ПРОСТРАНСТВЕННАЯ УСТОЙЧИВОСТЬ ЖЕСТКО ЗАЩЕМЛЕННОЙ БЕТОННОЙ КОЛОННЫ ПРИ НЕСИММЕТРИЧНОМ ВОЗДЕЙСТВИИ АГРЕССИВНОЙ СРЕДЫ

И.П.Фомина, асс., Р.В.Кушнир, студент

Одесская государственная академия строительства и архитектуры, г. Одесса

В работе [1] была исследована устойчивость жестко защемленной бетонной колонны в плоскости ее наименьшей изгибной жесткости,

когда одна из граней колонны подвергается коррозии. В настоящей статье рассматривается более сложный случай, когда две ИЗ примыкающих друг к другу боковых граней подвергаются коррозии. причем начала коррозионных процессов в гранях не совпадают по времени. Такой вариант возможен, если колонна является в конструкции угловой и с нее начинается диагональная перегородка (рис. 1). Будем называть эти две грани внутренними. Обозначим внутреннюю грань. перпендикулярную оси $y^{(1)}$, номером 1, а грань, перпендикулярную оси у(2) - номером 2.

При исследовании устойчивости колонны

Рис. 1 будем следовать алгоритму, изложенному в [1]. При этом будем определять значения критических сил как для потери устойчивости в плоскости $xy^{(1)}$, так и в плоскости $xy^{(2)}$. Ясно, что потеря устойчивости произойдет при меньшей из них. Пусть начало коррозионного процесса в грани 1 соответствует t = 0, а в грани 2 $t = t_0^{(2)} > 0$.

Рассмотрим устойчивость колонны на отрезке времени $0 \le t < t_0^{(2)}$. Продольные сечения колонны плоскостями $xy^{(1)}$ и $xy^{(2)}$ представлены на рис. 2a) и 2b). Как и в [1] высота и глубина корродированного слоя определяется по формулам

$$l_1^{(1)}(t) = v_0 t, \ h^{(1)}(x,t) = h_0 e^{-\beta v_0 / [l_1^{(1)}(t) - x]}.$$
 (1)

(о значениях параметров β , v_0 , h_0 см. [1]).

Назовем осевой линией геометрическое место центров тяжести некорродированных поперечных сечений колонны (на рис. 2c) центр тяжести некорродированной части поперечного сечения обозначен C_1). На рис. 3a) штриховой линией показана осевая линия колонны в плоскости $xy^{(1)}$. В плоскости $xy^{(2)}$ она совпадает с осью колонны. Следуя алгоритму, изложенному в [1], строим уравнение критических сил

Рис. 3

$$F_1^{(i)}(P^{(i)},t)\cos k_2^{(i)} + F_2^{(i)}(P^{(i)},t)\sin k_2^{(i)} - 1 = 0 \quad (i = 1,2) .$$

Здесь индекс і соответствует потере устойчивости в плоскости

$$\begin{split} xy^{(i)} & (i=1,2), \ k_2^{(i)} = l\sqrt{P^{(i)}/E_6J_2^{(i)}}, \ J_2^{(1)} = d_2d_1^3/12, \ J_2^{(2)} = d_1d_2^3/12, \\ F_1^{(i)}(P^{(i)},t) = [Z_1^{(i)}(\lambda_1^{(1)}(t),t) - 1]k_2^{(i)}\cos k_2^{(i)}\lambda_1^{(1)}(t) - Z_1^{(i)'}(\lambda_1^{(1)}(t),t)\sin k_2^{(i)}\lambda_1^{(1)}(t), \\ F_2^{(i)}(P^{(i)},t) = [Z_1^{(i)}(\lambda_1^{(1)}(t),t) - 1]k_2^{(i)}\sin k_2^{(i)}\lambda_1^{(1)}(t) + Z_1^{(i)'}(\lambda_1^{(1)}(t),t)\cos k_2^{(i)}\lambda_1^{(1)}(t), \\ Z_1^{(i)}(\xi,t) = \sum_{k=1}^{\infty} Z_{1,k}^{(i)}(\xi,t)(\varepsilon^{(i)})^k, \\ Z_{1,k}^{(i)}(\xi,t) = \sum_{j=0}^{\infty} f_j^{(i,k)}\xi^j, \\ \xi = \frac{x}{l}, \\ \varepsilon^{(i)} = P^{(i)}l^2/E_6, \\ \lambda_1^{(1)}(t) = l_1^{(1)}(t)/l, \ f_j^{(i,k)} - \\ \mbox{коэффициенты, которые определяются (см. [1]) \\ \textbf{через коэффициенты } f_j^{(i)}(t) \\ \mbox{разложения функций } f^{(1)}(\xi,t) = \frac{12}{d_2[d_1 - h^{(1)}(\xi,t)]^3}$$
 в степенные ряды $f^{(i)}(\xi,t) = \sum_{j=0}^{\infty} f_j^{(i)}(t)\xi^j \ (i=1,2).$ Из уравнений (2) определяются значения критических сил при любом значении t. \\ \end{split}

Перейдем теперь к определению критических сил при $t \ge t_0^{(2)}$. Продольные сечения колонны плоскостями $xy^{(1)}$ и $xy^{(2)}$ показаны на рис. 4a) и 4b), а поперечное сечение на участке $x \le l_1^{(2)}$ - на рис. 4c). Поперечное сечение на участке $l_1^{(2)} < x \le l_1^{(1)}$ приведено на рис. 2c).

Можно воспользоваться алгоритмом, предложенным в [1], если представить $h^{(2)}(x,t)$ следующим образом:

$$\begin{split} h^{(2)}(x,t) &= h_0 e^{-\beta v_0 / [l_1^{(2)}(t) - x]}, \, l_1^{(2)}(t) = v_0(t - t_0^{(2)}) \ (x \le l_1^{(2)}(t)), \\ h^{(2)}(x,t) &= 0 \ (l_1^{(2)}(t) < x \le l_1^{(1)}(t)) \end{split}$$

На рис. 5*a*) и 5b) штриховой линией показаны осевые линии колонны в плоскостях $xy^{(1)}$ и $xy^{(2)}$. Для определения критических сил пользуемся уравнением (2), в котором следует принять

$$\begin{split} &f^{(1)}(\xi,t) = 12/[d_2 - h^{(2)}(\xi,t)][d_1 - h^{(1)}(\xi,t)]^3, \\ &f^{(2)}(\xi,t) = 12/[d_1 - h^{(1)}(\xi,t)][d_2 - h^{(2)}(\xi,t)]^3, \end{split}$$

Остальные обозначения остаются такими, какими они приведены выше.

Пример. Исследуем на устойчивость бетонную колонну,

подверженную коррозии, при следующих значениях параметров: l = 12m, $d_1 = 0,4m$, $d_2 = 0,37m$, $E = 27 \cdot 10^3 m \Pi a$, $h_0 = 0,08m$, $\beta = 7,5$ лет, $v_0 = 0,1$ м/год.

Критические силы для неповрежденной коррозией колонны

$$\begin{split} P_{0,kp}^{(1)} &= \pi^2 E_{\tilde{o}} J_2^{(1)} / 4l^2 = 912\kappa H \\ P_{0,kp}^{(2)} &= \pi^2 E_{\tilde{o}} J_2^{(2)} / 4l^2 = 781\kappa H \end{split}$$

Используя изложенный выше алгоритм, определяем значения критических сил $P_{kn}^{(i)}$ (*i*=1,2) для ряда значений t в пределах от 0 до 120 лет. Графики изменения $P_{kp}^{(i)}$ в зависимости от t представлены на рис.6 (график 1 для $P_{kp}^{(1)}$, график 2 график 3 – $P_{kp}^{(2)}$, для для минимальной критической силы $P_{kp}, P_{kp}^{(i)}$ - в кH, t - в годах).

Рис. 6

Из чертежа следует, что на участке A ($0 \le t \le 35$ лет) $P_{kp} = P_{kp}^{(2)}$, на участке E (35 лет $\le t \le 96$ лет) $P_{kp} = P_{kp}^{(1)}$, на участке C (96 лет $\le t \le 120$ лет) $P_{kp} = P_{kp}^{(2)}$, т.е. на разных отрезках потеря устойчивости происходит в разных плоскостях.

Вывод

Предложен метод, позволяющий проводить исследование пространственной устойчивости бетонных колонн при несимметричном агрессивном воздействии окружающей среды, что необходимо для своевременного их усиления для обеспечения надежности конструкции.

Summary

The method for investigation of nonuniplanar stability of concrete columns with taking into account nonsymmetrical aggressive environmental impact is offered, what allows their on-time strengthening to secure the reliability of constructions.

Литература

1. Фомина И.П. Устойчивость жестко защемленной бетонной колонны при несимметричном воздействии агрессивной среды // Вісник ОДАБА. Вып.55 – Одесса.