УТОЧНЕННЫЙ МЕТОД ИССЛЕДОВАНИЯ УСТОЙЧИВОСТИ БЕТОННОЙ КОЛОННЫ С УЧЕТОМ ВОЗДЕЙСТВИЯ АГРЕССИВНОЙ СРЕДЫ

Фомина И.П.

Одесская государственная академия строительства и архитектуры, г. Одесса

В статье [1] была исследована устойчивость однородной колонны с учетом расширения области коррозионного износа как внутрь колонны, так и вдоль нее. При этом в качестве первого приближения предлагалась модель колонны, состоящей из двух участков, поперечные сечения которых вдоль каждого из участков не изменялись. В настоящей работе учитывается изменение поперечного сечения колонны вдоль корродированного участка.

Как и в работе [1] рассматриваем колонну прямоугольного поперечного сечения, полагая при этом, что коррозии подвергается нижний участок колонны и что коррозия повреждает сечение равномерно по всему периметру. Высота зоны коррозии перемещается вверх с постоянной скоростью v_0 . Глубина поврежденной зоны определяется по формуле [2]

$$h(t_1) = h_0 e^{-\beta/t_1} \,. \tag{1}$$

Здесь t_1 – время, отсчитываемое от момента t_0 начала процесса коррозии в данном поперечном сечении стержня. Очевидно

$$t_0 = x/v_0 \tag{2}$$

(*x* – абсцисса сечения). С учетом (2) формула (1) принимает следующий вид:

$$h(x,t) = h_0 e^{-\beta/(t-x/v_0)}.$$
 (3)

Рис.1

Здесь t – время, отсчитываемое с момента начала процесса коррозии в колонне. Так как длина l_1 первого (корродированного) участка колонны равна

$$l_1(t) = v_0 t \,,$$

то формула (3) может быть записана так:

$$h(x,t) = h_0 e^{-\beta v_0 / [l_1(t) - x]}.$$
(4)

Дифференциальное уравнение (2) [1] на первом участке принимает следующий вид:

$$\frac{d^2 y_1}{dx^2} + \frac{12P}{E_{\delta} J(x,t)} y_1 = 0, \qquad (5)$$

где J(x,t) определяется по формуле

$$J(x,t) = \frac{[d_1 - 2h(x,t)][d_2 - 2h(x,t)]^3}{12}$$
(6)

 $(d_1 \text{ и } d_2 - \text{ ширина и высота поперечного сечения при } t = 0)$. Заметим, что время t играет роль параметра в равнении (5).

Произведем в уравнении (5) замену независимой переменной $\xi = x/l$ (l – высота колонны, см. рис.1). В результате получим следующее уравнение:

$$\frac{d^2 y_1}{d\xi^2} + \varepsilon f(\xi, t) y_1 = 0,$$
 (7)

где

$$\varepsilon = \frac{Pl^2}{E_{\delta}}, \ f(\xi, t) = \frac{12}{[d_1 - 2h(\xi, t)][d_2 - 2h(\xi, t)]^3},$$

$$h(\xi, t) = h_0 e^{-\beta v_0 / l[\lambda_1(t) - \xi]}, \ \lambda_1(t) = l_1(t) / l.$$
(8)

Аппроксимируем функцию $f(\xi,t)$ на отрезке $0 \le \xi \le \lambda_1(t)$ интерполяционным многочленом Лежандра [3]

$$f(\xi,t) = \sum_{i=0}^{n} f(\xi_{i},t) \frac{\omega_{i}(\xi)}{\omega_{i}(\xi_{i})},$$

$$\omega_{i}(\xi) = (\xi - \xi_{1})(\xi - \xi_{2})...(\xi - \xi_{i-1})(\xi - \xi_{i+1})...(\xi - \xi_{n})$$
(9)

 $(\xi_i = \frac{\lambda_1}{n}i, i = 0, 1, ..., n)$. Представим многочлен $\omega_i(\xi)$ в следующем виде:

$$\omega_i(\xi) = \prod_{j=0}^n (\xi - \eta_j), \tag{10}$$

где $\eta_j = \xi_j$ при j = 0, 1, ..., i - 1 и $\eta_j = \xi_{j+1}$ при j = i, i+1, ..., n. Теперь предположим, что некоторый многочлен $M_k(\xi) = \prod_{j=0}^k (\xi - \eta_j)$, где k < n,

записан так

$$M_k(\xi) = a_0^{(k)} + a_1^{(k)}\xi + \dots + a_k^{(k)}\xi^k,$$

тогда, очевидно, многочлен

$$M_{k+1}(\xi) = a_0^{(k+1)} + a_1^{(k+1)}\xi + \dots + a_{k+1}^{(k+1)}\xi^{k+1}$$
(11)

может быть получен следующим образом:

$$M_{k+1}(\xi) = (a_0^{(k)} + a_1^{(k)}\xi + \dots + a_k^{(k)}\xi^k)(\xi - \eta_{k+1}).$$
(12)

Приравнивая коэффициенты при одинаковых степенях ξ в правых частях равенств (11) и (12), приходим к следующим рекуррентным соотношениям:

$$a_{0}^{(k+1)} = -a_{0}^{(k)} \eta_{k},$$

$$a_{i}^{(k+1)} = a_{i-1}^{(k)} - a_{i}^{(k)} \eta_{k} \quad (i = 1, 2, ..., k),$$

$$a_{k+1}^{(k+1)} = a_{k}^{(k)}.$$
(13)

Заметим, что при k = 1 имеют место равенства

$$a_0^{(1)} = -\eta_0, \ a_1^{(1)} = 1.$$

Затем, используя соотношения (13), находим значения $a_0^{(2)}$, $a_1^{(2)}$ и $a_2^{(2)}$. Двигаясь таким образом далее, на n-1 шаге получаем значения коэффициентов многочлена (10):

$$\omega_i(\xi) = \sum_{j=0}^n b_{i,j} \xi^j , \qquad (14)$$

где $b_{i,j} = a_j^{(n)}$ (j = 0,1,...,n).

Подставив представление (14) в формулу (9), получаем

$$f(\xi,t) = \sum_{j=0}^{\infty} f_j(t)\xi^j ,$$
 (15)

где

$$f_{j}(t) = \sum_{i=0}^{n} f(\xi_{i}, t) \frac{b_{i,j}}{\omega_{i}(\xi_{i})} \quad (j = 0, 1, ..., n), \ f_{j}(t) = 0 \ (j > n)$$

Будем искать частное решение $y_{i}(\xi, \varepsilon, t)$ задачи Коши для уравнения (7) при начальных условиях

$$y_{q}(0,\varepsilon,t) = 0, \ \frac{dy_{q}(0,\varepsilon,t)}{d\xi} = 1$$
(16)

в виде разложения по степеням малого параметра є:

$$y_{q}(\xi,\varepsilon,t) = \sum_{k=0}^{\infty} \varepsilon^{k} y_{q,k}(\xi,t) .$$
(17)

Подставив это разложение в уравнение (7), получаем

$$\frac{d^2 y_{u,0}}{d\xi^2} + \sum_{k=1}^{\infty} \varepsilon^k \left[\frac{d^2 y_{u,k}}{d\xi^2} + f(\xi,t) y_{u,k-1} \right] = 0.$$
(18)

Приравнивая коэффициенты при разных степенях є нулю, получаем систему дифференциальных уравнений

$$\frac{d^2 y_{u,0}}{d\xi^2} = 0, \quad \frac{d^2 y_{u,k}}{d\xi^2} = -f(\xi,t) y_{u,k-1} \quad (k>0)$$
(19)

Из первого уравнения (19) с учетом начальных условий (16) получаем

$$y_{u,0}(\xi,t) = \xi$$
. (20)

Для остальных уравнений (19) будем разыскивать решение задачи Коши при нулевых начальных условиях

$$y_{u,k}(0,t) = 0, \frac{dy_{u,k}(0,t)}{d\xi} = 0 \quad (k > 0).$$
⁽²¹⁾

При k = 1 уравнение (19) выглядит так

$$\frac{d^2 y_{u,1}}{d\xi^2} = -f(\xi,t) y_{u,0}.$$

Подставив сюда (15) и (20) и дважды интегрируя по ξ , находим с учетом (21)

$$y_{u,1}(\xi,t) = \sum_{j=0}^{\infty} c_j^{(1)} \xi^j , \qquad (22)$$

где

$$c_0^{(1)} = c_1^{(1)} = c_2^{(1)} = 0, \ c_j^{(1)} = -\frac{f_{j-3}}{(j-1)j} \ (3 \le j \le n+3), \ c_j^{(1)} = 0 \ (j > n+3).$$

При k = 2 используя разложения (15) и (22) получим

$$\frac{d^2 y_{u,2}}{d\xi^2} = -\sum_{j=0}^{\infty} f_j(t) \xi^j \sum_{i=0}^{\infty} c_i^{(1)} \xi^i .$$
(23)

Перемножая стоящие в правой части (23) степенные ряды и дважды интегрируя по ξ с учетом начальных условий (21), приходим к следующему выражению:

$$y_{4,2}(\xi,t) = \sum_{j=0}^{\infty} c_j^{(2)} \xi^j , \qquad (24)$$

где

$$c_0^{(2)} = c_1^{(2)} = 0, \ c_j^{(2)} = -\frac{1}{(j-1)j} \sum_{m=0}^{j-2} f_m c_{j-m-2}^{(1)} \quad (j \ge 2)$$

Заметим, что достаточно быстрое убывание коэффициентов $c_j^{(2)}$ с увеличением *j* и необходимость вычисления суммы рядов при $\xi < 1$ на первом участке позволяют ограничиться вычислением небольшого числа коэффициентов ряда (24).

Совершенно аналогично поступаем и при k > 2. В результате получаем рекуррентные соотношения

$$c_0^{(k)} = c_1^{(k)} = 0, \ c_j^{(k)} = -\frac{1}{(j-1)j} \sum_{m=0}^{j-2} f_m c_{j-m-2}^{(k-1)} \quad (j \ge 2)$$

для коэффициентов разложений

$$y_{u,k}(\xi,t) = \sum_{j=0}^{\infty} c_j^{(k)} \xi^j$$
.

Ввиду существенной малости є для практических задач можно ограничиться и небольшим числом членов в разложении (17). Таким образом, можно считать, что частное решение $y_{4}(\xi, \varepsilon, t)$ задачи Коши для уравнения (7) при начальных условиях (16) построено.

Поскольку на первом участке функция $y_1(\xi,t)$ должна удовлетворять граничному условию $y_1(0,t) = 0$, то, очевидно, она должна иметь следующий вид:

$$y_1(\xi,\varepsilon,t) = C_1 y_u(\xi,\varepsilon,t) \tag{25}$$

 $(C_1$ – произвольная постоянная, вообще говоря, зависящая от параметров *t* и *P*).

Переходим ко второму (некорродированному) участку. Дифференциальное уравнение (7) на этом участке выглядит так

$$\frac{d^2 y_2}{d\xi^2} + k_2^2 y_2 = 0, (26)$$

где
$$k_2 = l \sqrt{\frac{P}{E_{\delta}J_0}}$$
, $J_0 = \frac{d_1 d_2^3}{12}$. Общее решение этого уравнения

$$y_2(\xi, t) = C_2 \cos k_2 \xi + C_3 \sin k_2 \xi$$
(27)

 $(C_2$ и C_3 – произвольные постоянные, зависящие от параметров t и P).

Для нахождения этих постоянных используем условия непрерывности на границе участков

$$y_2(\lambda_1(t), t) = y_1(\lambda_1(t), \varepsilon, t), \ y_2'(\lambda_1(t), t) = y_1'(\lambda_1(t), \varepsilon, t)$$
 (28)

(штрих означает производную по ξ). Из (28) получаем систему уравнений

$$C_2 \cos k_2 \lambda_1(t) + C_3 \sin k_2 \lambda_1(t) = C_1 y_4(\lambda_1(t), \varepsilon, t)$$

$$k_2 [-C_2 \sin_2 \lambda_1(t) + C_3 \cos k_2 \lambda_1(t)] = C_1 y_4'(\lambda_1(t), \varepsilon, t)$$

решая которую находим

$$C_2 = \frac{C_1}{k_2} F_1(P,t), \ C_3 = \frac{C_1}{k_2} F_2(P,t),$$

где

$$F_{1}(P,t) = y_{u}(\lambda_{1}(t),\varepsilon,t)k_{2}\cos k_{2}\lambda_{1}(t) - y_{u}'(\lambda_{1}(t),\varepsilon,t)\sin k_{2}\lambda_{1}(t),$$

$$F_{2}(P,t) = y_{u}(\lambda_{1}(t),\varepsilon,t)k_{2}\sin k_{2}\lambda_{1}(t) + y_{u}'(\lambda_{1}(t),\varepsilon,t)\cos k_{2}\lambda_{1}(t).$$
(29)

Напомним, что в (29)

$$k_2 = l \sqrt{\frac{P}{E_{\delta} J_0}}, \ \varepsilon = \frac{P l^2}{E_{\delta}}.$$
 (30)

271

Подставив полученные выражения в (27), будем иметь

$$y_2(\xi,t) = \frac{C_1}{k_2} [F_1(\xi,P,t)\cos k_2 \xi + F_2(\xi,P,t)\sin k_2 \xi],$$

Используем теперь условие на конце второго участка

$$y_2(\xi,1) = 0$$
,

из которого следует

$$C_1[F_1(1, P, t)\cos k_2 + F_2(1, P, t)\sin k_2] = 0,$$

и поскольку $C_1 \neq 0$, то

$$F_1(1, P, t)\cos k_2 + F_2(1, P, t)\sin k_2 = 0.$$
(31)

Это и есть (с учетом равенств (29) и(30)) уравнение критических сил.

Пример. Исследуем на устойчивость бетонную колонну, подверженную коррозии, при следующих значениях параметров: l = 16m, $d_1 = 0.5m$, $d_2 = 0.4m$, $E_{\delta} = 27 \cdot 10^3 m\Pi a$, $h_0 = 0.08m$. $\beta = 7.5$ лет, $v_0 = 0.1$ м/год.

Найдем критическую силу для неповрежденной коррозией колонны

$$P_{\kappa p, \max} = \frac{\pi^2 E_{\delta} J_0}{l^2} = 2776 \,\kappa H$$

Тогда максимальное значение є определится из формулы

$$\varepsilon_{\max} = \frac{P_{\kappa p, \max} l^2}{E_{\delta}} = 0,0263,$$

т.е. є действительно достаточно малая величина.

Используя изложенный выше алгоритм, определяем значения критической силы $P_{\kappa p}$ для ряда значений *t* в пределах от 0 до 150 лет. График изменения $P_{\kappa p}$ в зависимости от *t* представлен на рис.2 под номером 2 ($P_{\kappa p}$ - в *кH*, *t* - в годах). Для сравнения представлен график с номером 1 изменения критической силы $P_{\kappa p}$, значения которой вычислены по методике, изложенной в [1]. Нетрудно заметить, что $P_{\kappa p}$ на графике 2 выше значений $P_{\kappa p}$ на графике 1. Причина становится понятной из рис.3, на котором представлены продольные сечения колонн (в увеличенном поперечном масштабе), рассмотренных в [1] (линия 1) и в настоящей статье (линия 2).

Вывод. Предложена уточненная методика исследования устойчивости однородных (в частности бетонных) колонн с учетом симметричного агрессивного воздействия окружающей среды, что необходимо для своевременного их усиления для обеспечения надежности конструкции.

Summary

The specified procedure is offered for investigation of stability of homogeneous (particularly concrete) columns with taking into account symmetrical aggressive environmental impact, what is necessary for their on-time strengthening to secure the reliability of constructions.

1. Кобринец В.М., Фомина И.П. Устойчивость бетонной колонны с учетом воздействия агрессивной среды // Вісник ОДАБА. Вып. 49, ч. 1 – Одесса, 2012. – с. 186 – 193.

2. Сетков В.Ю., Шибанова И.С., Рысева О.П. Действие углекислого газа на железобетонные балки и плиты промышленных зданий и сооружений // Строительство и архитектура, №12, 1984. - с. 1 - 4.

3. Березин И.С., Жидков Н.П. Методы вычислений. - М.: Физматгиз, 1962. - 464 с.