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Abstract—We study the fast rotational motion of a dynamically asymmetric satellite with a spherical
cavity filled with a highly viscous liquid about the center of mass under the action of gravitational
torque and medium drag torques. The system obtained by averaging over the Euler–Poinsot motion
and by using a modified averaging method is analyzed. An analytic study and numerical analysis are
carried out.
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Keywords: satellite, gravitational torque, medium resistance, cavity filled with a viscous
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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

Rotational motions are considered in the framework of a dynamic model of a rigid body whose center
of mass moves in a circular orbit around the Earth. Dynamic problems generalized and complicated
by taking into account various perturbations are still very topical. The studies in [1–18] of rotational
motions of bodies about a fixed point under the action of perturbing torques of various physical nature
(gravitation, drag, influence of a cavity filled with a viscous liquid, etc.) are close to those presented below.

Consider the motion of a dynamically asymmetric satellite about the center of mass with the
gravitational and ambient medium drag torques taken into account. The body has a cavity completely
filled with a highly viscous liquid.

To solve the problem, we introduce three Cartesian reference frames with origin at the satellite center
of inertia [1]. The reference frame Oxi (i = 1, 2, 3) moves translationally together with the center of
inertia, the axis Ox1 is parallel to the position vector of the orbit perigee, the axis Ox2 is parallel to the
velocity vector of the satellite center of mass at perigee, and the axis Ox3 is parallel to the normal to
the orbit plane. The position of the angular momentum vector G with respect to the center of mass in
the reference frame Oxi is determined by the angles λ and δ [2]. The reference frame Oyi (i = 1, 2, 3)
is related to the angular momentum vector G as follows: the axis Oy1 lies in the plane Ox3y3 and is
directed so that the vectors yi (i = 1, 2, 3) form a right triple [1], the axis Oy2 lies in the orbit plane (i.e.,
in the plane Ox1x2), and the axis Oy3 is directed along the angular momentum vector G.

The axes of the reference frame Ozi (i = 1, 2, 3) are related to the principal central axes of inertia of the
rigid body. The mutual position of the principal central axes of inertia and of the axes Oyi is determined
by the Euler angles. Then the direction cosines αij of the axes zi with respect to the system Oyi are
expressed via the Euler angles ϕ, ψ, and θ by well-known formulas [1].
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EVOLUTION OF PERTURBED ROTATIONS OF AN ASYMMETRIC GYRO 407

The equations of motion of the body with respect to the center of mass have the form [2]

dG

dt
= L3,

dδ

dt
=

L1

G
,

dλ

dt
=

L2

G sin δ
,

dθ

dt
= G sin θ sin ϕ cos ϕ

(
1

A1
− 1

A2

)
+

L2 cos ψ − L1 sin ψ

G
,

dϕ

dt
= G cos θ

(
1

A3
− sin2 ϕ

A1
− cos2 ϕ

A2

)
+

L1 cos ψ + L2 sin ψ

G sin θ
,

dψ

dt
= G

(
sin2 ϕ

A1
+

cos2 ϕ

A2

)
− L1 cos ψ + L2 sin ψ

G
cot θ − L2

G
cot δ.

(1.1)

Here the Li are the torques of the applied forces about the axes Oyi, and the Ai (i = 1, 2, 3) are the
principal central moments of inertia with respect to the axes Ozi. The projections Li in (1.1) consist
of the gravitational torque Lg

i , the external drag torque Lr
i , and the torque Lp

i due to the viscous liquid
forces in the cavity inside the body; i.e.,

Li = Lg
i + Lr

i + Lp
i .

Consider a dynamically asymmetric satellite whose moments of inertia satisfy the inequalities
A1 > A2 > A3. We assume that the angular velocity ω of the satellite motion about the center of mass
is significantly greater than the angular velocity ω0 of the orbital motion; i.e., ε = ω0/ω sin A1ω0/G � 1.

The dependence of the dissipative drag torque Lr on the angular velocity vector ω of the body
rotation is assumed to be linear; i.e., Lr = Iω, where the tensor I has constant components Iij in
the body-fixed frame Ozi [1, 6]. The medium resistance is assumed to be weak of the order of ε2; i.e.,
‖I‖/G0 sin ε2 � 1 [3], where ‖I‖ is the norm of the drag coefficient matrix and G0 is the satellite angular
momentum at the initial time.

The satellite orbit is assumed to be circular, and hence we can assume that the atmosphere density is
constant during the motion. The true anomaly ν depends on time t as follows:

ν = ω0t, ω0 =
2π
Q

, (1.2)

where ω0 is the angular velocity of the orbital motion and Q is the period of revolution.

We write out the projections of the gravitational torque Lg
1 and the external drag torque Lr

1 onto the
axis Oy1 in the form accepted in [2, 3]. Here we present the projections on the axis Oy1 (the projections
on the other axes are similar):

Lg
1 = 3ω2

0

3∑
j=1

(β2βjS3j − β3βjS2j), (1.3)

Lr
1 = −G

3∑
i=1

(
Ii1α1iα31

A1
+

Ii2α1iα32

A2
+

Ii3α1iα33

A3

)
, Smj =

3∑
p=1

Apαjpαmp, (1.4)

β1 = cos(ν − λ) cos δ, β2 = sin(ν − λ), β3 = cos(ν − λ) sin δ.

According to [4], the projections of the torque Lp
i due to the viscous liquid forces in the spherical
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408 AKULENKO et al.

cavity of the body onto the axes Oyi (i = 1, 2, 3) are determined as follows:

Lp
i =

P

A1A2A3
{ω · Bi + 3ω2

0(D + S) · αi}, i = 1, 2, 3,

ω =

⎛
⎜⎜⎜⎝

p

q

r

⎞
⎟⎟⎟⎠ , Bi =

⎛
⎜⎜⎜⎝

Bi
1

Bi
2

Bi
3

⎞
⎟⎟⎟⎠ , αi =

⎛
⎜⎜⎜⎝

αi1

αi2

αi3

⎞
⎟⎟⎟⎠ , α∗ =

1
1 − α2

33

,

D =

⎛
⎜⎜⎜⎝

A2A3(A3 − A2)[−γ31γ33r + α∗(F1pα1 + M1pα2)]

A1A3(A1 − A3)[−γ32γ33r + α∗(F2pα1 + M2pα2)]

(A2 − A1)[(γ2
32 − γ2

31)r − α∗(F3pα1 + M3pα2)]

⎞
⎟⎟⎟⎠ ,

F =

⎛
⎜⎜⎜⎝

γ31γ33α33 + βα1γ33 + βα2γ32

γ32γ33α33 + βα3γ33 + βα2γ31

(γ2
32 − γ2

31)α33 + βα3γ32 + βα1γ31

⎞
⎟⎟⎟⎠ , M =

⎛
⎜⎜⎜⎝

γ2
32α32 + γ32(γ33α33 − v3)

γ2
33α31 + γ31(γ33α33 − v3)

γ33(γ32α31 + γ31α32)

⎞
⎟⎟⎟⎠ ,

S =

⎛
⎜⎜⎜⎝

γ31[γ33rA3(A1A2 − A2
1 − A2A3 + A2

3) + γ32qA2(A1A3 − A2
1 − A2A3 + A2

2)]

γ32[γ31pA1(A3A2 − A2
2 − A1A3 + A2

1) + γ33rA3(A1A2 − A2
2 − A1A3 + A2

3)]

γ33[γ32qA2(A1A3 − A2
3 − A1A2 + A2

2) + γ31pA1(A2A3 − A2
3 − A1A2 + A2

1)]

⎞
⎟⎟⎟⎠ ,

γ3i = β1α1i + β2α2i + β3α3i, i = 1, 2, 3,
pα1 = pα31 + qα32, pα2 = pα32 + qα31,

vα1 = −α22v1 + α12v2, vα2 = −α23v1 + α13v2, vα3 = −α21v1 + α11v2,

Bi
1 = [ω2

2A2(A1 − A2)(A2 − A3 + A1) + ω2
3A3(A1 − A3)(A3 − A2 + A1)]αi1.

(1.5)

In the case of spherical cavity filled with a highly viscous liquid, the tensor P introduced in [4] is
diagonal with equal diagonal entries. For the sphere of radius a, we have

P̃ = P diag(1, 1, 1), P =
8πρa7

525ϑ
, (1.6)

where the tensor P̃ depends only on the cavity shape, ρ and ϑ are the density and the kinematic coefficient
of viscosity of the liquid in the cavity, and a is the cavity radius.

The coefficients Bi
2 and Bi

3 in (1.5) have a similar form and are obtained by cyclic shift of the indices,
the αij are the direction cosines between the reference frames Oyi (i = 1, 2, 3) and Ozi (i = 1, 2, 3), and
p, q, r are the projections onto the axes Ozi (i = 1, 2, 3) of the satellite angular velocity vector ω with
respect to the coordinate system Ox1x2x3.

With the above assumptions about the smallness of the medium resistance and about the high
viscosity of the liquid filling the cavity, the projections of the torque due to the viscous liquid forces in
the cavity inside the body onto the axes Oyi (i = 1, 2, 3) have the form

Lp
i =

P

A1A2A3
{p[q2A2(A1 − A2)(A2 − A3 + A1) + r2A3(A1 − A3)(A3 − A2 + A1)]αi1

+ q[r2A3(A2 − A3)(A3 − A1 + A2) + p2A1(A1 − A2)(A3 − A1 − A2)]αi2

+ r[p2A1(A3 − A1)(A1 − A2 + A3) + q2A2(A3 − A2)(A2 − A1 + A3)]αi3}, i = 1, 2, 3, (1.7)

up to second-order infinitesimals.
In what follows, when studying the averaged system, it is convenient to use the kinetic energy T as

an additional slow variable whose derivative has the form
dT

dt
=

2T
G

L3 + G sin θ

[
cos θ

(
sin2 ϕ

A1
+

cos2 ϕ

A2
− 1

A3

)
(L2 cos ψ − L1 sin ψ)
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+ sin ϕ cos ϕ

(
1

A1
− 1

A2

)
(L1 cos ψ + L2 sin ψ)

]
. (1.8)

We pose the problem of studying the satellite rotation evolution on a large time interval t∼ ε−2, where
the motion parameters vary significantly. We solve the problem by the averaging method [19].

2. PROCEDURE OF THE AVERAGING METHOD
Consider the unperturbed motion of system (1.1)–(1.8) (with ε = 0) for the case in which the external

torques are zero. In this case, the rotation of the rigid body is an Euler–Poinsot motion. The variables
G, δ, λ, T , and ν become constant, and ϕ, ψ, and θ are functions of time t. In the perturbed motion,
G, δ, λ, ν, and T are the slow variables, and the Euler angles ϕ, ψ, and θ are the fast variables.

Consider the rotation under the condition that 2TA1 ≥ G2 > 2TA2, which corresponds to the trajec-
tories of the angular momentum vector surrounding the axis of the maximal moment of inertia A1 [20].
We introduce the quantity

k2 =
(A2 − A3)(2TA1 − G2)
(A1 − A2)(G2 − 2TA3)

, 0 ≤ k2 ≤ 1, (2.1)

which is a constant in the unperturbed motion, namely, the modulus of the elliptic functions describing
this motion.

To construct the averaged system in the first approximation, we substitute the solution of the
unperturbed Euler–Poinsot motion [20] into the right-hand sides of Eqs. (1.1) and (1.8) with regard
to (1.3), (1.4), and (1.7), average with respect to the variable ψ, and then average with respect to
time t, taking into account the dependence of ϕ and θ on t. The previous notation for the slow variables
G, δ, λ, T , and ν is preserved. As a result, we obtain equations of the form

dG

dt
= − G

R(k)
{I22(A1 − A3)W (k) + I33(A1 − A2)[k2 − W (k)] + I11(A2 − A3)[1 − W (k)]},

dT

dt
= − 2T

R(k)

(
I22(A1 − A3)W (k) + I33(A1 − A2)[k2 − W (k)]

+
(A1 − A2)(A1 − A3)(A2 − A3)

S(k)

{
I33

A3
[k2 − W (k)] +

I22

A2
(1 − k2)W (k)

}

+
I11

A1

(A2 − A3)R(k)
S(k)

[1 − W (k)]
)
− 4PT 2(A1 − A3)(A1 − A2)(A2 − A3)

3A2
1A

2
2A

2
3S

2(k)

×
(

A2(A1 − A3)(A1 + A3 − A2){(k2 − 1) + (1 + k2)[1 − W (k)]}

+ A1(A2 − A3)(A3 + A2 − A1)[(k2 − 2)W (k) + k2]

+ A3(A1 − A2)(A1 + A2 − A3)[(1 − 2k2)W (k) + k2]
)

,

dδ

dt
= − 3ω2

0

2G
β2β3N

∗,
dλ

dt
=

3ω2
0

2G sin δ
β1β3N

∗.

(2.2)

Here we have introduced the notation

N∗ = A2 + A3 − 2A1 + 3
(

3A1T

G2
− 1

)[
A3 + (A2 − A3)

K(k) − E(k)
K(k)k2

]
,

W (k) = 1 − E(k)
K(k)

, R(k) = A1(A2 − A3) + A3(A1 − A2)k2,

S(k) = A2 − A3 + (A1 − A2)k2.

(2.3)

Note that the expression in square brackets in the formula for N∗ in (2.3) contains a removable
singularity as k → 0. Here K(k) and E(k) are complete elliptic integrals of the first and second kind,
respectively.
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It follows from Eqs. (2.2) and (2.3) that the medium resistance results in the evolution of both the
angular momentum G and the body kinetic energy T , and the equations contain only the diagonal
entries Iii of the friction torque matrix. The terms containing the offdiagonal entries Iij (i �= j) disappear
after the averaging. The evolution of the body kinetic energy T is also affected by the torque due to the
viscous liquid forces. The variations in the angles λ and δ depend on all forces acting on the body.

Consider the system composed of the equations for λ and δ in system (2.2), (2.3) and relation (1.2).
We write them as

δ̇ = ω2
0Δ(ν, δ, λ), λ̇ = ω2

0Λ(ν, δ, λ), ν = ω0t, (2.4)

where Δ and Λ are the coefficients on the right-hand sides in two equations in (2.2), δ and λ are slow
variables, and ν is a semislow variable.

We obtain a system of special form, which we solve by the modified averaging method [21]. After
averaging, we obtain

δ̇ = 0, λ̇ =
3ω2

0N
∗ cos δ

4G
. (2.5)

We preserve the notation for the slow averaged variables. Note that the action of the applied forces
does not change the angular velocity δ and that the deviation of the vector G from the vertical remains
constant in this approximation.

By differentiating the expression for k2 (2.1) and by using equations (2.2) and (2.3) for the angular
momentum and the kinetic energy, we obtain the differential equation

dk2

dt
=

S(k)
T (A1 − A2)(A1 − A3)(A2 − A3)

[
R(k)

dT

dt
− S(k)G

dG

dt

]
. (2.6)

The system of equations consisting of the expressions (2.5), the first two equations in system (2.2),
and equation (2.6) was integrated numerically. The integration was carried out for the initial conditions
k2(0) = 0.99999, G(0) = 1, δ(0) = 0.785, and λ(0) = 0.785 and for the moments of inertia A1 = 8,
A2 = 5, 7, and A3 = 4. We considered two cases. In the first case, numerical calculations were performed
for the drag coefficients I11 = 2.322, I22 = 1.31, and I33 = 1.425. The second numerical integration was
performed for the drag coefficients I11 = 2.6, I22 = 3.0, and I33 = 1.7.

The initial value of the kinetic energy has the form

T0 =
G2

0s(k
2(0))

2R(k2(0))
.

The numerical results are illustrated in Figs. 1–5. Curves 1 and 2 in the figures correspond to the
results obtained in the first case (for A2 = 5 and A2 = 7, respectively), and curve 3 corresponds to the
second case.

Numerical analysis shows that the functions T (t) and G(t) are monotone decreasing (Figs. 1 and 2).
The expression in curly brackets on the right-hand side in Eqs. (2.2) for T and G is positive (for
A1 > A2 > A3), because the inequalities (1 − k2)K ≤ E ≤ K are satisfied [22]. Therefore, dT/dt < 0,
because T >0; i.e., the variable T strictly decreases for any k2∈ [0, 1] (Fig. 1). The angular momentum G
strictly decreases as well (Fig. 2).

Let us study the evolution of k2 (Fig. 3). Since the function T (t) tends to zero faster than the
function G(t), the expression in square brackets in (2.6) becomes[

R(k)
dT

dt
− S(k)G

dG

dt

]
< 0.

The first two equations in system (2.2) and (2.6) were integrated numerically. Curves 1 and 2
correspond to the initial values of the parameters I11 = 0.919, I22 = 5.228, and I33 = 1.425.

Figure 4 presents the graph of variations in the angle λ of the angular momentum vector. The
variations in the angle λ are caused by the gravitational attraction, drag forces, and the torque due to the
viscous liquid forces in the body cavity. The character of variations in the angle λ is the same as in [13].
The increment λ = λ(t) contains a nonconstant value N∗ which depends on the functions k2 = k2(t),
complete elliptic integrals K(k) and E(k), and the kinetic energy and the angular momentum. The
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Fig. 1. Fig. 2.

Fig. 3. Fig. 4.

kinetic energy T and the angular momentum value G are decreasing functions, and so is k2 → 0. The
value of N∗ also decreases, but N∗ is positive at the initial time, and hence the graph of variations in λ(t)
increases. The rate of decrease in the angle λ is proportional to T/G3 (2.5), which tends to infinity with
time. Therefore, λ decreases faster on a larger time interval. Curve 1 in Fig. 4 shows that the curvature
of the function λ(t) increases with decreasing moment of inertia A2. A similar behavior is also exhibited
as the drag coefficients increase (Fig. 4, curve 3 ).
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Fig. 5.

3. ANALYSIS OF THE LIMIT CASE

For small k2, which corresponds to a nearly rotational motion about the axis A1, the system of
equations for G2 and k2 becomes

dG2

dt
= G(χ + k2α),

dk2

dt
= k2(β + G2γ), χ = − I11

A1
, (3.1)

where

α = − (A1 − A3)(I22A1 − I11A2) + (A1 − A2)(I33A1 − I11A3)
2A2

1(A2 − A3)
,

β = − I33A1 − I22A3

A2A3
− 2(I22A1 − I11A2)

A1A2
, γ = − P

A1A2A3

(
A1 − A2

A3
+

A1 − A3

A2

)
.

We note that the resulting equations (3.1) formally coincide with the system of differential equations
describing the evolution of ecological systems (the predator–prey system) [23, 24]. System (3.1)
determines the first integral

kχ exp(αk2) = C1G
β exp(γG2), C1 = const. (3.2)

For small G2 and k2, it follows from relations (3.1) and (3.2) that the character of variations in the
squared angular momentum depends on the sign of the expressions I22A1 − I11A2 and I33A1 − I11A3,
and the behavior of k2 depends on the sign of the coefficient β. The coefficient γ is always negative.
Numerical integration showed that for α < 0 and β < 0 the body tends to the state of rest with increasing
time (Fig. 5). For α > 0 and β > 0, the functions G2(t) and k2(t) are periodic as in [23, 24].

Note that G = 0 and k2 = 0 are stationary points of system (3.1). From Eqs. (3.1), we obtain
G2 = G2

0 exp(χt) for k2(0) = 0 and k2 = k2
0 exp(βt) for G2(0) = 0. In this case, the function G2(t)

decreases strictly, and the variations in the function k2(t) depend on the sign of β.
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CONCLUSION

The motion of a dynamically asymmetric satellite with a spherical cavity filled with a strongly viscous
liquid under the action of gravitational and medium resistance torques is studied. The resulting system of
equations of motion contains fast and slow variables. The method of averaging over the Euler–Poinsot
motion and the modified averaging method were applied successively. The variations in the medium
angular momentum depend only on the medium resistance, and the variations in the kinetic energy also
depend on the influence of the cavity filled with the liquid. The evolution of the orientation angle λ of the
angular momentum vector depends on the gravitational attraction, the drag forces, and the torque due
to the viscous liquid forces in the body cavity. In the second approximation of the averaging method, the
angle of the angular momentum deviation from the vertical remains constant. The values of the angular
momentum and the kinetic energy decrease monotonically. The influence of the viscous liquid forces is
small compared with the action of the gravitational and drag torques.
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