УДК 624.041

ВЛИЯНИЕ ТЕХНОЛОГИЧЕСКОЙ ПОВРЕЖДЕННОСТИ БЕТОНА НА МОМЕНТЫ РАЗРУШЕНИЯ ЖЕЛЕЗОБЕТОННЫХ БАЛОК

Олейник Н.В. (Одесская государственная академия строительства и архитектуры, г. Одесса)

Приводятся результаты экспериментально-теоретических исследований влияния структурных факторов (количества и дисперсности минерального наполнителя) на изменение моментов разрушения изгибаемых железобетонных элементов по нормальным сечениям.

Повышение эффективности бетонных и железобетонных изделий и конструкций связано с реализацией потенциальных возможностей бетона как сложноорганизованного композиционного материала. Управление процессами организации структуры композиционных строительных материалов (КСМ) на различных уровнях неоднородностей связано с изменением качественного и количественного составов минераль-

ного вяжущего [1, 2, 3, 4, 5]. Введение в состав бетонной смеси в качестве наполнителя молотого кварцевого песка позволяет наряду с понижением материалоемкости изделий обеспечивать требуемые свойства бетона [1].

Проведенные исследования на образцах небольших размеров (призмы, кубики). [1, 2, 3, 4, 5] не позволяют сделать выводы о влиянии изменения в составе бетона количества и качества (дисперсности) минерального наполнителя на прочностные характеристики изгибаемых элементов, в частности – моменты разрушения.

При анализе результатов, полученных в монографии [1], выделены оптимальные количество и дисперсность минерального наполнителя (молотого кварцевого песка). В связи с этим в данной работе приняты: дисперсность – 100, 200, 300 м²/кг и количество наполнителя – 8, 10, 12% от количества цемента с целью изучения влияния этих показателей на изменение предельных моментов железобетонных изгибаемых элементов (балок).

С целью исследования влияния количества и качества минерального наполнителя на изменение предельных моментов были изготовлены 9 железобетонных балок различных составов с таким расходом материалов на 1 м³: цемент – 350 кг, песок – 700 кг, щебень – 1100 кг, B/LI = 0.4. В качестве наполнителя применялся мелкий кварцевый

242

0,4. В качестве наполнителя применялся мелкий кварцевый песок, предварительно размолотый в шаровой мельнице до заданной удельной поверхности. Введение наполнителя непосредственно в состав бетонной смеси было выполнено в процессе ее приготовления. Опытные изгибаемые элементы армировались сварными пространственными каркасами с продольной рабочей арматурой периодического профиля класса А400С и диаметром 10 мм (рис. 1).

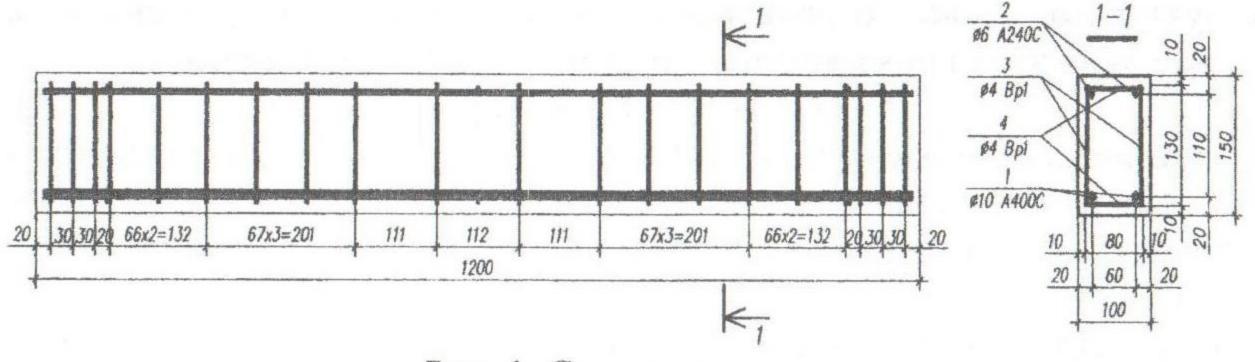


Рис. 1. Схема армирования

Балки испытывались на изгиб по статической схеме как однопролетные, свободно опертые, загруженные сосредоточенными силами, расположенными в третях пролета. Схема нагружения представлена на рис. 2.

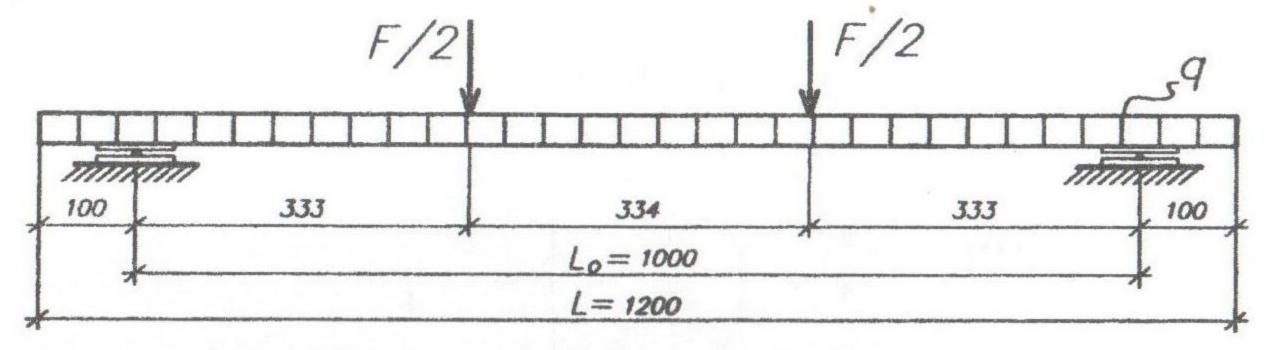


Рис. 2. Схема нагружения

Для определения коэффициентов технологической поврежденности на двух гранях каждой балки были начерчены линии: в зоне чистого изгиба – по три вертикальные, в зоне совместного действия изгибающего момента и поперечной силы – по четыре наклонные, а также выделены участки 15 × 15 см на боковых гранях балок на участках, граничащих с арматурой (рис. 3 а, б).

Количественная оценка технологической поврежденности определялась измерением длин поверхностных трещин курвиметром с точностью до 1 мм. Коэффициент технологической поврежденности по площади (*Кn_s*) определялся как отношение суммы длин поверхностных

243

трещин (T_0), измеренных в пределах участка 10 × 10 см, к площади этого участка (S).

$$Kn_s = \sum T_0 / S, [CM/CM^2]$$
(1)

Физический смысл заключается в оценке удельной длины поверхностных трещин, проявленных на единице поверхности.

Коэффициент технологической поврежденности по линии (Kn_l) принят как отношение длины характерной линии (L), пересекающей структурные блоки, ограниченные технологическими трещинами, к сумме длин этих примыкающих трещин (T_0) с одной стороны:

$$Kn_L = L/\Sigma T_0, [CM/CM]$$
(2)

Физический смысл заключается в оценке удельной длины поверхностных трещин, проявленных на единице длины. При введении коэффициента технологической поврежденности по линии (Kn_L) придерживались наглядности, то есть, с увеличением поврежденности (уменьшением структурных блоков (ячеек) и, следовательно, ΣT_0 , приходящихся на характерную линию (L)), увеличивается Kn_L .

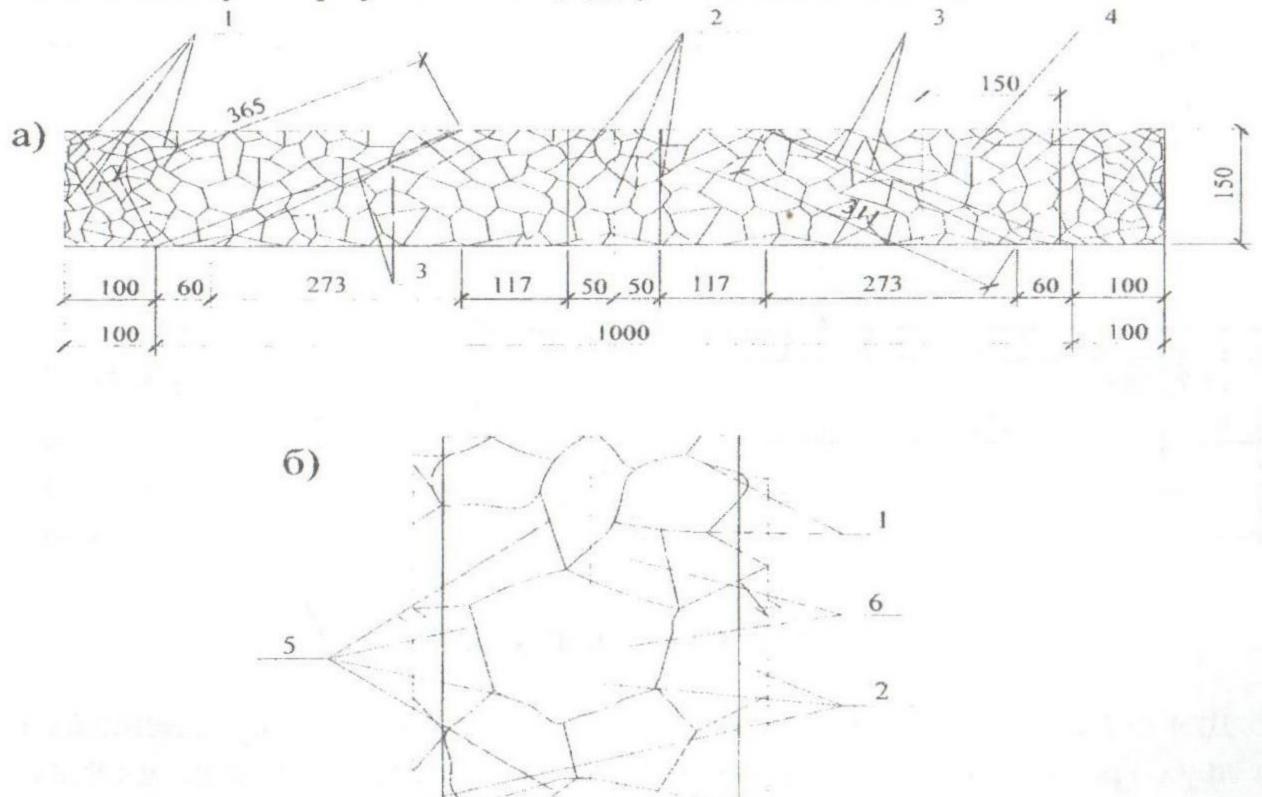


Рис. 3. Методика оценки технологической поврежденности по железобетонным балкам: а) расположение характерных линий и площади на образце-балке с проявленным характером поврежденности; б) фрагмент определения коэффициента поврежденности по характерной линии (в поперечном сечении); 1 – технологические трещины; 2, 3 – поперечные и наклонные характерные линии для определения коэффициента поврежденности по линии (Kn_L); 4 – площадь для определения коэффициента поврежденности по площади (Kn_s); 5 – технологические трещины, образующие ячейки, которые пересекает характерная поперечная линия (L); 6 – структурные блоки.

В таблице 1 приведены дисперсность и количество молотого кварцевого песка в процентах от массы цемента для каждого исследуемого состава, а также полученные по образцам – балкам коэффициенты технологической поврежденности. В таблицу 2 сведены величины внутренних усилий трещинообразования и разрушения балок.

Таблица 1

Коэффициенты технологической повреждённости (Кn_S, Кn_L), определённые по балкам

Nº COCTABA	Количество наполнителя <i>H</i> , %	Дисперсность, м ² /кг	Поперечное сечение (<i>Lл</i> = 15 см)	Наклонное сечение (<i>Lл</i> = 36,5 см)	Наклон- ное сечение (<i>Lл</i> = 31,1 см)	Площадь (S = 225 см ²)	
No	Колн	Диспер	<i>Кп_L</i> , см/см	Кп _L , см/см	Кп _L , см/см	<i>Кп_s</i> , см/см ²	
1	8	100	0,381	0,400	0,415	1,21	
2		200	0,312	0,388	0,393	1,13	
3		300	0,271	0,306	0,329	0,76	
4		100	0,300	0,280	0,303	0,96	
5		200	0,278	0,314	0,326	0,94	
6		300	0,261	0,273	0,290	0,61	
7		100	0,307	0,347	0,354	1,15	
8	12	200	0,321	0,353	0,364	0,99	
9		300	0,310	0,279	0,292	0,72	

На рис. 4 представлены зависимости предельных моментов экспериментальных балок от технологической поврежденности, определенных по поперечным и наклонным сечениям балок, а также выделенным площадям и выраженной через коэффициент технологической поврежденности *Кn_s* и *Kn_L*.

Анализируя влияние технологической поврежденности на моменты

разрушения экспериментальных балок, прослеживается следующая тенденция: максимальные значения момента наблюдаются для наклонных сечений при $Kn_L = 0,275 - 0,32$, для поперечных – при $Kn_L = 0,261$ и для выделенных площадей $Kn_S = 0,7 - 0,8$. Минимальные значения – для наклонных сечений при $Kn_L = 0,4 - 0,415$, для поперечных – при $Kn_L = 0,381$ и для выделенных площадей $Kn_S = 1,21$.

Таблица 2

						1
$M_u^{ m ckcn.}$ $M_u^{ m pacy.}$	М ^{эксп.} , Н×м	М ^{эксп.} , crc , H × м	<i>M_и ^{расч.}</i> , Н × м	S _v , м ² /кг	Н, %	№ состава
1,64	11190	2096	6832,02	100		1
1,64	11239	1833	6861,88	200	8	2
1,74	11988	1546	6880,53	300		3
1,68	11588	2009	6882,88	100		4
1,69	11655	1551	6884,82	200	10	5
1,71	11822	1462	6905,54	300		6
1,64	11239	1462	6859,68	100		7
1,72	11855	1509	6874,62	200	12	8
1,69	11655	1636	6888,48	300		9
	11655 11822 11239 11855	1551 1462 1462 1509	6884,82 6905,54 6859,68 6874,62	200 300 100 200		5 6 7 8

Моменты трещинообразования и разрушения экспериментальных балок

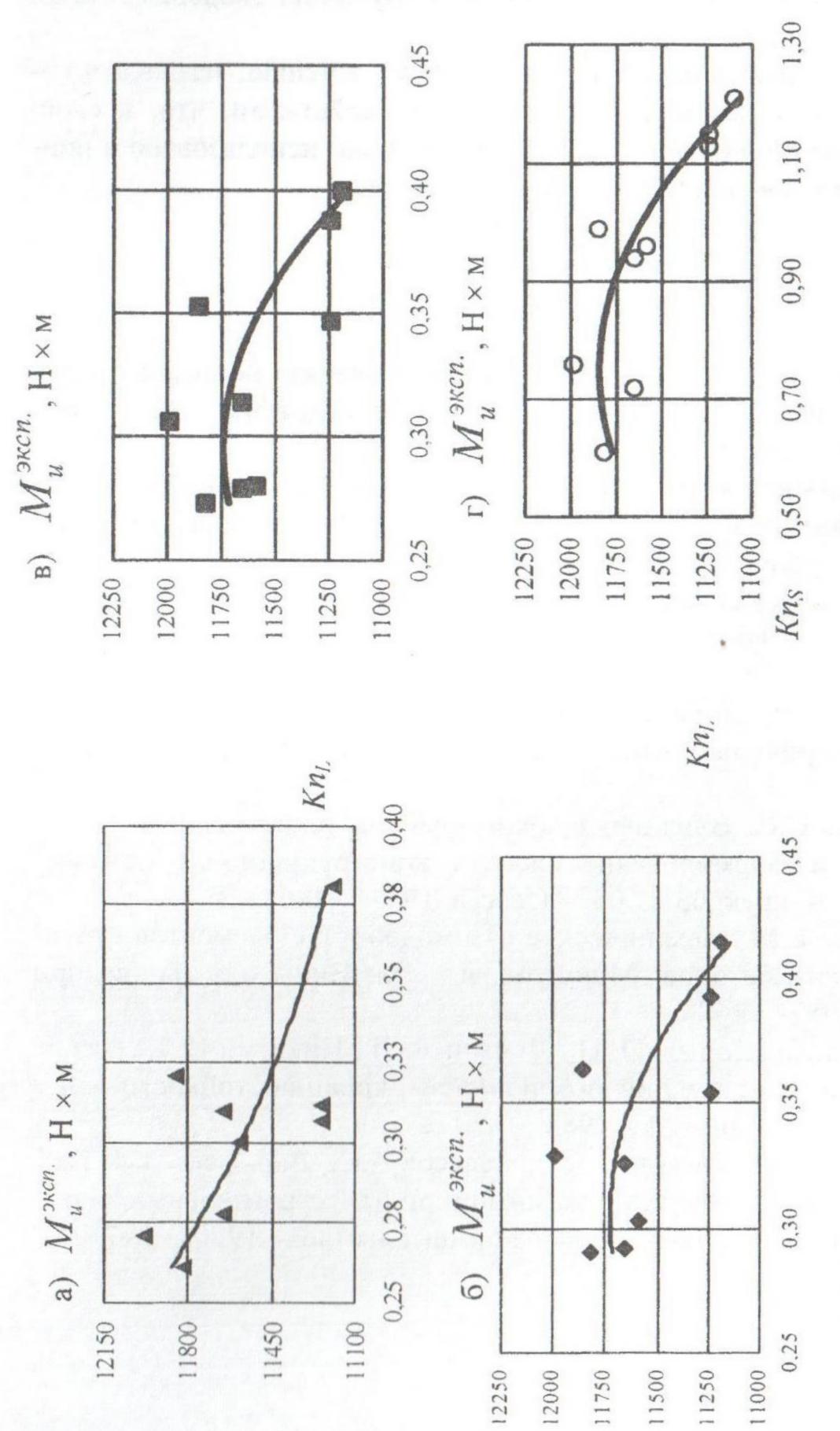


Рис. 4. Влияние на моменты разрушения технологической поврежденности, выраженной через коэффициент через коэффициент Ки_S, определенный по выделенным площадям (г) экспериментальных балок. сечениях балок 31,1 см (б) и 36,5 см (в); а также Ки,, определенный в поперечных (а) и наклонных

 Kn_l

247

Выводы

Из вышеизложенного можно сделать вывод, что с увеличением коэффициентов поврежденности моменты разрушения экспериментальных балок уменьшаются.

Сделанные выводы позволяют, по нашему мнению, назначать составы с заранее заданными прочностными свойствами, что, в свою очередь, поможет более полно и целенаправленно использовано в применении материалов для изгибаемых элементов.

Литература

1. Дорофеев В.С., Выровой В.Н. Технологическая поврежденность строительных материалов и конструкций: Монография. – О.: Город мастеров, 1998. – 168 с.

2. Композиционные строительные материалы и конструкции пониженной материалоёмкости / В.И. Соломатов, В.Н. Выровой, В.С. Дорофеев, А.В. Сиренко. - К.: Будивэльнык, 1991. – 144 с.

3. Технологическая наследственность композиционных строительных материалов и конструкций: Учеб.пособие / В.С. Дорофеев. – К.:

УМК ВО, 1992. – 52с.

4. Выровой В.Н., Дорофеев В.С. Технологическая механика композиционных материалов. – Киев: Общество "Знание" Украины, 1991г. – 19 с.

5. Макарова С.С. Влияние наполнителей на технологическую поврежденность и формирование свойств конструкционных бетонов: Дис... канд. техн. наук: 05.23.05. – Одесса, 1993. – 146 с.

6. Гладышев Б.М. Механическое взаимодействие элементов структуры и прочность бетонов: Монография. – Х.: Вища шк. Изд-во при Харьк. ун-те, 1987. – 168 с.

7. Залесов А. С., Кодыш Э. Н., Лемыш Л. Л., Никитин И. К. Расчет железобетонных конструкций по прочности, трещиностойкости и деформациям. – М.: Стройиздат, 1988. – 320 с.

8. Соломатов В.И., Выровой В.Н., Залесов А.С., Дорофеев В.С. Технологическая поврежденность композиционных строительных материалов и конструкций// Транспортное строительство. – 1990. – №7. – С. 39 – 40.