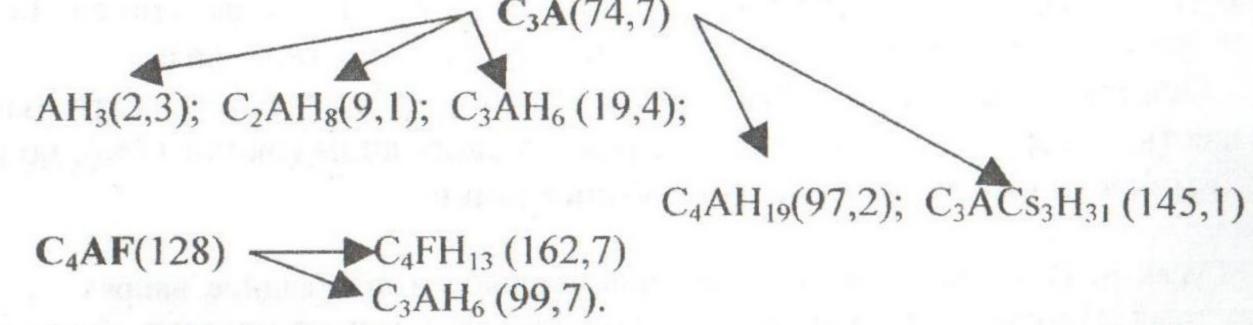
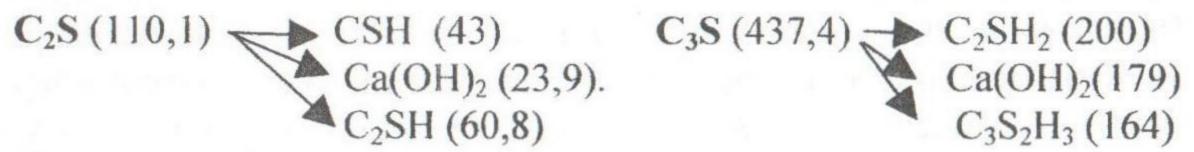
ЕСТЬ ЛИ ПЕРСПЕКТИВА У МАРКИ ЦЕМЕНТА?


Кучеренко А.А., Кучеренко Р.А. (Одесская государственная академия строительства и архитектуры. г. Одесса.)

Поиск основных видов новообразований цемента в зависимости от минералогического состава клинкера и их потребности в зависимости от марки бетона.


Определение марки цемента имеет ряд недостатков: наличие большого количества условностей (размер образца, влажность, возраст и др.), необходимость в специальном песке, наличие специальной аппаратуры и многое другое. На данном этапе развития технологии бетона это оправдано. Однако несовместимо с нанотехнологией бетона. Конструирование бетона от атома к молекуле, от оксидов к минералам цементного клинкера, от минералов к новообразованиям изделия не потерпит вольностей и условностей на этом пути. Только химия исходного цемента, количество и качество его определит химию конечного продукта, долговечность и прочность его. И только с учетом условий и режимов преобразования этих веществ на пути от активных минералов к зрелым гидроминералам.

Основная группа минералов цементного клинкера дает следующие [1] и в количестве [2] гидроминералы (в скобках - количество в г/кг цемента).

Алюмоферритная фаза:

Алюмоферритная фаза в заметном количестве поставляет: C_4FH_{13} - 13,5%; гидроалюминаты (C_3AH_6 и C_4AH_{19}) в количестве 18%; эттрингит – 12,1% от суммы всех новообразований цемента. При этом надо отметить, что количество эттрингита тесно взаимосвязано, в нашем случае, с расходом $CaSO_4 \cdot 2H_2O$. На получение одной молекулы эттрингита расходуется 3 молекулы гипса и один оксид Al_2O_3 . От массы всех новобразований эта фаза составляет 43,6%.

Силикатная фаза поставляет две группы новообразований по содержанию молекул воды в молекулах гидросиликатов:

- моногидросиликаты (CH, CSH и C₂SH) в количестве 25,5% от общей массы новообразований:
- полигидросиликаты (C_2SH_2 и $C_3S_2H_3$) в количестве 30,2% от общей суммы новообразований. Их поставляет в основном C_3S .

В технической литературе гидросиликаты кальция классифицируют по основности: одноосновные и многоосновные. Однако, одноосновных новообразований 3,6%, а многоосновных - 35,3%, т.е. первыми мы можем пренебречь. И все же это ошибочно не только потому, что прочность их велика, но и потому, что во времени многоосновные гидросиликаты переходят в одноосновные, изменяя прочность бетона. При этом основную массу многоосновной фазы поставляет именно C_3S : в 3,5 раза больше, чем C_2S .

Таким образом, к основным (ведущим) новообразованиям можно отнести:

- 1) моногидросиликаты кальция CSH и C₂SH;
- 2) полигидросиликаты кальция, С2SH2 и С3S2H3;
- 3) C_4AH_{19} ;
- $4) C_4FH_{13}$
- 5) эттрингит C₃ACs₃H₃₁;
- 6) портландит $Ca(OH)_2$.

Гидроминерал C_3AH_6 сопутствующий: на каждую молекулу C_4FH_{13} приходится одна молекула C_3AH_6 , а соотношение по массе C_4AH_{19} : $C_3AH_6=1,4:1$. Между исходным сырьем $CaSO_4\cdot 2H_2O$ и новообразованием $C_3ACs_3H_{31}$ имеется тесная связь, так как двуводный гипс полностью реализуется. Его было $211\cdot 10^{21}$ шт молекул [2], а возникло эттрингита $71\cdot 10^{21}$ шт молекул, т.е. на одну молекулу новообразования идет три молекулы исходного сырья.

90% основных новообразований (без учета 9,9% С₃АН₆) представляют твердое тело (бетон). В то время как 95-97% [3] минералов клинкера представляют весь дисперсный порошок - цемент. Все вместе гидроминералы обеспечивают необходимую прочность бетона. Каждый из них характеризуется определенной прочностью. По данным [4] экспериментальная прочность сростков монокристаллов типа СSH составляет 69МПа, эттрингита до 40 МПа. Многоосновные характеризу-

ются еще меньшей прочностью. Практически еще в 2 раза ниже прочность гидроалюмоферритов и только около 3,5МПа – портландита. Несмотря на крайне скудные данные в этой области, прослеживается необходимость увеличения количества силикатных гидроминералов. Об этом свидетельствует и высокая прочность бетона с добавками аморфного микрокремнезема. Последний, очевидно, спосмобствует возникновению большего количества гидросиликатов кальция или у возникших г.с.к. рвут слабые связи О-Н (≡Si-O-H), заменяя их более сильными Si-O (≡Si-O-Si≡), продолжая или пространственно развивая полимеризацию. Надо признать крайне недостаточное количество исследований в части определения физико-механических характеристик именно индивидуальных новообразований. А данных о количественном содержании того или иного гидроминерала в единице объема бетона не существует. Когда бетоноведение «встретится» с нанотехнологией необходимость в знании этого неизбежна как и то, что кроме марки цемента прочность бетона придется оценивать по количеству тех или иных гидроминералов (по факту), а не по марке цемента (что сопровождается большим количеством условностей, вмонтировать которые в нанотехнологию бетоноведения практически невозможно).

Активность цемента должна быть связана с активностью минералов (степенью и скоростью гидратации) и с количеством и качеством гидроминералов. От бетоноведов нанотехнология потребует совершенно другого оборудования и метода оценки качества исходного сырья и продукции. И наработки в этом уже должны идти сейчас. Поэтому, как бы странно это не звучало (в перспективе это будет обычным делом), но уйти от марки цемента можно с учетом зависимостей, приведенных в табл. 1.

Таблица 1. Количество минералов и новообразований ПЦП/А-Ш-500, обеспечивающих необходимую марку бетона нормального твердения

Вещества	Количество веществ в кг/м3 для бетона марок							
	200	300	350	400	450	500		
	Pacxo	од основн	ых минер	алов		11111		
C ₂ S	27	37	42	46	52	64		
C ₃ S	107	147	166	184	207	253		
C_3A	18	25	28	31	36	43		
C ₄ AF	31	43	49	54	58	74		
CaSO ₄ ·2H ₂ O	15	20	23	25	29	35		
H ₂ O _{x.c.}	67	91	103	114	129	158		
Сумма расхода	265	363	411	454	511	627		

	2	3	4	5	6	7
THE WAR IN	Триход с	сновных	новообра	азований		1
CSH+C ₂ SH	25	35	39	44	49	60
C ₂ SH ₂ +C ₃ S ₂ H ₃	89	122	138	153	173	211
C ₄ AH ₁₉	24	33	37	41	46	56
C ₄ FH ₁₃	40	55	62	68	77	94
C ₃ FCs ₃ H ₃₁	36	49	55	61	69	84
Ca(OH) ₂	50	68	77	85	96	118
Сумма прихода	264	362	408	452	510	623

Точность расчетов превышает 99%, что вполне отвечает во-первых справедливости закона сохранения масс веществ, во-вторых правильности выбранных основных новообразований гидратированного цемента и в третьих методике расчета как минералов так и гидроминералов цемента на 1 м3 бетона.

Выводы

Предложен один из элементов компьютерного бетоноведения, основанный на работе от исходных минералов цемента до конечных гидроминералов бетона. Выбраны основные новообразования цементного камня. Обращено внимания на возможность «конфликта» марки цемента с нанотехнологией бетона.

Литература

- 1. .Кучеренко A A.Об истоках компьютерного бетоноведения Вісник ОДАБА №26. Одесса Зовнішрекламсервіс.
 - 2. Кучеренко A A, Кучеренко P A. Зерно цемента –зеркало бетона. Там же, №27. 2007. Одесса
 - 3. Бутт Ю М. Технология вяжущих веществ. Высшая школа. М, 1965.
 - 4. Кузнецова Т В и др. Физическая химия вяжущих материалов.М.:Высшая школа. 1989.