НОВООБРАЗОВАНИЯ ЦЕМЕНТА – ЖЕРТВА ТЕРМИНОЛОГИИ

КучеренкоА.А. (Одесская государственная академия строительства и архитектуры)

Написание формул гидроминералов на уровне оксидов — абстракция, на молекулярном уровне — отражение сути новообразования и пути преобразования его в твердое тело (бетон).

Правильная, продуманная терминология – двигатель прогресса в бетоноведении. Способствует успешному и быстрому продвижению задуманных теоретических и практических разработок. Позволяет сохранить идею, развить теорию, без которых трудно получить новое вещество и разработать новую технологию. Надуманная, малозначащая, абстрактная, ничего не определяющая, мало о сути говорящая, хотя, зачастую, красиво звучащая, терминология - стабилизирует мысль на достигнутом, убивает идею или уводит от нее, тормозит развитие проблемы или создание нового вещества. Стоит согласиться: «великих выдумщиков и путаников предостаточно, только разгребать приходится другим». Примером тому наполненные композиты (бетоны), адаптация и самоорганизация минеральных систем и т.п. Зачастую, ругая одних путаников, сами авторы выступают в роли выдумщиков. Такая терминология[1] как «сверхтонкий, сверхпрочный, ультрадисперсный, ультравысокопрочный». Это что, степень восторга, умиления или единица измерения, или где-то кто-то выдумал и установил границы, а мы в бетоноведении повторяем, не вкладывая в это абсолютно никакого смысла. А не тормоз ли, что выше «сверхпрочного» или «ультравысокопрочного» бетона исследователь в 21 веке больше и мечтать не может? А что значит «наносиликат»?.

Что-то подобное автор видит в названии и формулярном отображении новообразований цемента. Набор оксидов в формулах мало что говорит о конечном продукте, о его химических и физических возможностях. Названия: гидросиликаты кальция, 2-х или трехкальциевый гидросиликат — это перечень оксидов. К примеру, формула 3CaO·2SiO₂·3H₂O и тем более с точкой (то ли знак умножения, то ли разделения) между ними свидетельствует только о наличии определенных видов оксидов и их количестве. Даже расположение (очередность написания) оксидов больше связана с созвучием названия (гидросиликаты кальция), чем со смысловым значением новообразования,

твердого вещества. В названии "3-х кальциевый гидросиликат" даже не упоминается о трех молекулах H_2O и двух - оксидов SiO_2 . Подобное абстрагирование в наборе этих оксидов не несет сути, содержания, особенностей твердого вещества и отличий одного образования от другого.

Это относится и к гидроалюминатам кальция. Нет четкой связи между количеством воды в составе гидроалюминатных новообразований и их минеральной частью. Идентификация их по таким признакам как гексагональная сингония, в последующем переходящая в кубическую, плотность (1,79-2,5 г/см³), низкая прочность, по величине pH>12[2], по термодинамическим характеристикам[3], по предположениям Р. Турричиани [4] роднит их с Ca(OH)₂, т.е они относятся к группе щелочей, табл 1.

Таблица 1. Общепринятое и возможное формулярное изображение новообразований цементного клинкера (при постоянной атомной массе)

Оксидальная формула	Молекулярная формула	
CaO·SiO ₂ ·H ₂ O	Ca(OH) ₂ · SiO ₂	
2CaO·SiO ₂ ·H ₂ O	Ca(OH) ₂ ·SiO ₂ ·CaO	
2CaO·SiO ₂ .2H ₂ O	2Ca(OH) ₂ ·SiO ₂	
3CaO·2SiO ₂ .3H ₂ O	3 Ca(OH) ₂ .2SiO ₂	
$Al_2O_3.3H_2O$	2Al(OH) ₃	
2CaO·Al ₂ O ₃ .8H ₂ O	2Ca(OH) ₂ ·2Al(OH) ₃ ·3H ₂ O	
3CaO·Al ₂ O ₃ .6H ₂ O	3Ca(OH) ₂ ·2Al(OH) ₃	
4CaO·Al ₂ O ₃ .19H ₂ O	9H ₂ O 4Ca(OH) ₂ ·2Al(OH) ₃ .12H ₂ O	
4CaO·Fe ₂ O ₃ .13H ₂ O	4Ca(OH) ₂ ·2Fe(OH) ₃ ·6H ₂ O	
AND DESCRIPTION OF THE PROPERTY OF THE PROPERT		

Некоторые из них можно представить и как смешанными комплексами: $4Ca(OH)_2 \cdot 2[Al(OH)_3 \cdot (H_2O)]$ и $4Ca(OH)_2 \cdot 2[Fe(OH)_3 \cdot (H_2O)]$, но они легко распадаются на щелочь и воду. Если это так, то легко подсчитать количество химически связанных щелочей, табл 2.

Кроме того в новообразовании С₄FH₁₃ содержится 56,73 г Fe(OH)₃ в 1 кг цемента, т.е. 4,7%. Суммарное количество щелочей в 1 кг портландцемента, которое поставляет алюмоферритная фаза, составляет 27%. При этом надо учесть, что силикатная фаза при гидратации поставляет 16,8% [5] свободной Са(OH)₂. Химически связанной Са(OH)₂ в составе новообразований - 40,3%. Часть Са(OH)₂ идет на воспроизводство других соединений. Всего гидратной извести в системе новообразований 57%, что неудивительно, так как в химсоставе цемента 60% СаО. Вместе со щелочами алюминия и железа - их 68%. Так како-

ва же тогда водостойкость шлакощелочных цементов, основанных на базе NaOH. При том, что растворимость натриевых щелочей в воде (109) на 3-7 порядков выше Ca(OH)₂ (0,165), Al(OH)₃ (0,0001) и Fe(OH)₃ (0,00005). Аналогично и с новообразованиями на базе этих щелочей.

 Таблица 2. Количество химически связанных щелочных компонентов

 цемента

Гидроми-	Кол-во молекул гидро- минералов в 1 кг	Масса компонента, г/кг ПЦ М500		
	ПЦ500, n·10 ²¹ , шт	Ca(OH) ₂	Al(OH) ₃	
AH ₃	9	- 2,35		
C_2AH_8	15	3,71	3,10	
C_3AH_6	189	70,14	49,25	
C ₄ AH ₁₉	88	43,54	22,93	
C ₄ FH ₁₃	159	78,67	-	
Сумма, г		196,06	77,63	
CSH	193	23,9	-	
C ₂ SH	193	23,9	-	
C ₂ SH ₂	579	143,2		
$C_3S_2H_3$	289	107,2	-	
Сумма, г		289,2 24	-	
Всего плюс Fe(OH)3, г		485,3	133	

В гидроминерале Ca(OH)₂·CaO оксид CaO (известь негашеная) переводит его в разряд неустойчивых, который в присутствии H₂O в этой же молекуле существовать не может. Известь погасится. В присутствии одного оксида и одной молекулы воды это произойдет, возможно, топохимически. Однако в любом случае возникновение Ca(OH)₂, т.е. нового вещества(отличного от оксидального), повлечет за собой изменение щелочности, температуры и объема, табл 3.

Сумма объемов кристаллов молекул (графа 3) на 31-83% меньше, суммы соответствующих объемов кристаллов оксидов (графа 1). Это значит, что суть оксидальных и молекулярных веществ разная. Но зна-

чит ли это, что настолько же и плотность веществ (абстрактного и смыслового) разная. Становится очевидным наличие в бетоне не только свободной, но и химически связанной гидратной извести. В ней оксид кремния находится не только в щелочной среде, но, из-за слоистой структуры последних, расположен в межкристаллическом пространстве их слоев. В этой среде все оксиды, в частности SiO₂, изменят свою активность.

Таблица 3. Изменение объемов новообразований при разной интер-

претации их и при учете закона сохранения масс

Оксидальная формула	Объем, V, Å ³	Молекулярная фор- мула	Объ- ем,V, Å ³	< V, %
CaO·SiO·H ₂ O	134,9	Ca(OH) ₂ · SiO ₂	76,8	76
2CaO·SiO ₂ ·H ₂ O	244,8	Ca(OH) ₂ ·SiO ₂ ·CaO	186,7	31
2CaO·SiO ₂ ·2H ₂ O	255,8	2Ca(OH) ₂ ·SiO ₂	139,6	83
3CaO-2SiO ₂ .3H ₂ O	390,7	3 Ca(OH) ₂ .2SiO ₂	216,4	80

Рассмотрим варианты трансформации абстрактных силикатных новообразований в смысловые, соблюдая закон сохранения масс и принимая во внимание работу [5].

<u>CSH</u>→CaO·SiO₂·H₂O→CaO·H₂O·SiO₂→Ca(OH)₂·SiO₂. Это силикат гидратной извести, который можно рассмотреть как два вначале нейтральных самостоятельных полимера: 1) H-O-Ca-O-H и 2) O=Si=O, но когда щелочность и температура первого разрушат двойную (двойные) связи второго мы получим новообразование в виде третьего полимера. Он же и конечный продукт: H-O-Ca-O-Si-O-H — моносиликат

кальция.

$$C_2SH$$
 → 2CaO·SiO₂·H₂O → Ca(OH)₂SiO₂·CaO дает полимер

H-O-Ca-O-Si-O-Ca-O-H. При этом оксид (CaO) не гидратированный может свидетельствовать о неустойчивости этого новообразования. Практически в любых условиях он примет молекулу воды и новообразование перейдет в годроминерал C₂SH₂.

$$C_2SH_2 \rightarrow 2CaO \cdot 2H_2O \cdot SiO_2 \rightarrow 2Ca(OH)_2 \cdot SiO_2 \rightarrow H-O-Ca-O-Si-O-Ca-O-H,$$

т.е. получим силикат гидратной извести.

<u>С</u>₃<u>S</u>₂<u>H</u>₃→3CaO·2SiO₂·3H₂O→3Ca(OH)₂·2SiO₂, - это практически полигидроорганосилоксан кальция:

Полимеризация гидроминералов: C₃S₂H₃ + CSH =

Подкисление активизирует разрыв связей и потому возможна перестройка двойной связи силикатной части в силоксановую:

компонентов.

Создание твердого тела на примере участия силикатной и алюмоферритной фаз: $C_3S_2H_3+CSH+2[Al(OH)_3]+2[Fe(OH)_3]$ В результате получим

По нашим расчетам у силикатной фазы О-Н-связей (48%) практически столько, сколько и у алюмоферритной – 52%.

Выводы

Молекулярное написание формул новообразований цемента предпочтительнее оксидального. Это дает возможность не только лучше познать сами новообразования, но и понять механизм конструирования твердого тела (бетона) на их основе. Силикатная фаза с более длинными и легко сшиваемыми молекулами может быть представлена как матрица, единый пространственный каркас, наполняющийся более дисперсными новообразованиями алюмоферритной фазы.

Основу исходного сырья для твердого тела составляет гидратная известь, которая присутствует не только в свободном (около 17%), но и в химически связанном (около 40%) состоянии.

1. Гусев Б. В. Бетоноведение — фундаментальное и прикладное направление развития. Материалы к 45-му международному семинару по моделированию и оптимизации композитов. Одесса.: Астропринт, 2006. 2. Г Е Швите, У Людвиг. Гидроалюминаты и гидроферриты кальция. У международный конгресс по химии цемента. 3. О П Мчедлов Петросян, В И Бабушкин. Термодинамика силикатов. Стройиздат. М.: 1972. 4. Гидроалюминаты кальция и родственные соединения. Химия цемента. Под ред. Х Ф У Тейлора. Си, М.: 1969. 5. Кучеренко А А, Кучеренко Р А. Зерно цемента — зеркало бетона. Вісник ОДАБА, вип.27, Одеса.: 2007.