## АНАЛИЗ ВЛИЯНИЯ ФИБРЫ В ПОЛИМЕРМИНЕРАЛЬНЫХ КОМПОЗИЦИЯХ НА ПАРАМЕТРЫ РЕОЛОГИЧЕСКОГО УРАВНЕНИЯ, ОПИСАННЫЕ ЭС-МОДЕЛЯМИ

Крюковская С.А., магистр, Ляшенко Т.В., д.т.н, проф., Пищева Т.И., к.т.н., доц.

Одесская государственная академия строительства и архитектуры

Введение. Параметры реологических уравнений, как и другие «константы» квази-фундаментальных (КФ) моделей [1, 2], характеризующие состояние структуры материала, могут лишь отражать влияние на нее факторов рецептуры, технологических режимов и условий эксплуатации (РТ-факторов). Необходимые для управления характеристиками структуры их зависимости от РТ-факторов представляют экспериментально-статистические (ЭС) модели.

При разработке высококачественных, специальных материалов полезно объединение моделей, в котором константы  $C_1, C_2, ..., C_j, ...$  в КФ-моделях заменяются функциями – ЭС-моделями  $C_j(x)$ , описывающими влияние вектора РТ-факторов (x) на «фундаментальные» характеристики материала.

Такой подход [2] реализован при анализе реологического поведения содержащих полимерную фибру полимерминеральных композиций из сухих смесей. В состав цементно-песчаных смесей (отношение «цемент : кварцевый наполнитель» 1:1.5 при В/Ц = 0.51) вводились:

◆ редиспергируемые полимерные порошки Vinnapas [3] (рекомендуемый для ремонтных работ сополимер винилацетата и этилена RE 523 Z, обозначенный V<sub>523</sub>, и вводимый в композиции для отделочных работ сополимер винилхлорида, этилена и виниллаурата RI 551 Z - V<sub>551</sub>);
 ◆ метилцеллюлоза двух условных молекулярных масс (15·10<sup>3</sup> и 40·10<sup>3</sup> - по методу фирмы *Bayer*; обозначены MC<sub>15</sub> и MC<sub>40</sub>);

• полипропиленовая фибра (диаметр 14 мкм, длина 12.5 мм).

Реологические данные получены в эксперименте [4], выполненном на ротационном вискозиметре "Rotatron Brabander" (в Болгарской АН под руководством акад. Я. Иванова). При анализе этих данных [2, 5] уже применялся синтетический подход, позволивший определить параметры уравнения Оствальда-Вейля для псевдопластической неньютоновской жидкости [6, 7] как описанные ЭС-моделями функции от состава технологической смеси.

В данной работе показывается, как этот подход используется для выявления закономерностей влияния полимерной фибры на реологические характеристики полимерминеральных композиций.

Условия эксперимента и моделирование. В эксперименте варыровались дозировки (в массовых процентах к цементу) следующих компонентов смеси: X<sub>1</sub> – полимерного порошка (RP, от 5 до 16.2), X<sub>3</sub> – метилцеллюлозы (MC, 0.6±0.4), X<sub>5</sub> – фибры (F, от 0 до 2%), нормализованные к  $|x_i| \le 1$ . Два фактора, определяющие свойства компонентов, задавали «марочный» состав системы «полимер, метилцеллюлоза»: нижний и верхний уровни x<sub>2</sub> = -1 и x<sub>2</sub> = +1 соответствовали маркам редиспергируемого полимера V<sub>523</sub> и V<sub>551</sub>; уровни x<sub>4</sub> = -1 и x<sub>4</sub> = +1 означали MC<sub>15</sub> и MC<sub>40</sub>; нулевые уровни этих двух факторов, x<sub>2</sub> = x<sub>4</sub> = 0, соответствовали равным долям марок в бинарных смесях.

Для 26 композиций – по оптимальному плану эксперимента (2-го порядка на 5-мерном кубе) получены кривые вязкости  $\eta(\gamma')$  и кривые течения  $\tau(\gamma')$  в широком диапазоне скорости сдвига, от 0.07 до 134 с<sup>-1</sup> (при увеличении и последующем уменьшении  $\gamma'$ ).

Эти данные позволили [4, 5, 8], охарактеризовать и проанализировать влияние состава на характеристики тиксотропии композиций и на параметры уравнения Оствальда-Вейля, которым аппроксимировался рост эффективной вязкости при увеличении скорости,

$$\eta = K \cdot (\gamma')^m \quad \to \quad \ln \eta = \ln K + m \cdot \ln \gamma', \tag{1}$$

где *К* – вязкость при скорости  $\gamma' = 1 \text{ c}^{-1} (\eta_1, \Pi \cdot \text{c}), m < 0$  – характеризует темп разрушения структурированной жидкости при сдвиговых деформациях (чем больше *m*, тем менее устойчива структура).

В данной работе уравнениями (1) были описаны данные для каждой из 26 композиций в более узком диапазоне скоростей,  $1 \le \gamma' \le 134$ , при средней ошибке неадекватности около 6%. По полученным 26 парам значений *K* и *m* построены ЭС-модели 2-го порядка (2, 3), которые описывают поля этих реологических параметров в координатах пяти рецептурных факторов.

| $\ln K = 5.26$ | $\pm 0 x_1 \pm 0 x_1^2 \pm 0 x_1 x_3 \pm 0 x_1 x_5$ | $+ 0.23x_1x_2$    |     |
|----------------|-----------------------------------------------------|-------------------|-----|
|                | $+ 0.96x_3 - 0.26x_3^2 - 0.15x_3x_5$                | $-0.21x_2x_3$     |     |
|                | $+0.26x_5 \pm 0 x_5^2$ (a)                          | $-0.10x_2x_5$     |     |
|                |                                                     | $\pm 0 x_1 x_4$   |     |
|                | $+0.50x_2+0.11x_2^2 \pm 0 x_2x_4$                   | $-0.15x_{3}x_{5}$ |     |
|                | $+0.08x_4 - 0.23x_4^2$ (b)                          | $-0.07x_4x_5$     |     |
|                |                                                     | ( <b>c</b> )      | (2) |

$$|\mathbf{m}| = 0.67 + 0.01x_{1} \pm 0 x_{1}^{2} \pm 0 x_{1}x_{3} \pm 0 x_{1}x_{5} + 0.02x_{1}x_{2} + 0.05x_{3} - 0.01x_{3}^{2} - 0.01x_{3}x_{5} + 0.04x_{5} \pm 0 x_{5}^{2}$$
(a)  
+ 0.04x\_{5} \pm 0 x\_{5}^{2} (a)  
+ 0.04x\_{2} + 0.01x\_{2}^{2} + 0.01x\_{2}x\_{4} + 0.00x\_{4}x\_{5} - 0.02x\_{1}x\_{4} - 0.01x\_{3}x\_{5} - 0.02x\_{1}x\_{4} - 0.01x\_{3}x\_{5} - 0.01x\_{4}x\_{5} (c) (3)

Модели записаны в структурированной форме. Блоки выделены в соответствии с целью – проанализировать влияние полимерной фибры на реологические параметры качественно разных органоминеральных систем. Блок (а) описывает влияние дозировок фибры, полимерного компонента и метилцеллюлозы, если последние – бинарные смеси соответствующих марок ( $x_2 = x_4 = 0$ ). В блоке (b) находятся эффекты перехода от одного типа RP и MC к другому при среднем содержании компонентов ( $x_1 = x_3 = x_5 = 0$ ). Блок (c), характеризующий синергизм факторов из (а) и (b), оценивает изменения влияния дозировок при смене компонентов. Такое структурирование облегчает локализацию эффектов дозировок (RP, MC, F) для разных видов матрицы.

На рис. 1 показаны локальные поля  $\eta_1(x_1, x_3, x_5)$  для четырех видов композиций (при x<sub>2</sub>, x<sub>4</sub> = ±1), описанные соответствующими проекциями модели (2), такими как модель (4) для композиций с V<sub>523</sub> и MC<sub>40</sub> (x<sub>2</sub> = -1, x<sub>4</sub> = +1, левый верхний куб на рис. 1).

$$\ln K = 4.72 - 0.23x_1 \pm 0 x_1^2 \pm 0 x_1 x_3 \pm 0 x_1 x_5 + 1.22x_3 - 0.26x_3^2 - 0.15x_2 x_2 + 0.30x_5 \pm 0 x_5^2$$
(4)

Изменение вязкости при скорости  $1c^{-1}$  за счет изменения дозировок и полимера, и метилцелюлозы, и фибры в композициях с этими марками RP и MC – в 33.3 раза. Максимальные уровни  $\eta_1$  для композиций с V<sub>523</sub> (кубы слева на рис. 1) оказываются при минимальном содержании полимера и максимальных MC и F. При переходе к V<sub>551</sub> (кубы справа) максимумам соответствует его наибольшая дозировка, а в композициях с большим количеством MC<sub>40</sub> введение фибры (до 2%) практически не влияет на  $\eta_1$  (верхний правый куб).

Влияние марочного состава системы «полимер, метилцеллюлоза»  $(x_2, x_4)$  на уровни обобщающих показателей полей вязкости в координатах дозировок компонентов (максимума, минимума, относительного перепада) описано вторичными моделями [9] по оценкам в вычислительном эксперименте на квадрате  $\{x_2, x_4\}$  и представлено на рис. 1.



Рис. 1. Поля вязкости η<sub>1</sub> в координатах дозировок RP, MC и фибры для 4-х комбинаций марок RP и MC (x<sub>2</sub>, x<sub>4</sub> = ±1); изолинии максимального и минимального уровней и относительного перепада полей η<sub>1</sub> (x<sub>1</sub>, x<sub>3</sub>, x<sub>5</sub>) на квадратах марочного состава (слева направо соответственно)

Так неполный полином 3-ей степени с биквадратным эффектом (5) для  $\max \eta_1(x_1, x_3, x_5)$  построен по значениям максимальных уровней девяти локальных полей вязкости – в 9 точках плана полного факторного эксперимента 2-го порядка на квадрате (ПФЭ 3<sup>2</sup>: 4 в вершинах квадрата – с монокомпонентами, 5 в центре и серединах ребер – с бинарными смесями марок).

$$\max \eta_1 = 435 - 41x_2 + 43x_4 + 34x_2^2 - 90x_4^2 + 25x_2x_4 + 151x_2x_4^2 + 136x_2^2x_4^2 (5)$$

Судя по квадратам обобщающих показателей на рис. 1,  $V_{523}$  ( $x_2 = -1$ ), независимо от молекулярной массы MC, обеспечивает лучшие возможности регулирования вязкости (в «среднем» диапазоне скоростей сдвига) за счет количества этих модификаторов и фибры (относительный перепад более 30 раз и самая низкая минимальная вязкость).

Аналогично модель (3) позволяет проанализировать и сравнить локальные рецептурные поля темпа разрушения  $|m|(x_1, x_3, x_5)$ , такие как поле (6) для композиций с V<sub>523</sub> и MC<sub>40</sub> (x<sub>2</sub> = -1, x<sub>4</sub> = +1, левый верхний куб на рис. 2).

$$|\mathbf{m}| = 0.61 - 0.05x_1 \pm 0 x_1^2 \pm 0 x_1x_3 \pm 0 x_1x_5 + 0.07x_3 + 0.01x_3^2 - 0.01x_3x_5 + 0.05x_5 \pm 0 x_5^2$$
(6)

Модели (2, 3) дают возможность не только охарактеризовать совместное влияние компонентов на реологическое поведение композиций с любым «марочным» составом системы «полимер, метилцеллюлоза» (в исследованном диапазоне), но и выявить «эффект фибры». Для этого используется методический прием [10, с. 152], позволяющий сравнивать (по характеристикам структуры и свойствам) многообразие модифицированных составов с многообразием соответствующих эталонов (без того или иного модификатора). На рис. 1 и 2 эталонным составам, в которых нет фибры (F = 0), соответствует задняя грань кубов – эталонная плоскость ( $x_5 = -1$ ).

Анализ влияния фибры (условия и результаты вычислительного эксперимента). Подстановка в уравнение (4) значения  $x_5 = -1$  дает модель (7), которая описывает уровень ln K эталонных композиций с V<sub>523</sub> и MC<sub>40</sub> – в плоскости эталонных дозировок ( $x_1, x_3, -1$ ). Разность (4) и (7) дает модель (8) – изменений логарифма вязкости (при скорости 1), *только за счет фибры*, по отношению к многообразию композиций, в которых фибра отсутствовала. Аналогично получена модель (9) влияния фибры на |m|.



Рис. 2. Локальные поля |m| в координатах дозировок RP, MC и фибры для 4-х комбинаций марок RP и MC (x<sub>2</sub>, x<sub>4</sub> = ±1); изолинии максимального и минимального уровней и абсолютного перепада полей |m|(x<sub>1</sub>, x<sub>3</sub>, x<sub>5</sub>) на квадратах марочного состава (слева направо соответственно)

$$\ln K = 4.425 - 0.233x_1 + 1.364x_3 \pm 0x_1^2 - 0.255x_3^2 \pm 0x_1x_3$$
(7)

$$\Delta \ln K = 0.298 - 0.146x_3 + 0.298x_5 - 0.146x_3x_5 \tag{8}$$

$$\Delta |m| = 0.047 - 0.011x_3 + 0.047x_5 - 0.011x_3x_5 \tag{9}$$

Аналогичные модели получены и для других 8 комбинаций марок RP и MC – по плану ПФЭ  $3^2$ . Таким образом для 9 видов композиций ( $x_2$ ,  $x_4$ ) определены изменения реологических характеристик по отношению к соответствующим смесям без фибры в зависимости от дозировок RP, MC и F ( $x_1$ ,  $x_3$ ,  $x_5$ ). Как и в (8-9), во всех моделях приростов (вязкости при скорости 1 с<sup>-1</sup> и темпа разрушения) эффекты, связанные с дозировкой полимера (фактором  $x_1$ ), оказались незначимы.

Независящий от количества RP уровень изменения  $\eta_1$  за счет фибры (отношение  $\eta_1$  к вязкости эталонной композиции без фибры  $\eta_1^*$ , равное exp[ $\Delta \ln K$ ]) в зависимости от ее содержания в смеси и от количества метилцеллюлозы показан на рис. 3 для 4 видов композиций (в вершинах квадрата { $x_2$ ,  $x_4$ }).

В девяти точках плана вычислительного эксперимента по моделям, аналогичным (8), рассчитаны оценки обобщающих показателей полей относительного прироста  $\eta_1/\eta_1^*(x_3, x_5)$ , в первую очередь, их максимальные и минимальные уровни. Во всех случаях максимальному приросту вязкости за счет введения фибры, max{ $\eta_1/\eta_1^*(x_3, x_5)$ }, соответствуют ее максимальные дозировки (F = 2%) и минимальное содержание метилцеллюлозы (MC = 0.2%). Зависимость этого показателя от вида композиции, описанная вторичной моделью (по 9 оценкам), показана на квадрате «марочных составов» (рис. 3).

Прирост |m| за счет фибры оказался не зависящим от марки виннапаса, а характер зависимости  $\Delta |m|(x_3, x_5)$  сохраняется для разных видов метилцеллюлозы и их смесей (рис. 4).

Знание зависимостей влияния фибры на параметры *K* и *m* реологического уравнения (1) от состава смеси позволяет определить эффект фибры на вязкость любой композиции при любой скорости  $\gamma'$  (в исследованном диапазоне). Так уравнение (10), характеризующее эффект фибры на вязкость композиций с V<sub>523</sub> и MC<sub>40</sub> при скорости 134 с<sup>-1</sup> (ln 134 = 4.9), получено подстановкой в (1) моделей (8, 9).

$$\Delta \ln \eta_{134} = \ln \eta_{134} - \ln \eta_{134}^* = \Delta \ln K + 4.9 \Delta m$$

$$= 0.068 - 0.092x_3 + 0.068x_5 - 0.092x_3x_5$$
(10)



Рис. 3. Поля  $\eta_1 / \eta_1^*(x_3, x_5)$  для 4-х видов смесей  $(x_2, x_4 = \pm 1)$ и их максимальные уровни в зависимости от вида



Рис. 4. Зависимости  $\Delta |m|(x_3, x_5)$  для смесей с  $MC_{15}$  и  $MC_{40}$ 

Эффект фибры  $\eta_{134}/\eta_{134}^* = \exp[\Delta \ln \eta_{134}]$  – изменение вязкости  $\eta_{134}$ относительно вязкости  $\eta_{134}^*$  смесей того же состава, но без фибры – показан на рис. 5. При повышенных скоростях сдвига введение фибры приводит к снижению вязкости многих композиций – тем большему, чем больше содержание метилцеллюлозы. Пластификация (в среднем на 20%) наблюдается примерно у половины марочных составов системы «полимер, метилцеллюлоза» (не считая неокрашенной «зоны безразличия» на рис. 5). Максимальное снижение (на 40%) отмечается у композиций с V<sub>551</sub> и MC<sub>40</sub> (x<sub>2</sub> = x<sub>4</sub> = +1).



Рис. 5. Поля  $\eta_{134}/\eta^*_{134}(x_3, x_5)$  для смесей 4-х видов  $(x_2, x_4 = \pm 1)$ и их минимальные уровни в зависимости от вида смеси

Эффект пластификации при введении определенного количества фибры, вероятно, можно объяснять тем, что при большой скорости происходит распрямление полипропиленовых волокон вдоль потока. При этом в движущейся неньютоновской жидкости могут образовываться ассоциаты из элементов дисперсной фазы, приводя к утолщению экзоассоциативных жидких слоев [11]. Увеличение степени разрушения структуры матрицы за счет полимерной фибры менее вероятно, чем в случае жесткой стальной фибры [12].

Заключение. ЭС-модели позволяют с помощью вычислительных экспериментов выявить, измерить и сравнить эффекты тех или иных модификаторов на параметры уравнений процессов структурообразования и технологии.

Построенные по данным рационально спланированного реологического эксперимента ЭС-модели зависимостей параметров уравнения Оствальда-Вейля от состава полимерминеральных композиций с полипропиленовой фиброй позволили охарактеризовать ее влияние на эффективную вязкость смесей. В вычислительном эксперименте обнаружено, что при повышенной скорости сдвига введение фибры может существенно снижать вязкость некоторых композиций.

## SUMMARY

The influence of composition on the parameters of Ostwald-de-Waele equation approximating the viscosity curves of polymer-mineral mixes with polymer fibre was described by 5-factor non-linear experimental-statistical models. The models allowed both the increase and essential decrease in effective viscosity with introduction of fibre to be evaluated.

## ЛИТЕРАТУРА

1. Вознесенский В.А., Ляшенко Т.В. Проблема построения комплексов математических моделей различной генерации для оптимизации высококачественных материалов в компьютерном материаловедении // Рациональный эксперимент в материаловедении: Мат-лы 39-го междун. сем. МОК'39. – Одесса: Астропринт, 2000. – С. 5-7.

2. Вознесенский В.А., Ляшенко Т.В. ЭС-модели «КОНСТАНТ» квазифундаментальных моделей в компьютерном строительном материаловедении // Науковий вісник будівництва. – Харків: ХДТУБА, 2007. – Вип. 42. – С. 39-45.

3. Карапузов Е.К., Лутц Г., Герольд Х., Толмачев Л.Г., Спектор Ю.П. Сухие строительные смеси. – Киев: Техніка, 2000. – 225 с.

4. Ляшенко Т.В., Вознесенский В.А., Пищева Т.И., Иванов Я. Использова-

ние метода Монте-Карло при анализе взаимосвязи между полями реологических показателей композиций для отделочных работ // Вісник Одес. ДАБА. – Одеса: Місто майстрів, 2001. – Вип. 3. – С. 57-64.

5. Ляшенко Т.В., Вознесенский В.А. Методы компьютерного материаловедения при анализе взаимосвязи реологических показателей композиций // Вісник Донбас. ДАБА. Композиційні матеріали для будівництва: Зб. наук. пр. – Макіївка: Донбас. ДАБА, 2001. – Вип. 2001-1(26). – С. 67-74.

6. Шрам Г. Основы практической реологии и реометрии. – М.: КолосС, 2003. – 312 с.

7. Бабурин С.В., Киприанов А.И. Реологические основы процессов целлюлозно-бумажного производства. – М: Лесная пром-сть, 1983. – 192 с.

8. Ляшенко Т.В., Пищева Т.И., Крюковская С.А., Огарков Б.Л. Влияние полимерной фибры на тиксотропию полимерминеральных композиций для ремонта железобетонных конструкцій // Будівельні конструкції: Сучасні технології бетону. – К.: НДІБК. – 2009. – Вип. 56. – С. 392-399.

9. Ляшенко Т.В. Концепция полей свойств – методическая основа извлечения информации из ЭС-моделей в компьютерном материаловедении // Вісник Одес. ДАБА. – Одеса, Місто майстрів, 2003. – Вип. 12. – С. 171-179.

10. Вознесенский В.А., Ковальчук А.Ф. Принятие решений по статистическим моделям. – М.: Статистика, 1978. – 192 с.

11. Вознесенский В.А., Ляшенко Т.В. Полимодальность распределения толщины межзеренных слоев как причина уменьшения эффективной вязкости // Реология бетонных смесей и ее технологические задачи: Тез. докл. VI всесоюз. симпоз. – Рига, 1989. – С. 92-94.

12. Kuder K., Ozyurt N., Mu E., Shah S. Rheology of fiber-reinforced cement systems using a custom built rheometer. – Brittle Matrix Composites 8 : Proc. 8th Int. Symp. BMC8. – Warsaw: Woodhead Publ. Ltd., ZTUREK, 2006. – P. 431-439.