
ISSN 1064�2307, Journal of Computer and Systems Sciences International, 2014, Vol. 53, No. 3, pp. 338–344. © Pleiades Publishing, Ltd., 2014.
Original Russian Text © L.D. Akulenko, D.D. Leshchenko, A.L. Rachinskaya, 2014, published in Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 2014, No. 3,
pp. 38–45.

338

INTRODUCTION

The development of research in dynamics and control of motion of bodies about a fixed point goes in
the direction of taking into account the fact that these bodies are not perfectly rigid but are rather close to
perfect models. The need for the analysis of the influence of various deviations from perfectness is caused
by growing accuracy requirements in space exploration, gyroscopy, etc. The influence of imperfections
can be revealed using asymptotic methods of nonlinear mechanics (singular perturbations, averaging, and
others). This influence reduces to additional terms in the Euler equations of motion of a fictitious rigid
body. Passive motions of rigid bodies in a resistive medium were studied in [1–5]. The important practical
problem of controlling rotation of quasi�rigid bodies (the body contains a cavity filled with viscous fluid
whose influence is taken into account by means of the internal torque created by the viscous fluid) using
concentrated torques received less attention.

In this paper, we consider the problem of quasi�optimal deceleration of rotations of a dynamically
asymmetric body to which the decelerating torque created by the linear drag force is applied. The rotations
are controlled by a bounded torque. The components of the control torques are represented by the prod�
ucts  (i = 1, 2, 3), where bi (i = 1, 2, 3) have the dimension of torque,  is a small parameter, and 
(i = 1, 2, 3) are dimensionless control functions to be determined. Note that a similar problem with

 was considered in [6]. Approximate solutions of perturbed problems of time�optimal
deceleration of rotations of rigid bodies about the center of mass with applications to spacecraft dynamics
were obtained in the monograph [7]. Stabilization problems for bodies with internal degrees of freedom
were studied. The deceleration of rotations of almost spherical rigid bodies under the action of the torque
exerted by the linear resistance of the medium was analyzed.

1. STATEMENT OF THE PROBLEM

We consider a dynamically asymmetric rigid body with moments of inertia satisfying, for definiteness,
the inequalities . Based on the approach described in [7], the equations of controlled rota�
tions projected on the axes of the body�related reference frame (the Euler equations) can be expressed as
(see [2, 3, 7])

. (1.1)

Here, G is the body angular momentum,  is the vector of absolute angular velocity,
 is the tensor of the body inertia, Mu is the vector of control torque, and Mr is the dissi�

pation torque.
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The angular momentum of the body is determined in the standard way as

, , , , . (1.2)

The dissipation torque is assumed to be proportional to the angular momentum:

. (1.3)

Here, λ' is a constant coefficient depending on the medium properties. The resistance of the medium is
assumed to be low and have the order of smallness : . In this case, the projections of the momen�
tum on the major axes of body inertia are given by  (i = 1, 2, 3), where  (see [2, 3]).

The magnitude of the control torque Mu is assumed to be small of the order of . The components of
the control torque are represented by the products of the constant bi, which have the dimension of torque,
by the small parameter  and by the dimensionless control functions ui to be determined:

(1.4)

The products  (i = 1, 2, 3) characterize the efficiency of the control system with respect to the cor�
responding axes of the body reference frame.

In terms of projections on the principal central axes of inertia, equations of controlled motion (1.1) in
this problem statement are

 (1.5)

For system (1.5), it is required to find the optimal controls , (i = 1, 2, 3), that satisfy
the constraint

(1.6)

and steer system (1.5) from an arbitrary initial state  into the state of rest  in a minimum
amount of time.

In the case  ( ), where b may be a function of time, the optimal control has the form
, where u is a vector whose projections on the principal axes of inertia are  (see [7, 8]).

If bi are close to each other, then this control can be considered as a quasi�optimal one [7, 9].

For applications, it is of interest to investigate the motion of rigid bodies with the simple control
defined as (see [7, 9])

, , i = 1, 2, 3. (1.7)

Substitute (1.7) into (1.5) to obtain a closed system of equations of controlled motion in terms of pro�
jections on the principal central axes of inertia; for that reason, we do not write out the kinematic relations here.

2. SOLUTION OF THE QUASI�OPTIMAL DECELERATION PROBLEM

Taking into account (1.7), multiply the first equation in (1.5) by , the second equation by , and the
third one by  and add the products to obtain the dot product . Taking into account the property of

the derivative of the dot product squared , we divide it by G to obtain the scalar
equation

(2.1)

Taking into account (1.7), multiply the first equation in (1.5) by , the second equation by , and
the third one by  and add the products. By the well�know property of the energy integral, the kinetic
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energy of the rigid body is determined by the equality . As a result, we have
the following expression for the derivative of the kinetic energy:

. (2.2)

Consider the unperturbed motion (ε = 0). In the absence of disturbances, the body rotation is the
Euler–Poinsot motion. The variables G and H are constant, and the Eulerian angles , , and  are func�
tions of the time t. In the perturbed motion ( ), G and H are slow variables, and the Eulerian angles
are fast variables. As has already been mentioned above, we consider the statement of the problem of rota�
tion deceleration in which there are no angle variables—they can be calculated by simultaneous integra�
tion of dynamic and kinematic equations.

Consider the motion under the condition , which corresponds to trajectories of the
angular momentum vector that encircle the axes of the greatest moment of inertia . Define the quantity

, (2.3)

which is constant in the case of unperturbed motion; it is the elliptic modulus describing this motion, and
it is uniquely associated with the angular momentum G and the kinetic energy H.

To construct the averaged first approximation system, we substitute the functions ωi (i = 1, 2, 3) from
the unperturbed Euler–Poinsot motion [10] into the right�hand sides of Eqs. (2.1), (2.2) and then average
over the period of this motion. For the slow variables G and H, we use the same notation. As a result, for

, we obtain

(2.4)

Here, K(k) and E(k) are the complete elliptic integrals of the first and second kinds, respectively (see [11]).
The first equation in (2.4) implies that the kinetic energy H of the body evolves under the influence of the
medium drag and the control torque. The expression in braces on the right�hand side of the first equation
in (2.4) is positive (for ) due to the inequalities (see [11])

. (2.5)

Therefore,  because H > 0; hence, H is strictly decreasing for any . It can be simi�
larly shown that the angular momentum also decreases.

3. INVESTIGATION OF QUASI�STEADY MOTIONS

Differentiating expression (2.3) for k2 with regard to (2.4), we obtain the differential equation

. (3.1)

Note that as , Eq. (3.1) has an essential singularity. The value k2 = 1 is associated with the equal�

ity , which corresponds to the separatrix for the Euler–Poinsot motion. Equation (3.1)
describes the averaged motion of the endpoint of the angular momentum vector on the sphere of radius G.
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Note that the evolution of k2 is affected by the control torque and by the torque created by dissipation

forces. Equation (3.1) for k2(τ) has stationary points ; in addition to  and , there are also

. (3.2)

In the case of quasi�stationary motions of the rigid body corresponding to the stationary points , the
motion of the vector G is generally composed only of the motion along the Euler–Poinsot trajectory and
decrease in the length of G with time.

For each  different from 0 and 1, we can introduce the following notation for the dimensionless
quantities

, (3.3)

and rewrite (3.2) as

. (3.4)

This implies that

(3.5)

where . Expression (3.5) is a linear function for which the conditions  and
 must hold. If the second inequality is fulfilled, then we have

(3.6)

The expression on the right�hand side of (3.6) is positive for any  due to inequalities (2.5). Therefore,
for all χ2 satisfying (3.6), the necessary condition  also holds.

The left�hand side of Eq. (3.4) must satisfy the inequality , whence we obtain necessary con�
ditions for the existence of quasi�stationary solutions for  and . Two domains where quasi�stationary
solutions exist were obtained (Fig. 1). The boundary lines in the construction of these domains are line 2,
which corresponds to , line 3, which corresponds to , and line 4 determined by the equation

.

In Fig. 1 line 1 is constructed by formula (3.5) for . It is seen that a quasi�stationary motion

does exist not for all values of the dimensionless coefficients of the control torque projections  and ;
linear dependence (3.5) can hold only in two quadratic domains described above.

Consider the equation governing the change in the angular momentum of system (2.4) and Eq. (3.1).
We analyze the deceleration time of the rigid body depending on the magnitude of the control torque coef�
ficients bi (i = 1, 2, 3). Figure 2 illustrates two cases. Curve 1 corresponds to  and  for

; curve 2 corresponds to  and  for . The curves in Fig. 2 show that
the greater the control torque coefficient, the shorter is the deceleration time. It is seen that the function
in both cases is exponential�like. The behavior of the function  obtained in [12] is similar.
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4. NUMERICAL RESULTS

In the general case, system (2.4), (3.1) can be solved numerically. To this end, we reduce this system to
dimensionless form by choosing as the characteristic parameters of the problem the unknown decelera�
tion time T, the coefficient of the control torque b3, and the value of the angular momentum at the initial
time G0. The dimensionless quantities are

, , , , .

Define the characteristic number

 (4.1)

which determines the basic process—deceleration of the rigid body under the action of the control torque
in the minimum amount of time T.

The system of equations in dimensionless form is

(4.2)

The integration was performed for the initial conditions  and ; the kinetic energy
at the initial time was determined from the equation

. (4.3)

The third equation in (4.2) describes the variation of k2; therefore, for the initial condition , the
right�hand side of this equation must be negative. The second and the third terms in braces are negative;
therefore, the condition

(4.4)

for the dimensionless coefficients of the control torque must be fulfilled.
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Numerical computations were performed for various values of , , and . For different values of the
characteristic number , there exist values of the dimensionless coefficients of the control torque  and

 at which the deceleration of the body is quasi�optimal. The deceleration process can be different.
We investigate the case . Fig. 3 shows the plot of changes in the angular momentum of the body

with the reduced tensor of mass inertia , ,  and the dimensionless coefficient of the
medium drag torque ; curve 1 corresponds to  and ; curve 2 corresponds to

 and ; and curve 3 corresponds to  and .
It is seen from Fig. 3 that the curvature of the curve increases with increasing  and . In the first case,

the function  is almost linear. For other values of the characteristic number , the angular
momentum function is similar.

Fig. 4 shows the result of numerical integration for the rigid body with the same mass geometry and in
the same resistive medium for the characteristic number . Curve 1 corresponds to  and

; curve 2 corresponds to  and ; and curve 3 corresponds to  and .
We see that the greater the control torque, the faster is the deceleration of the rigid body and the plots of

 are more intricate with clearly seen concave and convex segments.
The behavior of the kinetic energy function in the case of the quasi�optimal deceleration of the body

is illustrated in Fig. 5. The numerical investigation was performed for the body with the same mass geom�
etry and in the same resistive medium. It is seen from this figure that in all the examined cases, the body
comes to rest in the quasi�optimal deceleration amount of time. Curve 1 was obtained for the dimension�
less coefficients of the control torque  and  and the characteristic number σ = 0.7. Curve 2 was
obtained for σ = 0.8 and , . In the case of σ = 1.1, the quasi�optimal deceleration was
obtained for  and , which corresponds to curve 3. Curve 4 shows the shape of the function

 corresponding to curve 2 in Fig. 5. Note that in all the numerically investigated cases, the func�
tion monotonically decreases to zero in the quasi�optimal amount of time T.

5. INFLUENCE OF A SMALL PERTURBATION

The optimal deceleration of the rotations of an asymmetric body in resistive medium in the case

(5.1)
was studied in [6]. In that paper, an analytical solution for the variation of the magnitude of the angular
momentum vector and the kinetic energy of the rigid body was obtained. The numerical computation for
system (4.2) under condition (5.1) gives the result coinciding with that obtained in [6] up to 10 decimal
digits. Let us investigate the behavior of these functions under a small variation of the coefficients of the
control torque. According to (3.3), we introduce the dimensionless coefficients  and , and we can
introduce  that is always equal to unit.

Consider small increments

, (5.2)
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where . First, numerical integration was performed for , which corresponds to case (5.1).
Next, the numerical solution was found for various values of .

Fig. 6 shows the results of numerical computations: curve 1 corresponds to case (5.1), and curve 2 was
obtained for small increments of the control torque coefficients. A similar pattern is observed for the
kinetic energy of the rigid body.

The numerical solutions allow us to conclude that small increments of one of the coefficients cause a
small increase in the gradients of the function of the rigid body deceleration.

CONCLUSIONS

The synthesis problem of a time quasi�optimal deceleration of rotations of a dynamically asymmetric
rigid body in resistive medium is investigated analytically and numerically. In the framework of the asymp�
totic approach, the control, the optimal time (Bellman function), evolution of the elliptic modulus
squared k2, and the dimensionless kinetic energy and angular momentum are determined. Qualitative
properties of the quasi�optimal motion are established. Quasi�stationary motions are investigated.
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