О ДОСТОВЕРНОСТИ РЕЗУЛЬТАТОВ ДИНАМИЧЕСКИХ РАСЧЁТОВ ЧИСЛЕННО-АНАЛИТИЧЕСКИМ МЕТОДОМ ГРАНИЧНЫХ ЭЛЕМЕНТОВ

Оробей В.Ф.¹, Ковров А.В.², Чайковский Р.Э.², Чайковский А.Э.²

¹ Одесский национальный политехнический университет, г.Одесса ² Одесская государственная академия строительства и архитектуры, г.Одесса

Актуальность исследований – неразрезные балки являются системами с бесконечным числом степеней свободы. Как правило, в большинстве расчетных схем динамический расчет таких конструкции сводится к статическому расчету с последующим применением коэффициента динамичности.

Цель работы – исследовать спектр частот собственных колебаний и распределение изгибающих моментов в неразрезных балках при вынужденных гармонических колебаниях.

Определим значения первых восьми частот собственных колебаний для четырёхпролетной железобетонной балки, расчетная схема которой приведена на рис. 1.

Рис. 1. Расчетная схема балки

Балка выполнена из бетона класса B20, армирована симметричными каркасами с рабочей арматурой диаметром 28 мм из стали класса AIII. Погонная масса балки m=2,5 кH/м, жесткость железобетонной балки B = 79615,11 кHм².

Частоты собственных колебаний определялись при помощи программных комплексов SCAD, ЛИРА, ANSYS, а также при помощи разработанной программы [1, 2], основанной на применении ЧА МГЭ.

При динамическом расчете неразрезной балки с использованием ПК ANSYS, её пролеты разбивались на 5, 10, 25, 50 и 200 конечных элементов.

В таблице 1 приведено сравнение полученных результатов расчетов.

Таблица 1

№ собств. частот	Частоты собственных колебаний, 1/с											
	Методика, программный комплекс											
	ЧА МГЭ	ПК SCAD	пк		П	K ANSY	7S					
			ЛИРА	5 КЭ	10 КЭ	25 КЭ	50 КЭ	100 КЭ				
1	48,92	48,80	48,80	49,05	49,05	49,05	49,05	49,05				
2	57,08	56,93	56,93	57,22	57,21	57,21	57,21	57,21				
	-	-	-	68,48	68,47	68,47	68,47	68,47				
3	76,43	76,22	76,22	76,59	76,57	76,57	76,57	76,57				
4	98,75	98,47	98,47	98,94	98,90	98,90	98,90	98,90				
5	195,70	194,99	194,99	194,20	193,90	193,88	193,88	193,88				
	-	-	-	205,87	205,51	205,41	205,40	205,40				
6	212,37	211,54	211,53	210,76	210,38	210,35	210,35	210,35				
7	247,68	246,49	246,49	245,69	245,08	245,04	245,04	245,04				
8	285,69	283,96	283,95	283,31	282,39	282,33	282,33	282,33				

Как видно из сравнения, частоты собственных колебаний полученные при помощи программных комплексов SCAD, ЛИРА, а также ЧА МГЭ практически совпадают (разница составляет от 0,2% до 1,2%).

Наибольшая точность результатов при использовании ПК ANSYS получается при разбиении пролётов балки на сетку 200 КЭ. Из таблицы 1 следует, что значения частот после разбиения пролётов на сетку более 25 КЭ практически не уточняются. Таким образом, для определения частот собственных колебаний неразрезной балки при помощи ПК ANSYS достаточно разбиение её пролетов на 25 КЭ.

Анализируя результаты расчетов, можно сделать вывод о том, что в спектре частот, полученных при помощи ПК ANSYS, в отличие от других программных комплексов появляются мнимые частоты, что согласуется с результатами, приведёнными в работе [3].

Мнимая частота собственных колебаний ω =68,47 1/с возникает между второй ω_2 и третьей ω_3 частотами собственных колебаний, а мнимая частота ω =205,51 1/с между пятой ω_5 и шестой ω_6 частотами собственных

колебаний.

На рис. 2 построен график определителя $|A^*(\omega)|$ частотного уравнения ЧА МГЭ. Полученный график не имеет точек разрыва второго рода и пересекает ось абсцисс в ряде точек, которые являются корнями частотного уравнения – частотами собственных колебаний.

Рис. 2. График определителя собственных частот $|A^{*}(\omega)|$

Для более детального анализа графика определителя были исследованы зоны, в которых появляются мнимые частоты собственных колебаний, полученные при расчёте в ПК ANSYS.

На рис. За приведен график определителя на интервале между ω_2 и ω_3 , а на рис. Зб интервал между ω_5 и ω_6 .

Рис. 3. Фрагменты графика определителя $|A^*(\omega)|$ а) на интервале $\omega_2, \omega_3; \delta$) на интервале ω_5, ω_6

Как видно из рис.3, график определителя не пересекает и не касается оси абсцисс в заданных интервалах. Формы упругой лини определены при помощи ПК ANSYS при частотах ω =68,47 1/c, ω =205,51 1/c и приведены на рис. 4.

Как видно из рис. 4 упругие линии представляют собой линии, совпадающие с нейтральной осью балки.

На рис. 5 представлены виды упругой линии балки, построенные в системе компьютерной математике MATLAB, при частотах колебаний ω =68,47 1/с, ω =205,51 1/с.

Рис. 4. Вид упругой линии балки, построенной при помощи ПК ANSYS а) при частоте *w*=68,47 1/с; б) при частоте *w*=205,51 1/с

Рис. 5. Вид упругой линии балки, построенной при помощи ЧА МГЭ а) при частоте *w*=68,47 1/с; б) при частоте *w*=205,51 1/с

Определим значения изгибающих моментов при действии динамически приложенной нагрузки при помощи разработанной программы [1, 2], основанной на применении ЧА МГЭ, а также при помощи программного комплекса ANSYS.

На рис. 6 приведена схема динамического загружения балки.

Рис. 6. Схема динамического загружения балки

Вынуждающая динамическая нагрузка принимается заданной по гармоническому закону $F(t) = F_0 sin \theta t$. Инерционная сила, возникающая при работе оборудования, $F_0 = 20$ кH.

Частота вынужденных колебаний задавалась:

- на отрезке $0 < \boldsymbol{\theta} \leq \boldsymbol{\omega}_1$, с шагом равным $\boldsymbol{\Delta} = 0, 1 \boldsymbol{\omega}_1$;

- на отрезке $\boldsymbol{\omega}_1 < \boldsymbol{\theta} \leq \boldsymbol{\omega}_2$ с шагом равным $\boldsymbol{\Delta} = 0, 1(\boldsymbol{\omega}_2 - \boldsymbol{\omega}_1);$

- на отрезке $\boldsymbol{\omega}_2 < \boldsymbol{\theta} \le \boldsymbol{\omega}_3$ с шагом равным $\boldsymbol{\Delta} = 0, 1(\boldsymbol{\omega}_3 - \boldsymbol{\omega}_2)$ и т.д. до

шестой частоты $\boldsymbol{\omega}_6$ включительно.

Проведена статистическая обработка полученных значений отношений изгибающих моментов в характерных сечениях половины балки. Определены такие характеристики, как выборочное среднее M_x , выборочная дисперсия S_x , выборочный коэффициент вариации v_x , а также доверительный интервал (P=0,95).

Результаты статистической обработки приведены в таблице 2.

Статистический анализ показывает, что значения изгибающих моментов, полученных при помощи ПК ANSYS, и значения, полученные при помощи численно-аналитического МГЭ, практически совпадают в спектре всех изученных значений частот вынужденных колебаний.

Расхождение значений между программным комплексом ANSYS и ЧА МГЭ в области вынужденных частот $\theta < \omega_5 + 0.8(\omega_6 - \omega_5)$ находится

в пределах 5%, а в области $\omega_5 + 0.8(\omega_6 - \omega_5) \le \theta \le \omega_6 - 10\%$.

При частоте вынужденных колебаний $\theta = \omega_5 + 0.8(\omega_6 - \omega_5)$ наиболее заметна разница между значениями динамических изгибающих моментов полученных, при помощи ЧА МГЭ и программным комплексом ANSYS.

В связи с вышеизложенным, для этой частоты вынужденных колебаний на рис. 7 приведены эпюры изгибающих моментов, возникающих в характерных сечениях половины балки.

Выводы

1. Для рассмотренного примера значения частот собственных колебаний, полученных при помощи ЧА МГЭ, а также программных комплексов SCAD, ЛИРА и ANSYS, практически совпадают (разница составляет от 0,2% до 1,2%).

2. В спектре частот, собственных колебаний, полученных при помощи ПК ANSYS в отличие от программных комплексов SCAD, ЛИРА, появляются мнимые частоты. Формы колебаний балок при этих частотах в ПК ANSYS, представляются прямыми линиями, совпадающими с упругой линией балки.

Значения динамических изгибающих моментов, определенных при помощи программного комплекса 3. ANSYS, практически совпадают со значениями, полученными при помощи численно-аналитического МГЭ в спектре всех изученных значений частот вынужденных колебаний. В области вынужденных частот $\theta < \omega_5 + 0.8(\omega_6 - \omega_5)$ расхождения значений находится в пределах 5%, а в области $\omega_5 + 0.8(\omega_6 - \omega_5) < \theta < \omega_6$ до 10%.

4. Рассмотрение вопроса о спектре частот собственных колебаний и распределении изгибающих моментов в неразрезных балках при вынужденных колебаниях требует дальнейших исследований.

ца 2 (начало)		$\theta = \omega_2 + 0.8(\omega_3 - \omega_2)$	/CJM Ph	IIK ANS YS	1,0102	0,1170	0,1158		0,9634	1,0570
Табль	ебаний	$\theta = \omega_2 + 0.5(\omega_3 - \omega_2)$	/CJM AP	IIK ANS YS	0,9792	0,0409	0,0418		0,9629	0,9956
	енижденных кол	$\theta = \omega_2 + 0, 3(\omega_3 - \omega_2)$	/CJM AP	IIK ANSYS	0,9943	0,0198	0,0200		0,9864	1,0022
	эментов M, кНм, зки с частотой ві	$\theta = \omega_1 + 0.8(\omega_2 - \omega_1)$	/CJM AP	IIK ANSYS	0,9447	0,0253	0,0268		0,9346	0,9548
	й изгибающих мо иложенной нагру	$\theta = \omega_1 + 0.5(\omega_2 - \omega_1)$	/CJM AP	IIK ANS YS	0,9863	0,0196	0,0196		0,9785	0,9941
	ношения значени линамически пр	$\theta = \omega_1 + 0, 3(\omega_2 - \omega_1)$	/CJM Ph	IIK ANS YS	1,0152	0,1832	0,1804		0,9420	1,0885
	Оть им при действии	$\theta = 0.8 \omega_1$	/CJM AP	IIK ANS YS	0,9983	0,0027	0,0027		0,9972	0,9994
	возникаюц	$\theta=0.5\omega_1$	/CJM AP	IIK ANSYS	0,9996	0,0011	0,0011		1666'0	1,0000
		$\theta=0,3\omega_1$	/CJM AP	IIK ANSYS	0,9997	0,0006	0,0006		0,9995	1,0000
	Статистическая - оценка - распределения				Выборочное среднее M _x	Выборочное дисперсия S_x	Выбор очный коэффициент вариации v _x	Доверительный интервал (P=0,95)	P_n	Ρ,

Control with the second s		$\mathcal{P}=\omega_{5}+0, 8(\omega_{6}-\omega_{5})$	/CJM AP	IIK ANSYS	1,1229	0,1366	0,1217		1,0682	1,1776
	нужденных колебаний	$\theta = \omega_4 + 0.5(\omega_6 - \omega_5)$	/CJM AP	TIK ANS YS	1,0085	0,0658	0,0652		0,9822	1,0348
		$\theta = \omega_{s} + 0, 3(\omega_{6} - \omega_{5}) \theta$	/CJM AP	IIK ANS YS	1,0052	0,0935	0,0930		0,9678	1,0425
	оментов М, кНм, узки с частотой в	$\theta = \omega_4 + 0, 8(\omega_5 - \omega_4)$	/CJM AP	IIK ANSYS	0,9478	0,1252	0,1321		0,8977	0,9979
	юшения значений изгибающих мо динамически приложенной нагру	$\theta = \omega_4 + 0.5(\omega_5 - \omega_4)$	/CJM AP	IIK ANS YS	0,9664	0,2231	0,2308		0,8772	1,0557
		$\theta = \omega_4 + 0, 3(\omega_5 - \omega_4)$	/CJM Ph	TIK ANSYS	0,9510	0,0574	0,0603		0,9281	0,9740
	Оті Оті Оті Оті Оті	$\theta = \omega_3 + 0, 8(\omega_4 - \omega_3)$	/CJM Ph	IIK ANSYS	1,0471	0,0578	0,0552		1,0239	1,0702
	возникаюп	$\theta = \omega_3 + 0.5(\omega_4 - \omega_3)$	/CJM Ph	IIK ANSYS	0,9942	0,0676	0,0680		0,9672	1,0212
		$\theta = \omega_3 + 0, 3(\omega_4 - \omega_3)$	/CJM Ph	IIK ANSYS	1,0031	0,0352	0,0351		0,9890	1,0172
	c	Статистическая оценка распределения		Выборочное среднее M_{\star}	Выборочное дисперсия S _x	Выборочный коэффициент вариании у	Доверительный интервал (P=0,95)	p,	<i>р</i> ,	

SUMMARY

The results of determination of natural frequencies of a continuous four-span reinforced concrete beams, as well as the congruence of values of bending moments with the help of ANSYS software and the technique based on the use of NA MSE.

Литература

1. Ковров А.В. Распределение внутренних усилий и перемещений в неразрезных балках при вынужденных колебаниях / А.В.Ковров, Р.Э.Чайковский, А.Э.Чайковский // Сборник научных трудов. Современные строительные конструкции из металла и древесины – Одесса, 2010. – № 14. – Часть 1. – С. 119-124.

2. Ковров А.В. Исследование возможности применения динамического коэффициента при динамическом расчете неразрезных балок / А.В.Ковров, Р.Э.Чайковский, А.Э.Чайковский // Вісник ОДАБА. – Одесса, 2010. – № 37. – С. 197-202.

3. Оробей В.Ф. Моделирование задач динамики стержневых систем методами граничных и конечных элементов / В.Ф.Оробей, Н.Г.Сурьянинов, А.М.Лимаренко // Вестник механиков Украины. – Одесса, 2007. – Вып. 1.