определение объемов и номенклатуры ремонтно-восстановительных работ, составление дефектных ведомостей, разработка рациональных способов выполнения ремонтно-восстановительных работ, в т.ч. анализ необходимых строительных материалов; оформление отчетных материалов.

Краткая методика выполнения работ

Техническое обследование конструкций и камеральная обработка результатов выполняется в соответствии с требованиями нормативных документов. /2, 3/.

<u>Подготовительные работы</u>. Разбивка пикетов (через 10,0м) и маркировка полупикетов (через 5,0м) выполняется краской. Начало отсчета принимается от сопряжения с выбранным причалом.

Геодезические измерения.

Базисные измерения проводятся теодолитом Т5 по двум временным точкам A, B. Определение планового положения линии кордона осуществляется, в основных случаях, по пикетам с шагом 10,0м. Практическая точность базисных измерений – 3мм.

Для определения высотного положения обычно используют репер P пб/н. Измерения производятся с использованием нивелира H-3 по двум сторонам рейки — по поперечным профилям /4/. Практическая точность измерений — 3 мм. Отметки даны в Балтийской системе высот.

<u>Надводное обследование.</u> Выполнено с борта надувного плавсредства, с использованием фото- и видеосъемки. Привязка и обмеры конструктивных элементов причала, элементов обустройства, рельсовых путей и др. выполнялись при помощи металлической рулетки.

<u>Подводное обследование.</u> Очистка элементов конструкции от обрастания произведена выборочно, вручную. Обследование подводной части причала выполнено силами легководолазной станции с борта надувного плавсредства. Обследование надводной и подводной частей сооружения выполнено при помощи специальной установки технического зрения. Промеры глубин выполнены с помощью ручного лота.

Определение технического состояния и прочностных характеристик элементов сооружений было проведено неразрушающим методом контроля с помощью молотка Шмидта, принцип механического действия которого основан на измерении упругого отскока ударника при постоянной величине кинетической энергии металлической пружины. /4/ Взвод и спуск бойка осуществляются автоматически при соприкосновении ударника с испытываемой поверхностью. Величину отскока бойка фиксирует указатель на шкале прибора. К приборам аналогичного принципа действия относятся: эталонный молоток Кашкарова, молоток Шмидта, молоток Физделя, пистолет ЦНИИСКа, молоток Польди и др. Эти приборы дают возможность определить прочность материала по величине внедрения бойка в поверхностный слой конструкций или по величине отскока бойка от поверхности конструкции при нанесении калиброванного удара (пистолет ЦНИИСКа). Преимущество приборов такого механического действия заключается в том, что они позволяют определить

прочность железобетонных конструкций малой толщины и высокого процента армирования.

В инженерной практике широкое применение получили приборы физического действия. Эти методы могут быть разделены на следующие основные виды: ультразвуковой импульсный, метод волны удара, резонансный и радиометрический.

Ультразвуковой импульсный метод контроля прочности бетона основан на измерении распространения в бетоне продольных ультразвуковых волн и степени их затухания. По заранее составленным графикам зависимости скорости ультразвука от прочности бетона данного состава определяют прочность контролируемой конструкции. Наибольшее распространение на практике получили приборы: УК-ЮП, УК-16П и УК-12П.

Контроль прочности бетона методом удара волны основан на измерении скорости распространения в бетоне продольных волн, вызванных механическим ударом. Для испытания бетона этим методом разработан ряд приборов (ПИК-6, «Удар-1», «Удар-2», МК-1 и др.), выпуск которых осуществляется небольшими партиями.

Резонансный (вибрационный) метод контроля прочности бетона конструкции основан на определении частоты собственных колебаний и характеристики их затухания. Для данного метода контроля прочности бетона используют приборы: измеритель амплитудного затухания ИАЗ, ПИК-8, конструкции Союздорнии и др.

Радиометрический метод испытания заключается в измерении интенсивности потока радиоактивных лучей, проходящих через исследуемое изделие. По изменению интенсивности g-лучей судят о средней плотности бетона и других характеристиках. Этот метод находит также применение для выявления скрытых дефектов в железобетонных конструкциях.

Определение технического состояния бетонных и железобетонных конструкций

Визуальные наблюдения должны включать в себя определение состояния поверхности элементов, размеров и ориентирования трещин, характера и местоположения коррозийных разрушений, состояния защитных покрытий, а также дефектов, вызванных механическими воздействиями. /3/

Осмотр сооружений в пределах участка рекомендуется проводить в горизонтальном направлении. В случае, когда зоны осмотра располагаются вертикально и для обследования элементов водолазу необходимо опускаться и всплывать, осмотр рекомендуется проводить в вертикальном направлении. При недостаточной видимости, когда возможна потеря ориентации, участки осмотра дополнительно разбивают на вертикальные зоны с использованием для ориентации переносных тросов с грузами.

Для измерения наклона сооружения используется ручной лот и линейка или уклономеры. При измерениях с использованием лота водолаз, перемещаясь по вертикальному ходовому тросу, замеряет мерной линейкой расстояния от линя ручного лота до соответствующих точек лицевой стенки сооружения. При наклоне сооружения в сторону акватории лот опускают с линии кордона. Водолаз мерной линейкой замеряет расстояние между линем и стенкой в характерных точках. Точки, в которых делаются замеры, наносят на лине заранее с учетом особенностей конструкции и глубин у сооружения.

При наклоне стенки в сторону берега на поверхность надстройки перпендикулярно линии кордона укладывают рейку и через ее конец пропускают линь отвеса.

Замеры на стенках, покрытых обрастаниями, выполняют при помощи линейки с заостренным концом.

При необходимости образцы бетона из сооружения следует отбирать с целью определения его состава, механических и физических характеристик, химического состава цементного камня, степени карбонизации бетона, степени коррозии арматуры. Образцы могут быть в виде кернов или монолитов. Места взятия образцов должны быть заделаны мелкозернистым бетоном, марка которого по прочности должна быть на ступень выше класса бетона конструкции.

В соответствии с работами В. М. Москвина /5/ коррозия бетона в жидкой среде подразделяется на три основных вида.

Для первого вида коррозии, протекающей в воде малой жесткости, характерно растворение некоторых компонентов твердой фазы бетона и одновременный отвод продуктов растворения изнутри порового пространства во внешнюю среду, что сопровождается постепенным разрушением цементного камня.

Для второго вида коррозии характерна способность молекул или ионов внешней среды вступать в химическую реакцию с молекулами или ионами исходного растворенного вещества. В данном случае агрессивное вещество, проникая в поровое пространство бетона, усиливает процесс коррозии, который получил название «коррозии бетона в агрессивной жидкой среде».

Для третьего вида коррозии характерно образование продуктов химической реакции в кристаллическом виле.

Для конструкций всех типов гидротехнических сооружений существуют установленные нормативные показатели технического состояния элементов, соблюдение которых обеспечит эффективную работу всего комплекса /6/. Эти показатели для сооружений в виде тонких стенок приведены в таблице 1.

С целью соблюдения условий для нормальной эксплуатации и эффективного функционирования гидротехнических сооружений необходимо /7/ проводить их инженерную диагностику, включающую: определение состояния строительных объектов, их физических или теоретических моделей, проектных решений при возможных или фактических условиях эксплуатации, повреждениях или разрушениях

В качестве основных областей исследования инженерной диагностики необходимо назвать: диагностику проектных решений эксплуатируемых и возводимых сооружений, теоретических и физических моделей

конструкций и их оснований.

Для железобетонных конструкций гидротехнических сооружений выделяются следующие виды дефектов, возникающие:

а) на стадии изготовления, транспортировки и монтажа:

технологические трещины усадочного происхождения;

дефекты бетонирования (раковины, каверны, обнажения арматуры);

сколы бетона, силовые трещины, возникшие из-за нарушения технологии транспортных или монтажных операций.

б) под действием эксплуатационных факторов:

силовые трещины (поперечные в растянутых элементах и в растянутых зонах изгибаемых элементов, продольные в сжатых элементах и в сжатых зонах изгибаемых элементов, косые в стенках балок, трещины от местного действия нагрузки в местах опирания);

температурные трещины;

трещины вдоль арматуры, возникающие вследствие ее коррозии;

коррозионные разрушения (шелушение поверхности бетона, обнажение крупного заполнителя, разрушение структурных связей в бетоне), вызванные взаимодействием с химически агрессивной средой или физическим воздействием среда (переменное увлажнение - высыхание, замораживание - оттаивание).

Таблица 1 Показатели технического состояния сооружений в зависимости от имеющихся дефектов

Наименование	Вид дефекта	Показатели состояния элементов		
элемента		удовлетворительное	аварийное	
Лицевая плита уголкового блока (№5 рис. 1)	Изменение положения в пространстве: - отклонение от вертикали	До 1,3 %	Более 2 % и устанав-ливается по степени влияния на условия эксплуатации	
	Уступы между поверхностями лицевых плит	До 50 мм с сохранением грунтонепроницаемости	Нарушение грунтонепроницаемости	
	Зазор между торцами лицевых плит	Не более 40 мм при условии сохранения грунтонепроницаемости	Нарушение грунтонепроницаемости	
	Трещины в бетоне	Раскрытием до 0,5 мм	Сквозные по всей ширине плиты	
Фундаментная плита уголко-вого блока (№9 рис1)	Снижение прочности бетона	Не более чем на 20 % от проектной величины	Более чем на 40 % от проектной величины	

• Требования к строительным материалам и составам, используемым для ремонтных работ для гидротехнических сооружений в виде тонких стенок

После получения и обработки данных о прочности железобетонных конструкций сооружения в виде тонких стенок, необходимо сравнить результаты обследования и измерения с нормативными требованиями к показателям качества бетона тонких стенок, основными из которых являются следующие /6/:

- классы бетона по прочности на сжатие: B5, B7,5, B10, B12,5, B15, B20, B25, B30, B35;
- марки бетона по морозостойкости: F50, F75, F100, F150, F200, F300, F400, F500, F600 (Для Юга Украины: от F50 до F400);
 - марки бетона по водонепроницаемости: W4, W6, W8, W10, W12, W16, W18, W20;
- К бетону конструкций гидротехнических сооружений следует предъявлять дополнительные, устанавливаемые в проектах и подтверждаемые экспериментальными исследованиями, требования: по предельной растяжимости, отсутствию вредного взаимодействия щелочей цемента с заполнителями, сопротивляемости истиранию потоком воды с донными и взвешенными наносами, стойкости против кавитации и химического воздействия, тепловыделению при твердении бетона.

Для замоноличивания стыков элементов уголковых стенок, которые в процессе эксплуатации могут подвергаться воздействию отрицательных температур наружного воздуха или воздействию агрессивной воды, при проведении ремонтных работ следует применять бетоны проектных марок по морозостойкости и водонепроницаемости не ниже принятых для стыкуемых элементов.

• Конструктивное исполнение

<u>Причал 3.</u> Построен в 1892-95 гг. в виде стенки из четырех курсов бетонных массивов, установленных на каменную постель толщиной более 3,0м, с разгрузочной каменой призмой (рис. 3).

В 1970 г. выполнена реконструкция причала с устройством оторочки в виде уголковой железобетонной стенки с контрфорсами, установленной на каменную постель. Пазуха между стенкой из массивов и оторочкой заполнена камнем. Железобетонная надстройка имеет сборно-монолитное исполнение и включает монолитный оголовок, железобетонные плиты и шапочный брус. За железобетонными плитами надстройки отсыпана призма из щебня. Уголковые блоки заанкерованы за бетонную надстройку старой конструкции и за бетонные анкерные массивы. Причал оборудован крановыми и железнодорожными путями на шпально-балластном основании. Покрытие выполнено из железобетонных плит различных типоразмеров, за исключением полосы между линией кордона и кордонной ниткой кранового пути, на которой построено цементобетонное покрытие. Причал оборудован колесоотбойным брусом, швартовными тумбами и отбойными устройствами. Длина причала – 148,35м, проектная глубина – минус 7,8м.

Таблица 2

Технические характеристики причала №3

Наименование	Ед. изм.	По проекту	Фактически
1. Элементы конструкции: 1.1. Уголковая стенка материал высота ширина подошвы ширина поверху длина одного уголкового блока по фасаду толщина:			елезобетон M300 (B25) 7,85 3,50 1,00 4,98
 лицевой плиты фундаментной плиты контрфорса продольный шаг контрфорсов 		0,30 0,20 2,30; 2,70	
2. Надстройка: материал 2.1. Монолитный оголовок		сборно-монолитный железобетон	
материал	M	железобетон М200	
высота	M	0,60	
ширина	M	1,00	
тумбовый массив			,
высота	M	1,53	
ширина	M	1,20	
длина	M	5,00	
2.2. Железобетонные плиты материал		железобетон M300	
размеры: высота	M	1,60	
толщина	M	0,18	
2.3. Шапочный брус	M	,	
материал		железобетон М200	
размеры: высота	M	0,20	
ширина	M	0,35	
1. Допускаемые нагрузки - Равномерно- распределенная:		«	II» категории норм /5/

Наименование	Ед. изм.	По проекту	Фактически
2. Коэффициенты запаса устойчивости:		Без учета сейсмичности	С учетом сейсмичности 8 баллов /9/
на опрокидывание	кН	1,65	1,38
на сдвиг по контакту с каменной постелью		1,85	1,44
на сдвиг вместе с постелью		2,44	2,36
3. Коэффициент запаса общей устойчивости по круглоцилиндрическим поверхностям скольжения		1,060	0,982
4. Усилие в анкере	кН/м ²	219	257
5. Макс./мин. напряжения по контакту: - основание - каменная постель - каменная постель - грунт	кН/м ²	228/37 175/12	284/2,5 231/3,1

Рис. 3. Заделка зазора между соседними уголковыми блоками бетоном в «мешочках». Стальной трос на поверхности грунта у линии кордона (ПК20+4,5м). /8/

Выводы по состоянию сооружения: Техническое состояние сооружения в целом: удовлетворительное. При выполнении текущего ремонта устранить зафиксированные дефекты по железобетонной надстройке.

Нормативные и расчетные сопротивления бетона в зависимости от классов бетона по прочности на сжатие и на осевое растяжение следует принимать по ГОСТ 7473-94, ГОСТ 26633-91 и СНиП 3.07.02-87.

Для восстановления объемных дефектов бетонных и железо-бетонных элементов сооружений применяются, главным образом, цементные растворы и бетоны. /10/ Минеральными вяжущими для бетонов зоны переменного уровня и подводной зоны могут быть высокомарочные и быстротвердеющие сульфатостойкие портландцементы, специально активированные или модифицированные химическими добавками и тонкомолотыми микронаполнителями, такие как: пластификатор С-3, ускоритель твердения ННК, воздухововлекающая добавка СНВ. Расход цемента в бетонах при этом составляет около 500 кг/м³/11/. Бетоны с такими добавками обладают технологичностью, доступностью, универсальностью и гибкостью действия.

Химические добавки (С-3, мельмент, майти-150) улучшают удобоукладываемость бетонной смеси; повышают водонепроницаемость бетонов, морозостойкость бетонов до F600 и более, адгезия с основанием на 50% /12/; заданная прочность достигается уже через 16...24 часа. Плотность и коррозионная стойкость бетонов с комплексными химическими добавками возрастают за счет снижения водопотребления, кольматации пор и пассивации поверхности арматуры продуктами реакций.

Необходимо отметить, что в зарубежной строительной практике широко применяются модифицированные бетоны нового поколения (High Performance Concrete) /10, 12/. Высокофункциональные бетоны обладают высокой прочностью, низкой проницаемостью, повышенной коррозионной стойкостью и долговечностью, т. е. обладают свойствами, сочетание которых или преобладание одного из которых обеспечивает надежность конструкций в зависимости от условий эксплуатаций, а также защиту арматуры от агрессивного воздействия морской воды без дополнительных противокоррозионных мероприятий. Модификаторы МБ (4 основных типа: МБ-01, МБ-30С, МБ-50С, МБ-100С) позволяют получать на обычных компонентах высокопрочные – класса В45...В60 и сверхпрочные бетоны— выше класса В60 . Оптимальные дозировки МБ зависит от требований к

бетонам и обычно находится в пределах 8…12% от массы цемента. Степень эффективности - в зависимости от соотношения микрокремнезем/зола-уноса, оцененная по влиянию на прочность, проницаемость, морозойстойкость бетона, может быть выражена следующим образом: МБ-01≥МБ-30С≥МБ-50С≥МБ-100С. Особенностями бетонов нового поколения являются применение высококачественных заполнителей и суперпластификаторов (С-3, мельмент, Майти100, сикамент), а также снижение количества воды при затворении до минимального уровня.

Использование высокомарочных (расход которых составляет: $450...550 \text{ кг/м}^3$) сульфатостойких портландцементов, суперпластификаторов (расход:1,5...2,0% массы портландцемента), микро- и нанокремнеземов с удельной поверхностью $30...300 \text{ м}^2/\Gamma$ (расход добавки: 15...20% массы портландцемента) при водоцементном отношении 0.24...0.28 и гранитном щебне придают бетонам High Performance Concrete высокую прочность на сжатие ($60 \text{ M}\Pi \text{a}$ и более), повышенные водонепроницаемость (W16...W20), коррозионную стойкость и долговечность.

Основные выводы

- 1. Усовершенствовать существующую методику инженерного обследования для портовых гидротехнических сооружений в виде тонких стенок.
- 2. Необходимо уточнить расчетные характеристики гидротехнических сооружений, учитывающие фактическую несущую способность конструкций и схемы допускаемых эксплуатационных нагрузок.
- 3. Разработать технологию приготовления и применения модифицированных бетонов с применением комплексных химических добавок на сульфастойком портландцементе для восстановления несущей способности железобетонных элементов конструкций гидротехнических сооружений.

SUMMARY

This article discusses the survey methodology of hydraulic structures in the form of thin walls, are indicators of their technical condition and a brief analysis of chemical additives in the concrete for the repair work.

Литература

- 1. Інструкція з інженерного обстеження і паспортизації портових гідротехнічних споруд. Одесса, 2003
- 2. Правила технічної експлуатації портових гідротехнічних споруд (НД 31.3.003-2005). Одесса, 2005.
- 3. Пойзнер М. Б. Авторский надзор за портовыми гидротехническими сооружениями/ Яковенко В. Г. // М.: «Транспорт», 1990.
- 4. Инструкция по использованию прибора для определения прочности бетона склерометрическим методом молотка Шмидта. Фирма-изготовитель "PROCEQ'SA". Цюрих, Швейцария, 2001
- 5. Москвин В. М. Коррозия бетона и железобетона, методы их защиты./ В. М. Москвин, Ф. М. Иванов, С. Н. Алексеев, Е. А. Гузеев// М.: 1980.
 - 6. СНиП 2.06.08-87 Бетонные и железобетонные конструкции гидротехнических сооружений.
 - 7. Школа А. В. Диагностика портовых сооружений// Монография// Одесса: 2010.
- 8. Паспорт технического состояния причала № 3Феодосийскогоо морского торгового порта/ЧерноморнИИИпроект Одесса, 2008.
 - 9. Строительство в сейсмических районах Украины. ДБН В.1.1 12: 2006. Киев, 2006.
 - 10. Алексеев И. О. Ремонт портовых гидротехнических сооружений Санкт-Петербург, 2001
- 11. Мишутин А. В. Повышение долговечности бетонов тонкостенных конструкций плавучих и портовых гидротехнических сооружений./ А. В. Мишутин, Н. В. Мишутин// Одесса: 2003.
- 12. Химические и минеральные добавки в бетон/ Под ред. проф. А. Ушерова-Маршака. Харьков: Изд. Колорит, 2005 стр. 104-117.