See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/225100830

Rapid Rotations of a Satellite with a Cavity Filled with Viscous Fluid under the Action of Moments of Gravity and Light Pressure Forces

Article *in* Cosmic Research · May 2011 DOI: 10.1134/50010952511050017

CITATION 5	IS	READS 44	
4 auti	nors, including:		
	Leonid D Akulenko Russian Academy of Sciences 535 PUBLICATIONS 1,134 CITATIONS SEE PROFILE	Ŷ	Dmytro Leshchenko Odessa State Academy of Civil Engineering and Architecture 217 PUBLICATIONS 224 CITATIONS SEE PROFILE
	Alla Leonidovna Odessa National University 19 PUBLICATIONS 33 CITATIONS SEE PROFILE		

Project Numerical solution of eigenproblems View project

Homogenization in optimal control problems View project

УДК 531.55:521.2

БЫСТРЫЕ ВРАЩЕНИЯ СПУТНИКА С ПОЛОСТЬЮ, ЗАПОЛНЕННОЙ ВЯЗКОЙ ЖИДКОСТЬЮ, ПОД ДЕЙСТВИЕМ МОМЕНТОВ СИЛ ГРАВИТАЦИИ И СВЕТОВОГО ДАВЛЕНИЯ

© 2011 г. Л. Д. Акуленко¹, Я. С. Зинкевич², Д. Д. Лещенко², А. Л. Рачинская³

¹Институт проблем механики им. А.Ю. Ишлинского РАН, г. Москва ²Одесская государственная академия строительства и архитектуры ³Одесский национальный университет им. И.И. Мечникова Поступила в редакцию 28.12.2009 г.

Исследуется быстрое вращательное движение относительно центра масс динамически несимметричного спутника с полостью, заполненной вязкой жидкостью при малых числах Рейнольдса, под действием гравитационного и светового моментов. Орбитальные движения с произвольным эксцентриситетом считаются заданными. Анализируется система, полученная после усреднения по движению Эйлера-Пуансо и применения модифицированного метода усреднения. Проведен численный анализ в общем случае и аналитическое исследование в окрестности осевого вращения. Рассмотрено движение в частном случае динамически симметричного спутника.

1. ПОСТАНОВКА ЗАДАЧИ

Рассмотреним движение спутника относительно центра масс под действием момента сил светового давления в гравитационном поле. Тело содержит полость, целиком заполненную сильно вязкой однородной жидкостью. Вращательные движения рассматриваются в рамках модели квазитвердого тела, центр масс которого движется по заданной фиксированной эллиптической орбите вокруг Солнца [1]. Задачи динамики, обобщенные и осложненные учетом различных возмущающих факторов, и в настоящее время остаются достаточно актуальными. Исследованиям вращательных движений тел относительно центра масс под действием возмущающих моментов сил различной природы (гравитационных, светового давления, влияния полости, заполненной вязкой жидкостью, и др.), близким к приведенному ниже, посвящены работы [1-15].

Введем три декартовые системы координат, начало которых совместим с центром инерции спутника [2, 3]. Система координат Ox_i (i = 1, 2, 3) движется поступательно вместе с центром инерции: ось Ox_1 параллельна радиус-вектору перигелия орбиты, ось Ox_2 – вектору скорости центра масс спутника в перигелии, ось Ox_3 – нормали к плоскости орбиты. Система координат Oy_i (*i* = 1, 2, 3) связана с вектором кинетического момента **G**. Ось Oy_3 направлена по вектору кинетического момента \mathbf{G} , ось Oy_2 лежит в плоскости орбиты (т.е. в плоскости Ox_1x_2), ось Oy_1 лежит в плоскости Ox_3y_3 и направлена так, что векторы **y**₁, **y**₂, **y**₃ образуют правую тройку [2–4]. Оси системы координат O_{z_i} (i = 1, 2, 3) связаны с главными центральными осями инерции твердого тела. Взаимное положение главных центральных осей инерции и осей Оу, определим углами Эйлера. При этом направляющие косинусы α_{ii} осей Oz_i относительно системы Оу, выражаются через углы Эйлера φ, ψ, θ по известным формулам [2]. Положение вектора кинетического момента G относительно его центра масс в системе координат Ox_i определяется углами λ и δ , как показано в [2-4].

Уравнения движения тела относительно центра масс запишем в форме [3]:

$$\frac{dG}{dt} = L_3, \quad \frac{d\delta}{dt} = \frac{L_1}{G}, \quad \frac{d\lambda}{dt} = \frac{L_2}{G\sin\delta},$$

$$\frac{d\theta}{dt} = G\sin\theta\sin\phi\cos\phi\left(\frac{1}{A_1} - \frac{1}{A_2}\right) + \frac{L_2\cos\psi - L_1\sin\psi}{G},$$

$$\frac{d\phi}{dt} = G\cos\theta\left(\frac{1}{A_3} - \frac{\sin^2\phi}{A_1} - \frac{\cos^2\phi}{A_2}\right) + (1.1)$$

$$\square POBEPEHO KOPPEKTOPOM.$$

$$Material other an other and other a cornacobative$$

dq

$$+ \frac{L_1 \cos \psi + L_2 \sin \psi}{G \sin \theta},$$
$$\frac{d\psi}{dt} = G \left(\frac{\sin^2 \varphi}{A_1} + \frac{\cos^2 \varphi}{A_2} \right) - \frac{L_1 \cos \psi + L_2 \sin \psi}{G} \operatorname{ctg} \theta - \frac{L_2}{G} \operatorname{ctg} \theta.$$

Здесь L_i — моменты приложенных сил относительно осей Oy_i , G — величина кинетического момента, A_i (i = 1, 2, 3) — главные центральные моменты инерции относительно осей Oz_i .

В некоторых случаях удобно наряду с переменной θ использовать в качестве дополнительной переменной важную характеристику — кинетическую энергию *T*, производная которой имеет вид

$$\frac{dT}{dt} = \frac{2T}{G}L_3 + G\sin\theta \left[\cos\theta \left(\frac{\sin^2\phi}{A_1} + \frac{\cos^2\phi}{A_2} - \frac{1}{A_3}\right) \times \left(L_2\cos\psi - L_1\sin\psi\right) + (1.2) + \sin\phi\cos\phi \left(\frac{1}{A_1} - \frac{1}{A_2}\right) \left(L_1\cos\psi + L_2\sin\psi\right)\right].$$

Центр масс спутника движется по кеплеровскому эллипсу с эксцентриситетом *е* и частотой обращения ω_0 . Зависимость истинной аномалии ν от времени *t* дается соотношением

$$\frac{dv}{dt} = \frac{\omega_0 \left(1 + e \cos v\right)^2}{\left(1 - e^2\right)^{3/2}}, \quad \omega_0 = \frac{2\pi}{Q} = \sqrt{\frac{\mu \left(1 - e^2\right)^3}{l_0^3}}.$$
 (1.3)

Здесь l_0 — фокальный параметр орбиты, ω_0 — угловая скорость орбитального движения, e — эксцентриситет орбиты, μ — гравитационная постоянная.

Проекции L_i момента приложенных сил складываются из момента сил светового давления L_i^c , момента сил вязкой жидкости в полости L_i^p и из гравитационного момента L_i^g .

Допустим, что поверхность космического аппарата представляет собой поверхность вращения, причем единичный орт оси симметрии \mathbf{k} направлен вдоль оси Oz_3 . Как показано в [2, 5], в этом случае

для момента сил светового давления, действующего на спутник, имеет место формула

$$\mathbf{L}^{c} = \left(a_{c}\left(\varepsilon_{s}\right)R_{0}^{2}/R^{2}\right)\mathbf{e}_{\mathbf{r}}\times\mathbf{k},$$

$$a_{c}\left(\varepsilon_{s}\right)\frac{R_{0}^{2}}{R^{2}} = p_{c}S\left(\varepsilon_{s}\right)Z_{0}^{\prime}\left(\varepsilon_{s}\right), \quad p_{c} = \frac{E_{0}}{c}\left(\frac{R_{0}}{R}\right)^{2}.$$
(1.4)

Здесь \mathbf{e}_r — единичный вектор по направлению радиус-вектора орбиты; ε_s — угол между направлениями \mathbf{e}_r и **k** так, что $|\mathbf{e}_r \times \mathbf{k}| = \sin \varepsilon_s$; R — текущее расстояние от центра Солнца до центра масс спутника; R_0 — фиксированное значение R, например, в начальный момент времени; $a_c(\varepsilon_s)$ — коэффициент момента сил светового давления, определяемый свойствами поверхности; S — площадь "тени" на плоскости, нормальной к потоку; Z'_0 — расстояние от центра масс до центра давления; p_c — величина светового давления на расстоянии R от центра Солнца; c — скорость света; E_0 — величина потока энергии светового давления на расстоянии R_0 от центра Солнца.

Здесь приведена проекция на ось Oy_1 гравитационного момента, на другие оси проекции имеют аналогичный вид и получаются ротацией индексов (сдвигом)

$$L_{1}^{g} = \frac{3\omega_{0}^{2}(1 + e\cos\nu)^{3}}{(1 - e^{2})^{3}} \sum_{j=1}^{3} (\beta_{2}\beta_{j}S_{3j} - \beta_{3}\beta_{j}S_{2j}),$$

$$S_{mj} = \sum_{p=1}^{3} A_{p}\alpha_{jp}\alpha_{mp}, \quad \beta_{1} = \cos(\nu - \lambda)\cos\delta,$$

$$\beta_{2} = \sin(\nu - \lambda), \quad \beta_{3} = \cos(\nu - \lambda)\sin\delta.$$
(1.5)

Проекции момента сил сильно вязкой жидкости в полости L_i^p на оси Oy_i (i = 1, 2, 3) имеют вид [1]:

$$L_{i}^{p} = \frac{P}{A_{1}A_{2}A_{3}} \times \left\{ \omega \mathbf{B} + \left(a_{c} \left(\cos \varepsilon_{s} \right) \frac{R_{0}^{2}}{R^{2}} \mathbf{C} + \frac{3\mu}{R^{3}} (\mathbf{D} + \mathbf{S}) \right) \alpha \right\} (i = 1, 2, 3),$$

$$\omega = \begin{pmatrix} p \\ q \\ r \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} B_{1} \\ B_{2} \\ B_{3} \end{pmatrix}, \quad \alpha = \begin{pmatrix} \alpha_{i1} \\ \alpha_{i2} \\ \alpha_{i3} \end{pmatrix}, \quad \alpha^{*} = \frac{1}{1 - \alpha_{33}^{2}},$$

$$\mathbf{C} = \begin{pmatrix} A_3 \left[A_2 \alpha^* \left(p_{\alpha 1} \left(\gamma_{31} \alpha_{33} - \alpha_{22} \beta_1 + \alpha_{12} \beta_2 \right) + \alpha_{32} \gamma_{33} p_{\alpha 2} \right) - r \gamma_{31} \left(A_1 + A_3 \right) \right] \\ A_3 \left[A_1 \alpha^* \left(p_{\alpha 1} \left(\alpha_{11} \beta_2 - \alpha_{33} \gamma_{32} - \alpha_{21} \beta_1 \right) + \alpha_{31} \gamma_{33} p_{\alpha 2} \right) + r \gamma_{32} \left(A_2 + A_3 \right) \right] \\ q \gamma_{32} A_2 \left(A_1 - A_2 - A_3 \right) + p \gamma_{31} A_1 \left(A_1 - A_2 + A_3 \right) \end{pmatrix} \\ \mathbf{D} = \begin{pmatrix} A_2 A_3 \left(A_3 - A_2 \right) \left\{ -\gamma_{31} \gamma_{33} r + \alpha^* \left(F_1 p_{\alpha 1} + M_1 p_{\alpha 2} \right) \right\} \\ A_1 A_3 \left(A_1 - A_3 \right) \left\{ -\gamma_{32} \gamma_{33} r + \alpha^* \left(F_2 p_{\alpha 1} + M_2 p_{\alpha 2} \right) \right\} \\ \left(A_2 - A_1 \right) \left\{ \left(\gamma_{32}^2 - \gamma_{31}^2 \right) r - \alpha^* \left(F_3 p_{\alpha 1} + M_3 p_{\alpha 2} \right) \right\} \end{pmatrix},$$

$$\mathbf{F} = \begin{pmatrix} \gamma_{31}\gamma_{33}\alpha_{33} + \beta_{\alpha1}\gamma_{33} + \beta_{\alpha2}\gamma_{32} \\ \gamma_{32}\gamma_{33}\alpha_{33} + \beta_{\alpha3}\gamma_{33} + \beta_{\alpha2}\gamma_{31} \\ (\gamma_{32}^2 - \gamma_{31}^2)\alpha_{33} + \beta_{\alpha3}\gamma_{32} + \beta_{\alpha1}\gamma_{31} \end{pmatrix}, \mathbf{M} = \begin{pmatrix} \gamma_{33}^2\alpha_{32} + \gamma_{32}\gamma_{33}\alpha_{33} - \gamma_{32}\beta_3 \\ \gamma_{33}^2\alpha_{31} + \gamma_{31}\gamma_{33}\alpha_{33} - \gamma_{31}\beta_3 \\ \gamma_{33}[\gamma_{32}\alpha_{31} + \gamma_{31}\alpha_{32}] \end{pmatrix}, \mathbf{M} = \begin{pmatrix} \gamma_{31} \left[\gamma_{33}rA_3 \left(A_1A_2 - A_1^2 - A_2A_3 + A_3^2 \right) + \gamma_{32}qA_2 \left(A_1A_3 - A_1^2 - A_2A_3 + A_2^2 \right) \right] \\ \gamma_{32} \left[\gamma_{31}pA_1 \left(A_3A_2 - A_2^2 - A_1A_3 + A_1^2 \right) + \gamma_{33}rA_3 \left(A_1A_2 - A_2^2 - A_1A_3 + A_3^2 \right) \right] \\ \gamma_{33} \left[\gamma_{32}qA_2 \left(A_1A_3 - A_3^2 - A_1A_2 + A_2^2 \right) + \gamma_{31}pA_1 \left(A_2A_3 - A_3^2 - A_1A_2 + A_1^2 \right) \right] \end{pmatrix},$$

$$\begin{split} \gamma_{3i} &= \beta_1 \alpha_{1i} + \beta_2 \alpha_{2i} + \beta_3 \alpha_{3i} \quad (i = 1, 2, 3), \\ p_{\alpha 1} &= p \alpha_{31} + q \alpha_{32}, \quad p_{\alpha 2} = p \alpha_{32} - q \alpha_{31}, \\ \beta_{\alpha 1} &= -\alpha_{22} \beta_1 + \alpha_{12} \beta_2, \quad \beta_{\alpha 2} = -\alpha_{23} \beta_1 + \alpha_{13} \beta_2, \\ \beta_{\alpha 3} &= -\alpha_{21} \beta_1 + \alpha_{11} \beta_2, \\ B_1 &= \left[\omega_2^2 A_2 (A_1 - A_2) (A_2 - A_3 + A_1) + \right. \\ &+ \left. \omega_3^2 A_3 (A_1 - A_3) (A_3 - A_2 + A_1) \right] \alpha_{i1}, \end{split}$$

*B*₂, *B*₃ имеют аналогичный вид и получаются ротацией индексов (сдвигом).

Здесь α_{ij} — направляющие косинусы между системами координат Oy_i (i = 1, 2, 3) и Oz_i (i = 1, 2, 3), p, q, r — проекции на оси Oz_i (i = 1, 2, 3) вектора абсолютной угловой скорости ω спутника относительно системы координат $Ox_1x_2x_3$.

Величина \tilde{P} – тензор, зависящий только от формы полости, характеризует диссипативный момент сил, обусловленный вязкой жидкостью, в квазистатическом приближении [1]. Для простоты в уравнениях (1.6) рассмотрен так называемый скалярный тензор, определенный одной скалярной величиной P>0; компоненты которого имеют вид $\tilde{P}_{ij} = P\delta_{ij}$, где δ_{ij} – символы Кронекера (такой вид тензор \tilde{P} имеет, например, в случае сферической полости). Если форма полости существенно отличается от сферической, то определение компонент тензора представляет значительные вычислительные трудности.

Рассматривается динамически несимметричный спутник, моменты инерции которого для определенности удовлетворяют неравенству $A_1 > A_2 > A_3$, в предположении, что угловая скорость ω движения спутника относительно центра масс существенно больше угловой скорости орбитального движения ω_0 , т.е. $\varepsilon = \omega_0/\omega \sim A_1\omega_0/G \ll 1$. В этом случае кинетическая энергия вращения тела велика по сравнению с моментами возмущающих сил.

В работе предполагается, что в полости находится жидкость большой вязкости, т.е. $\vartheta \gg 1 \left(\vartheta^{-1} \sim \varepsilon^2 \right)$, форма полости сферическая, тогда [1]

$$\tilde{P} = P \operatorname{diag}(1,1,1), \quad P = 8\pi\rho b_0^{\prime}/5259.$$
 (1.7)

Здесь р, ϑ – плотность и кинематический коэффициент вязкости жидкости в полости соответственно, b_0 – радиус полости.

Полагаем [2], что в силу симметрии соответствующая функция имеет вид $a_c = a_c (\cos \varepsilon_s)$ и аппроксимируем ее тригонометрическим полиномом по степеням $\cos \varepsilon_s$. Представим функцию $a_c (\cos \varepsilon_s)$ в виде $a_c = a_0 + a_1 \cos \varepsilon_s + \dots$ Рассмотрим второй член разложения, когда $a_c (\cos \varepsilon_s) = a_1 \cos \varepsilon_s$ в предположении, что $a_1 \sim \varepsilon$.

С учетом рассмотренных выше предположений видно, что второе слагаемое (с коэффициентом $a_c(\cos \varepsilon_s)$) в формуле проекции момента сил вязкой жидкости в полости (1.6) имеет порядок ε^3 . Гравитационная постоянная μ пропорциональна квадрату угловой скорости орбитального движения ω_0 , т.е. $\mu \sim \varepsilon^2$. Значит с точностью до величин второго порядка малости ($P \sim \varepsilon^2$) проекции момента сил вязкой жидкости в полости имеют вид:

$$L_{i}^{p} = \frac{P}{A_{1}A_{2}A_{3}} \left\{ p \left[q^{2}A_{2}(A_{1} - A_{2})(A_{2} - A_{3} + A_{1}) + r^{2}A_{3}(A_{1} - A_{3})(A_{3} - A_{2} + A_{1}) \right] \alpha_{i1} + q \left[r^{2}A_{3}(A_{2} - A_{3})(A_{3} - A_{1} + A_{2}) + r^{2}A_{1}(A_{1} - A_{2})(A_{3} - A_{1} - A_{2}) \right] \alpha_{i2} + r \left[p^{2}A_{1}(A_{3} - A_{1})(A_{1} - A_{2} + A_{3}) + q^{2}A_{2}(A_{3} - A_{2}) \times (A_{2} - A_{1} + A_{3}) \right] \alpha_{i3} \right\} \quad (i = 1, 2, 3).$$

Ставится задача исследования эволюции вращений спутника на асимптотически большом интервале времени $t \sim \epsilon^{-2}$, на котором происходит существенное изменение параметров движения.

2. МОДИФИЦИРОВАННАЯ ПРОЦЕДУРА МЕТОДА УСРЕДНЕНИЯ

Для рассматриваемой задачи решения системы (1.1)-(1.3) при малом є на промежутке времени

 $t \sim \varepsilon^{-2}$ будем применять модифицированную схему метода усреднения [3, 16, 17]. Рассмотрим невозмущенное движение ($\varepsilon = 0$), когда моменты приложенных сил равны нулю. В этом случае вращение твердого тела является движением Эйлера–Пуансо. Величины *G*, δ , λ , *T*, ν обращаются в постоянные, а φ , ψ , θ – некоторые функции времени *t*. Медленными переменными в возмущенном движении будут *G*, δ , λ , *T*, ν а быстрыми – углы Эйлера φ , ψ , θ .

Рассмотрим движение при условии $2TA_1 \ge G^2 \ge 2TA_2$, соответствующем траекториям вектора кинетического момента, охватывающим ось наибольшего момента инерции A_1 . Введем величину

$$k^{2} = \frac{(A_{2} - A_{3})(2TA_{1} - G^{2})}{(A_{1} - A_{2})(G^{2} - 2TA_{3})} \quad (0 \le k^{2} \le 1), \qquad (2.1)$$

представляющую собой в невозмущенном движении постоянную — модуль эллиптических функций, описывающих это движение.

Для построения усредненной системы первого приближения подставим решение невозмущенного движения Эйлера—Пуансо в правые части уравнений движения (1.1), (1.2) и проведем усреднение по переменной ψ , а затем по времени *t* с учетом зависимости φ , θ от *t* по схеме, предложенной в [3] для нерезонансного случая. При этом для медленных переменных δ , λ , *G*, *T* сохраняются прежние обозначения. В результате получим

$$\frac{dG}{dt} = 0, \quad \frac{d\delta}{dt} = -a_1 R_0^2 \left(2GR^2\right)^{-1} \times \times H\sin\delta\sin 2(\lambda - \nu) - \frac{3\omega_0^2 \left(1 + e\cos\nu\right)^3}{2G\left(1 - e^2\right)^3} \beta_2 \beta_3 N^*,$$

$$\begin{split} \frac{d\lambda}{dt} &= -a_1 R_0^2 \left(GR^2 \right)^{-1} \times \\ &\times H \cos \delta \cos^2 \left(\lambda - \nu \right) + \frac{3\omega_0^2 \left(1 + e \cos \nu \right)^3}{2G \left(1 - e^2 \right)^3 \sin \delta} \beta_1 \beta_3 N^*, (2.2) \\ &\frac{dT}{dt} = -\frac{4PT^2 \left(A_1 - A_3 \right) \left(A_1 - A_2 \right) \left(A_2 - A_3 \right)}{3A_1^2 A_2^2 A_3^2 S^2 \left(k \right)} \times \\ &\times \left\{ A_2 \left(A_1 - A_3 \right) \left(A_1 + A_3 - A_2 \right) \left[k^2 V \left(k \right) - W \left(k \right) \right] + \\ &+ A_1 \left(A_2 - A_3 \right) \left(A_3 + A_2 - A_1 \right) \left[\left(k^2 - 2 \right) W \left(k \right) + k^2 \right] + \\ &+ A_3 \left(A_1 - A_2 \right) \left(A_1 + A_2 - A_3 \right) \left[\left(1 - 2k^2 \right) W \left(k \right) + k^2 \right] \right\}, \\ S(k) &= A_2 - A_3 + \left(A_1 - A_2 \right) k^2, \quad V(k) = 1 + \frac{E(k)}{K(k)}, \\ &W(k) = 1 - \frac{E(k)}{K(k)}, \\ &H = \frac{1}{2} \left[3a^2 \frac{E(k)}{K(k)} - 1 \right] \quad \text{при} \quad 2TA_2 - G^2 > 0, \\ &H = \frac{1}{2} \left[\frac{3a^2}{k^2} \left[k^2 - 1 + \frac{E(k)}{K(k)} \right] - 1 \right\} \quad \text{при} \quad 2TA_2 - G^2 < 0, \\ &a^2 = \frac{\sigma + h}{1 + \sigma}, \quad \sigma = \frac{A_3}{A_1} \frac{A_1 - A_2}{A_2 - A_3}, \quad h = \left(\frac{2T}{G^2} - \frac{1}{A_2} \right) \frac{A_2 A_3}{A_2 - A_3}, \\ &N^* = A_2 + A_3 - 2A_1 + \\ &+ 3 \left(\frac{2A_1T}{G^2} - 1 \right) \left[A_3 + \left(A_2 - A_3 \right) \frac{K(k) - E(k)}{K(k)k^2} \right]. \end{split}$$

Здесь K(k) и E(k) – полные эллиптические интегралы первого и второго рода соответственно [18]. Согласно первому уравнению (2.2) кинетический момент спутника остается постоянным и равен G_0 . Дифференцируя выражение для k^2 (2.1) и используя уравнения для кинетической энергии (2.2), получим дифференциальное уравнение, которое не зависит от других переменных [1, 11]

$$\frac{dk^{2}}{d\xi} = (1-\chi)(1-k^{2}) - \left[(1-\chi) + (1+\chi)k^{2}\right]\frac{E(k)}{K(k)},$$

$$\chi = \frac{3A_{2}\left[\left(A_{1}^{2}+A_{3}^{2}\right) - A_{2}\left(A_{1}+A_{3}\right)\right]}{(A_{1}-A_{3})\left[A_{2}\left(A_{1}+A_{3}-A_{2}\right) + 2A_{1}A_{3}\right]},$$

$$\xi = (t-t_{*})/N,$$

$$N = \frac{3A_{1}^{2}A_{2}^{2}A_{3}^{2}}{PG_{0}^{2}\left(A_{1}-A_{3}\right)\left[A_{2}\left(A_{1}+A_{3}-A_{2}\right) + 2A_{1}A_{3}\right]} \sim \varepsilon^{-2}.$$

Здесь t_* — постоянная. Значению $k^2 = 1$ отвечает равенство $2TA_2 = G^2$, что соответствует сепаратрисе

для движения Эйлера—Пуансо. Уравнение (2.3) описывает усредненное движение конца вектора кинетического момента **G** на сфере постоянного радиуса G_0 .

3. АНАЛИЗ УСРЕДНЕННОГО СОБСТВЕННОГО ВРАЩЕНИЯ СПУТНИКА

Из уравнений движения (2.2) следует, что под влиянием момента сил вязкой жидкости в полости происходит эволюция кинетической энергии тела T в пределах от вращения вокруг оси A_3 (неустойчивое движение) до вращения вокруг оси A_1 (устойчивое движение). Изменения углов λ , δ зависят как от действия внешних моментов сил светового давле-

ния и гравитационных сил, так и от действия внутреннего момента сил вязкой жидкости в полости. Выражение, стоящее в фигурных скобках правой части уравнения (2.2) для *T*, положительно (при $A_1 > A_2 > A_3$), так как справедливы неравенства $(1 - k^2)K \le E \le K$. Поэтому dT/dt < 0 поскольку T > 0, т.е. переменная *T* строго убывает для любых $k^2 \in [0,1]$.

Рассмотрим систему, состоящую из четвертого уравнения системы (2.2) и уравнения (2.3). Проведем обезразмеривание в уравнении изменения кинетической энергии, считая характерными величинами задачи N (2.3) и момент инерции A_1 . Имеем

$$\frac{d\tilde{T}}{d\xi} = -\frac{2(\tilde{T})^2 (A_1 - A_2)(A_2 - A_3)}{A_1 [A_2 (A_1 + A_3 - A_2) + 2A_1 A_3] [A_2 - A_3 + (A_1 - A_2) k^2]^2} \Big\{ A_2 (A_1 - A_3) (A_1 + A_3 - A_2) \Big[k^2 V(k) - W(k) \Big] + A_1 (A_2 - A_3) (A_3 + A_2 - A_1) \Big[(k^2 - 2) W(k) + k^2 \Big] + A_3 (A_1 - A_2) (A_1 + A_2 - A_3) \Big[(1 - 2k^2) W(k) + k^2 \Big] \Big\},$$
(3.1)

где $\tilde{T} = \frac{2A_1T}{G_0^2}$, ξ определяется согласно (2.3). Это равенство выполняется при $\xi > 0$, т.е. для случая $2TA_1 \ge G^2 \ge 2TA_2$.

Проведен численный расчет при значениях моментов инерции $A_1 = 8$, $A_2 = 5$, 6, 7, $A_3 = 4$; $k^2(0) = 0.99999$, G(0) = 1. Начальное значение кинетической энергии находилось из равенства

$$T = \frac{G_0^2}{2} \frac{A_2 - A_3 + (A_1 - A_2)k^2(0)}{A_1(A_2 - A_3) + A_3(A_1 - A_2)k^2(0)}.$$
 (3.2)

В безразмерном виде имеем

$$\tilde{T} = \frac{A_1 (A_2 - A_3 + (A_1 - A_2) k^2 (0))}{A_1 (A_2 - A_3) + A_3 (A_1 - A_2) k^2 (0)}.$$

Рассмотрен также случай $\xi < 0$, что соответствует случаю $2TA_2 \ge G^2 \ge 2TA_3$. Уравнение (2.3) записывается следующим образом:

$$\frac{d\tilde{T}}{d\xi} = \frac{2(\tilde{T})^2 (A_3 - A_2)(A_2 - A_1)}{A_3 [A_2 (A_1 + A_3 - A_2) + 2A_1 A_3] S^2(k)} \times \\ \times \Big\{ A_2 (A_1 - A_3) (A_1 + A_3 - A_2) \Big[k^2 V(k) - W(k) \Big] + \\ + A_1 (A_2 - A_3) (A_3 + A_2 - A_1) \Big[(k^2 - 2) W(k) + k^2 \Big] + \\ + A_3 (A_1 - A_2) (A_1 + A_2 - A_3) \Big[(1 - 2k^2) W(k) + k^2 \Big] \Big\}$$

КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ том 49 № 5

с начальным условием

$$\tilde{T} = \frac{A_3 \left(A_2 - A_3 + (A_1 - A_2)k^2(0)\right)}{A_1 \left(A_2 - A_3\right) + A_3 \left(A_1 - A_2\right)k^2(0)}$$

В этом случае численный расчет проводился для значений моментов инерции $A_1 = 4$, $A_2 = 5, 6, 7$, $A_3 = 8$. Графики изменения кинетической энергии имеют вид, представленный на рис. 1.

Такой вид имеют графики изменения кинетической энергии в случае вращения спутника с полостью под действием только гравитационного момента [14] или только под действием светового давления [15], так как на эволюцию величины *T* оказывает влияние только момент сил вязкой жидкости, целиком заполняющей полость.

Кривые 1, 2, 3 соответствуют различным значениям $A_2 = 5, 6, 7$. Значение $\tilde{T} = 2$ соответствует вращению около оси A_3 (неустойчивое движение), $\tilde{T} = 1$ – вращению около оси A_1 (устойчивое движение). При $\xi = 0$ (переход через сепаратрису) кривые имеют горизонтальную касательную (точки перегиба). Аналогичные графики изменения кинетической энергии могут быть получены пересчетом из формулы (2.1) для безразмерной кинетической энергии

$$\tilde{T} = \frac{A_{\rm l}S(k)}{A_{\rm l}(A_2 - A_3) + k^2 A_3(A_{\rm l} - A_2)}.$$

Отсюда видно, что при $k^2 \rightarrow 0$ имеем $\tilde{T} \rightarrow 1$. Аналогично, для случая вращения около оси A_3 можно показать, что $\tilde{T} \rightarrow 2$.

2011

4. ОРИЕНТАЦИЯ ВЕКТОРА КИНЕТИЧЕСКОГО МОМЕНТА

Рассмотрим систему, состоящую из уравнений для λ и δ системы (2.2). Как известно $R = l_0/(1 + e \cos v)$, а фокальный параметр орбиты определяется равенством $l_0 = \mu^{1/3} (1 - e^2) \omega_0^{-2/3}$. Тогда первые два уравнения (2.2) примут вид:

$$\frac{d\delta}{dt} = -\frac{\omega_0^{4/3} \left(1 + e\cos\nu\right)^2}{2G\left(1 - e^2\right)^2} \left[\frac{a_1 R_0^2}{\mu^{2/3}} H\sin\delta\sin 2(\lambda - \nu) + \frac{3\left(1 + e\cos\nu\right)\omega_0^{2/3}}{1 - e^2} \beta_2 \beta_3 N^*\right],$$
$$\frac{d\lambda}{dt} = -\frac{\omega_0^{4/3} \left(1 + e\cos\nu\right)^2}{G\left(1 - e^2\right)^2} \times (4.1)$$
$$\times \left[\frac{a_1 R_0^2}{\mu^{2/3}} H\cos\delta\cos^2(\lambda - \nu) - \frac{\omega_0^{2/3} \left(1 + e\cos\nu\right)}{2\left(1 - e^2\right)\sin\delta} \beta_1 \beta_3 N^*\right].$$

Проведем обезразмеривание уравнения изменения кинетического момента (2.2), уравнений для истинной аномалии (1.3) и k^2 (2.3), уравнений системы (4.1). Характерными параметрами задачи являются G_0 – кинетический момент спутника при t = 0, Ω_0 – величина угловой скорости ω движения спутника относительно центра масс в начальный момент времени. Безразмерные величины определяются формулами $\tilde{t} = \Omega_0 t$, $\tilde{G} = G/G_0$, $\tilde{A}_i = A_i \Omega_0/G_0$, $\tilde{L}_i = L_i/(G_0 \Omega_0)$, $\tilde{T} = T/(G_0 \Omega_0)$, $\varepsilon^2 \tilde{P} = P \Omega_0^2/G_0$.

Введем обозначение

$$\Gamma = \frac{a_1 R_0^2 \Omega_0}{G_0 \mu^{2/3} \omega_0^{2/3}}$$
(4.2)

и назовем эту величину приведенным коэффициентом момента сил светового давления.

После обезразмеривания имеем систему уравнений движения вида:

$$\frac{d\delta}{d\tilde{t}} = -\varepsilon^2 \frac{(1+e\cos\nu)^2}{2\tilde{G}(1-e^2)^2} \times \\ \times \left(\Gamma \tilde{H}\sin\delta\sin 2(\lambda-\nu) + \frac{3(1+e\cos\nu)}{2(1-e^2)}\beta_2\beta_3\tilde{N}^*\right), \\ \frac{d\lambda}{d\tilde{t}} = \varepsilon^2 \frac{(1+e\cos\nu)^2}{\tilde{G}(1-e^2)^2} \times \\ \times \left(\frac{3(1+e\cos\nu)}{2(1-e^2)\sin\delta}\beta_1\beta_3\tilde{N}^* - \Gamma \tilde{H}\cos\delta\cos^2(\lambda-\nu)\right),$$

Первые три уравнения для λ, δ и ν системы (4.3) можно записать следующим образом:

$$\frac{d\delta}{d\tilde{t}} = \varepsilon^2 \Delta(\nu, \delta, \lambda), \quad \frac{d\lambda}{d\tilde{t}} = \varepsilon^2 \Lambda(\nu, \delta, \lambda),$$

$$\frac{d\nu}{d\tilde{t}} = \varepsilon \frac{(1 + e\cos\nu)^2}{h(e)}, \quad h(e) = (1 - e^2)^{3/2}.$$
(4.4)

Здесь Δ , Λ — коэффициенты в правых частях первого и второго уравнений (4.3), δ , λ — медленные переменные, а ν — полумедленная.

Получена система специального вида, для решения которой применяется модифицированный метод усреднения по следующей схеме [17]

$$\frac{d\delta}{d\tilde{t}} = \varepsilon^2 \frac{h(e)}{2\pi} \int_{0}^{2\pi} \frac{\Delta(\lambda, \delta, \nu)}{(1 + e\cos\nu)^2} d\nu,$$
$$\frac{d\lambda}{d\tilde{t}} = \varepsilon^2 \frac{h(e)}{2\pi} \int_{0}^{2\pi} \frac{\Lambda(\lambda, \delta, \nu)}{(1 + e\cos\nu)^2} d\nu.$$

После усреднения получим

$$\frac{d\delta}{d\tilde{t}} = 0, \quad \frac{d\lambda}{d\tilde{t}} = \varepsilon^2 \left(\frac{3\tilde{N}^*}{h(e)} - \frac{2\Gamma\tilde{H}}{\left(1 - e^2\right)^{1/2}} \right) \frac{\cos\delta}{4\tilde{G}}.$$

Интегрирование системы проводилось для медленного времени $\tau = \varepsilon^2 \tilde{t}$. Численный расчет проводился при начальных условиях $\tilde{G}(0) = 1$; $k^2(0) = 0.99$; $\delta(0) = 0.785$ рад; $\lambda(0) = 0.785$ рад. Рассматривались орбиты с эксцентриситетом: e = 0 – круговая орбита; e = 0.421 – сильно эллиптическая орбита. Для безразмерного времени τ имеем следующую картину изменения угла ориентации вектора кинетического момента, представленную на рис. 2. Кривая *1* соответствует круговой орбите, а кривая 2 – сильно эллиптической.

На рис. 3 представлены графики изменения этого же угла при различных значениях моментов инерции спутника. Кривые *1*, *2*, *3* соответствуют различным значениям $\tilde{A}_2 = 7,6,5$ для постоянных значений $\tilde{A}_1 = 8$, $\tilde{A}_3 = 4$. Из рис. 3 видно, что характер изменения угла λ при близких значениях моментов инерции \tilde{A}_1 и \tilde{A}_2 носит почти линейный характер. С уменьшением значения момента инерции \tilde{A}_2 кривизна функции увеличивается, при этом функция перестает быть монотонной.

Характер изменения угла λ имеет такой же вид, как и в задаче о движении спутника с полостью, заполненной вязкой жидкостью в гравитационном поле [14].

В случае движения спутника с полостью, заполненной вязкой жидкостью, под действием момента сил светового давления [15] характер изменения угла λ носит почти линейный характер и с увеличением значения безразмерного момента инерции \tilde{A}_2 функция увеличивается быстрее.

Можно также провести анализ изменения характера функции $\lambda(\tau)$ при различных значениях безразмерной величины \tilde{P} . Кривые *1*, *2*, *3* на рис. 4 соответствуют различным значениям $\tilde{P}(0) = 10$, 100, 1000. Видно, что характер изменения угла имеет почти линейный вид.

Согласно численному расчету показано, что для несимметричного спутника с полостью, заполненной вязкой жидкостью, движущегося под действием момента сил светового давления в гравитационном поле вектор кинетического момента **G** остается величиной постоянной, направленной под постоянным углом δ к вертикали плоскости орбиты. При этом конец вектора **G** движется по сфере радиуса G_0 по ходу часовой стрелки и кинетическая энергия убывает до безразмерного значения 1, соответствующего устойчивому движению спутника вокруг оси A_1 . Такое же направление движения конца вектора

кинетического момента характерно для задач о движении спутника с полостью под действием момента сил гравитационного притяжения [14] и момента сил светового давления [15].

5. ПРЕДЕЛЬНЫЙ СЛУЧАЙ ВРАЩЕНИЯ, БЛИЗКОГО К ОСЕВОМУ

Рассмотрим движение тела при малых $k^2 \ll 1$, отвечающих движениям твердого тела, близким к вращениям вокруг оси A_1 . В этом случае правую часть уравнения (2.2) можно упростить, используя разложения полных эллиптических интегралов в ряды по k^2 [18]. Тогда уравнение (2.2) интегрируется и асимптотическое решение записывается в виде

$$k^{2} = C_{1} \exp\left[-\frac{(3+\chi)\xi}{2}\right] \quad при \xi > 0,$$

$$k^{2} = C_{1} \exp\left[\frac{(3-\chi)\xi}{2}\right] \quad при \xi < 0, \quad (5.1)$$

$$C_{1} = \text{const}, \quad 0 \le C_{1} \le 1.$$

Изменение кинетической энергии можно качественно грубо получить, следуя работе [1], простым пересчетом из соотношения (2.1), используя найденное решение для малых k^2 (5.1). Имеем

$$T = \frac{G^2}{2A_1} + \frac{G^2(A_1 - A_3)(A_1 - A_2)}{2A_1^2(A_2 - A_3)} \times C_1 \exp\left[-\frac{(3 + \chi)\xi}{2}\right] \quad \text{при } \xi > 0,$$
(5.2)
$$T = \frac{G^2}{2A_3} + \frac{G^2(A_3 - A_1)(A_3 - A_2)}{2A_3^2(A_2 - A_1)} C_1 \exp\left[\frac{(3 - \chi)\xi}{2}\right] \quad \text{при } \xi < 0.$$

Для безразмерной величины кинетической энергии равенства (5.2) примут вид

$$T^* = 1 + \frac{(A_1 - A_3)(A_1 - A_2)}{A_1(A_2 - A_3)} C_1 \exp\left[-\frac{(3 + \chi)\xi}{2}\right]$$

$$\Pi p \mu \quad \xi > 0,$$

$$T^* = \frac{A_1}{A_3} + \frac{A_1(A_3 - A_1)(A_3 - A_2)}{A_3^2(A_2 - A_1)} C_1 \exp\left[\frac{(3 - \chi)\xi}{2}\right]$$
(5.3)

$$\Pi p \mu \quad \xi < 0.$$

Постоянная интегрирования C_1 находится грубо из условия равенства кинетической энергии по формулам (5.3) при $\xi = 0$. Имеем

$$C_{1} = \frac{A_{1}A_{3}(A_{2} - A_{3})(A_{1} - A_{2})}{A_{3}^{2}(A_{1} - A_{2})^{2} + A_{1}^{2}(A_{2} - A_{3})^{2}}.$$
 (5.4)

Графики изменения безразмерной кинетической энергии T^* в случае малых k^2 имеют вид, представленный на рис. 5. Кривые *I*, *2*, *3* соответствуют различным значениям $A_2 = 5,6,7$, при постоянных значениях $A_1 = 8$, $A_3 = 4$ для $\xi > 0$ и $A_1 = 4$, $A_3 = 8$ для $\xi < 0$. Как видно из рисунка, характер функции $T^* = T^*(\xi)$ тот же, что и для $0 \le k^2 \le 1$, а также асимптотические значения T^* на положительных и отрицательных безразмерных временах сохраняют свои величины.

Асимптотическое выражение модуля эллиптических функций можно представить в виде функции по безразмерному времени т

$$k^{2} = k_{0}^{2} \exp\left[-\rho\tau\right],$$

$$\rho = \frac{\tilde{P}}{\tilde{A}_{1}^{2}\tilde{A}_{2}^{2}\tilde{A}_{3}^{2}}\left[\tilde{A}_{1}\tilde{A}_{2}\left(\tilde{A}_{1}-\tilde{A}_{2}\right)+\tilde{A}_{1}\tilde{A}_{3}\left(\tilde{A}_{1}-\tilde{A}_{3}\right)+\tilde{A}_{2}\tilde{A}_{3}\right].$$
(5.5)

Рассмотрим дифференциальное уравнение изменения угла т (4.4) в безразмерном времени т для малых k^2 с учетом (5.5). В правую часть уравнения входит непостоянная величина \tilde{H} . При $2\tilde{T}\tilde{A}_2 - \tilde{G}^2 < 0$

функция $\tilde{H}(\tau)$ с учетом малых второго порядка имеет вид:

$$\tilde{H} = \frac{1}{2} \left\{ \frac{3\tilde{A}_3 \left(\tilde{A}_1 - \tilde{A}_2\right)}{2\tilde{A}_1 \left(\tilde{A}_2 - \tilde{A}_3\right)} k_0^2 \exp\left[-\rho\tau\right] - 1 \right\}.$$

Видно, что при $\tau \to \infty$ величина $\tilde{H} \to -0.5$.

Асимптотическое выражение кинетической энергии можно представить в виде функции по безразмерному времени т

$$\tilde{T} = \frac{\tilde{G}^2}{2\tilde{A}_1} + \frac{\tilde{G}^2 \left(\tilde{A}_1 - \tilde{A}_3\right) \left(\tilde{A}_1 - \tilde{A}_2\right)}{2\tilde{A}_1^2 \left(\tilde{A}_2 - \tilde{A}_3\right)} k_0^2 \exp\left[-\rho\tau\right].$$

Подставляем полученное выражение \tilde{H} и \tilde{T} в уравнение изменения угла λ, интегрируем и нахо-ДИМ

$$\begin{split} \lambda &= \frac{\cos \delta}{4 \tilde{G}_0 (1-e^2)^{1/2}} \begin{cases} \frac{3 (\tilde{A}_1 - \tilde{A}_2) k_0^2}{\tilde{A}_1 (\tilde{A}_2 - \tilde{A}_3) \rho} \times \\ &\times \left(\Gamma \tilde{A}_3 - \frac{3 (\tilde{A}_2 + \tilde{A}_3) (\tilde{A}_1 - \tilde{A}_3)}{(1-e^2)} \right) (\exp[-\rho\tau] - 1) + \\ &+ \left(\frac{3}{(1-e^2)} (\tilde{A}_2 + \tilde{A}_3 - 2 \tilde{A}_1) + \Gamma \right) \tau \right\} + \lambda_0, \end{split}$$

где константы λ_0 , k_0^2 определяются из начальных условий. График данной функции $\lambda = \lambda(\tau)$ при $k^2 \ll 1$ имеет вид, представленный на рис. 6.

Кривые 1, 2, 3 соответствуют различным значениям $\tilde{A}_2 = 7, 6, 5$, при постоянных значениях $\tilde{A}_1 = 8$, $\tilde{A}_3 = 4$ и при начальном значении угла $\lambda(0) =$ = 0.785 рад. Как видно из рисунка, характер кривых аналогичен функциям $\lambda = \lambda(\tau)$ при произвольных k_2 .

Изменение угла λ при малых k_2 имеет приблизительно тот же вид, что и в случае движения спутника с полостью, заполненной вязкой жидкостью, в гравитационном поле [14]. При этом в нашей задаче убывание угла ориентации происходит несколько быстрее.

При движении спутника с вязкой жидкостью под действием момента сил светового давления [15] угол λ возрастает, как и в случае движения спутника под действием момента сил светового давления в сопротивляющейся среде [8].

6. ДВИЖЕНИЕ ДИНАМИЧЕСКИ СИММЕТРИЧНОГО СПУТНИКА

Рассмотрим движение динамически симметричного спутника ($A_1 = A_2$), моменты инерции которого для определенности удовлетворяют неравенству

КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ том 49 Nº 5

 $A_1 > A_3$. Уравнения движения тела относительно центра масс запишем в форме [2]

$$\frac{dG}{dt} = L_3, \frac{d\delta}{dt} = \frac{L_1}{G}, \frac{d\lambda}{dt} = \frac{L_2}{G\sin\delta},$$
$$\frac{d\theta}{dt} = \frac{L_2\cos\psi - L_1\sin\psi}{G},$$
$$\frac{d\phi}{dt} = G\cos\theta \left(\frac{1}{A_3} - \frac{1}{A_1}\right) + \frac{L_1\cos\psi + L_2\sin\psi}{G\sin\theta},$$
$$\frac{d\psi}{dt} = \frac{G}{A_1} - \frac{L_1\cos\psi + L_2\sin\psi}{G}\operatorname{ctg}\theta - \frac{L_2}{G}\operatorname{ctg}\delta.$$
(6.1)

Проекции момента сил вязкой жидкости в полости L_i^p на оси Oy_i (i = 1, 2, 3) при $A_1 = A_2$ имеют вид:

$$L_{i}^{p} = \frac{P}{A_{1}A_{2}}(A_{1} - A_{3}) \times$$

$$\times \left\{ pr^{2}A_{3}\alpha_{i1} + qr^{2}A_{3}\alpha_{i2} - rA_{1}\left[p^{2} + q^{2}\right]\alpha_{i3} \right\} (i = 1, 2, 3).$$
(6.2)

Для решения задачи будем применять метод усреднения [15]. В случае невозмущенного движения Эйлера-Пуансо, когда эллипсоид инерции является эллипсоидом вращения, ф, ψ являются линейными функциями, а угол θ – величина постоянная [19]. Для возмущенного движения углы ф, ү являются быстрыми переменными, а угол θ – медленной. Проводим усреднение системы уравнений для медленных переменных G, δ , λ , θ по быстрым переменным: сначала по ψ , а затем по ϕ .

После усреднения по быстрым переменным ϕ, ψ имеем уравнения в безразмерных величинах

$$\frac{dG^*}{dt^*} = 0, \quad \frac{d\theta}{dt^*} = \varepsilon^2 \Gamma_1 (A_1^* - A_3^*) \sin \theta \cos \theta, \quad (6.3)$$

2011

d

d

Рис. 8

$$\frac{d\delta}{dt^*} = -\varepsilon^2 \frac{\left(1 + e\cos\nu\right)^2}{2\left(1 - e^2\right)^2} \left(1 - \frac{3}{2}\sin^2\theta\right) \times$$

$$\times \sin\delta\sin 2(\lambda - \nu) \left\{\Gamma - \frac{3(1 + e\cos\nu)}{G^*(1 - e^2)} \left(A_1^* - A_3^*\right)\right\},$$

$$\frac{d\lambda}{dt^*} = \varepsilon^2 \frac{\left(1 + e\cos\nu\right)^2}{\left(1 - e^2\right)^2} \left(1 - \frac{3}{2}\sin^2\theta\right) \times$$

$$\times \cos\delta\cos^2(\lambda - \nu) \left\{\frac{3(1 + e\cos\nu)}{G^*(1 - e^2)} (A_1^* - A_3^*) - \Gamma\right\}.$$

Здесь безразмерные величины определяются равенствами $t^* = \Omega_0 t$, $A_i^* = A_i \Omega_0 / G_0$, $\varepsilon^2 v^* = v / \Omega_0 a^2$, где $\Omega_0 -$ угловая скорость движения спутника относительно центра масс в начальный момент времени.

Введены обозначения Γ согласно (4.1) и $\Gamma_1 = \frac{8\pi a^5 \rho G_0^3}{525 v^* A_1^3 A_3 \Omega_0^3}$, где μ – гравитационная посто-

янная. Назовем величину Г₁ приведенным коэффициентом момента сил вязкой жидкости в полости.

Исследуем решение системы (6.3) при малом ε на промежутке времени $\tau = \varepsilon^2 t^*$. Из первого уравнения системы (6.3) видно, что кинетический момент есть величина постоянная. Интегрируя второе уравнение системы (6.3) для угла нутации, получим

$$tg\theta = tg\theta_0 \exp\left[\Gamma_1 \left(A_1^* - A_3^*\right)\tau\right]. \tag{6.4}$$

График функции $\theta = \theta(\tau)$ имеет вид, представленный на рис. 7. Расчет проводился при начальном условии $\theta(0) = \pi/3$ рад. Кривая *I* соответствует случаю $A_1^* > A_3^*$ (спутник "сплюснутый" по оси инер-

ции A_3), а кривая $2 - A_1^* < A_3^*$ (спутник "вытянутый" по оси инерции A_3).

Последние два уравнения (6.3) и уравнение для истинной аномалии (1.3) в безразмерном времени т могут быть записаны в виде

$$\frac{d\delta}{dt^*} = \varepsilon^2 \Delta(\nu, \delta, \lambda), \quad \frac{d\lambda}{dt^*} = \varepsilon^2 \Lambda(\nu, \delta, \lambda),$$

$$\frac{d\nu}{dt^*} = \frac{\varepsilon}{h(e)} (1 + e \cos \nu)^2, \quad h(e) = (1 - e^2)^{1/2},$$
(6.5)

где Δ, Λ — коэффициенты в правых частях последних двух уравнений (6.3). Из системы (6.4) видно, что δ, λ — медленные переменные, а ν — полумедленная.

Применяя модифицированный метод усреднения [17], получим:

$$\frac{d\delta}{d\tau} = 0,$$
$$\frac{d\lambda}{d\tau} = \frac{\cos\delta}{2(1-e^2)^{1/2}} \left(1 - \frac{3}{2}\sin^2\theta\right) \left\{\frac{3(A_1^* - A_3^*)}{G^*(1-e^2)} - \Gamma\right\}.$$

Видно, что угол отклонения δ вектора кинетического момента **G** от вертикали остается постоянным в указанном приближении, как и в случае несимметричного спутника.

С учетом (6.4) находим аналитически закон изменения угла λ от времени т:

$$\lambda = \lambda_0 + \alpha \tau - \frac{3\alpha}{2\beta} \ln \left| \frac{1 + \gamma \exp(\beta \tau)}{1 + \gamma} \right|,$$

$$\alpha = \frac{\cos \delta}{2\left(1 - e^2\right)^{1/2}} \left\{ \frac{3(A_1^* - A_3^*)}{G^*(1 - e^2)} - \Gamma \right\}, \quad \beta = 2\Gamma_1 \left(A_1^* - A_3^*\right),$$

$$\gamma = tg^2 \theta_0,$$

График изменения функции $\lambda = \lambda(\tau)$ имеет вид, представленный на рис. 8 для начального значения угла нутации $\theta(0) = \pi/3$ рад и при начальном значении угла $\lambda = \pi/4$ рад. Кривые построены при различных значениях параметра $\beta = -2, -1, 1, 2$. Из рисунка видно, что при отрицательных значениях параметра β на малых временах функция $\lambda = \lambda(\tau)$ сначала возрастает, а затем убывает. При положительных значениях параметра β функция $\lambda = \lambda(\tau)$ является убывающей. При временах $\tau > 2.5$ графики всех функций почти линейны.

В нашей задаче характер убывания λ совпадает с полученным в [14, 15] при исследовании движения спутника с вязкой жидкостью в полости под действием гравитационного или светового моментов. При этом угол ориентации вектора кинетического момента G в рассматриваемом нами случае убывает быстрее.

Для значений параметра $\beta = -0.5, -1, -1.5, -2$ построены графики изменения угла нутации $\theta = \theta(\tau)$ (рис. 9). Видно, что чем меньше параметр β , тем быстрее угол $\theta \rightarrow 0$, т.е. чем более "вытянутое" тело по оси A_3 , тем быстрее спутник стремится к положению устойчивого вращения вокруг этой оси.

Характер изменения угла нутации θ в рассматриваемом случае, близок к изученному при вращении спутника с вязкой жидкостью под действием момента сил светового давления [15].

Таким образом, при движении динамически симметричного спутника с полостью, заполненной вязкой жидкостью, под действием момента сил светового давления вектор кинетического момента G остается величиной постоянной, направленной под постоянным углом б к вертикали плоскости орбиты. Направление движения конца вектора G зависит от формы спутника. В случае спутника "сплюснутого" по оси инерции А3 конец вектора G движется по сфере радиуса G₀ против хода часовой стрелки. При этом угол нутации стремится к предельному значению π/2 рад. Для динамически "вытянутого" по этой же оси спутника конец вектора G движется по сфере радиуса G_0 , сначала по ходу часовой стрелки, а затем против хода часовой стрелки, а угол нутации стремится к нулю.

Работа выполнена при частичной финансовой поддержке РФФИ (гранты 08-01-00180; 08-01-00234) и Программы поддержки ведущих научных школ (НШ-4513.2008.01).

СПИСОК ЛИТЕРАТУРЫ

1. *Черноусько Ф.Л.* Движение твердого тела с полостями, заполненными вязкой жидкостью, при малых числах Рейнольдса // Журн. вычисл. математики и мат. физики. 1965. Т. 5. № 6. С.1049–1070.

- Белецкий В.В. Движение искусственного спутника относительно центра масс. М.: Наука, 1965.
- 3. *Черноусько Ф.Л.* О движении спутника относительно центра масс под действием гравитационных моментов // Прикладная математика и механика. 1963. Т. 27. Вып.3. С. 474 483.
- 4. *Белецкий В.В.* Движение спутника относительно центра масс в гравитационном поле. М.: Изд-во МГУ, 1975.
- Карымов А.А. Устойчивость вращательного движения геометрически симметричного искусственного спутника Солнца в поле сил светового давления // Прикладная математика и механика. 1964. Т. 28. Вып. 5. С. 923–930.
- Поляхова Е.Н. Космический полет с солнечным парусом: проблемы и перспективы. М.: Наука, 1986.
- Сазонов В.В. Движение астероида относительно центра масс под действием момента сил светового давления // Астрон. вестник. 1994. Т. 28. № 2. С. 95–107.
- Лещенко Д.Д., Рачинская А.Л. Движение спутника относительно центра масс под действием момента сил светового давления в сопротивляющейся среде // Вісник одеськ. нац. ун-ту. 2007. Т. 12. Вип. 7. Матем. і мех. С. 85–98.
- Акуленко Л.Д., Лещенко Д.Д., Рачинская А.Л. Эволюция вращения спутника под действием гравитационного момента в сопротивляющейся среде // Известия РАН. Механика твердого тела. 2008. № 2. С. 13–26.
- Осипов В.З., Суликашвили Р.С. О колебании твердого тела со сферической полостью, целиком заполненной вязкой жидкостью, на эллиптической орбите // Тр. Ин-та. Тбилис. мат. ин-т АН Груз. ССР. 1978. Т. 58. С. 175–186.
- Смирнова Е.П. Стабилизация свободного вращения асимметричного волчка с полостями, целиком заполненными жидкостью // Прикладная математика и механика. 1974. Т. 33. Вып. 6. С. 980–985.
- 12. Сидоренко В.В. Эволюция вращательного движения планеты с жидким ядром // Астрон. вестник. 1993. Т. 27. № 2. С. 119 – 127.
- Вильке В.Г., Шатина А.В. Эволюция вращения спутника с полостью, заполненной вязкой жидкостью // Космич. исслед. 1993. Т. 31. Вып. 6. С. 22–30. (Cosmic Research. P. 605).
- Акуленко Л.Д., Лещенко Д.Д., Рачинская А.Л. Эволюция вращений спутника с полостью, заполненной вязкой жидкостью // Механика твердого тела. 2007. Вып. 37. С. 126–139.
- Акуленко Л.Д., Лещенко Д.Д., Рачинская А.Л. Вращения спутника с полостью, заполненной вязкой жидкостью, под действием момента сил светового давления // Механика твердого тела. 2008. Вып. 38. С. 95–110.
- Волосов В.М., Моргунов Б.И. Метод осреднения в теории нелинейных колебательных систем. М.: Изд-во МГУ, 1971.
- Акуленко Л.Д. Схемы усреднения высших степеней в системах с быстрой и медленной фазами // Прикладная математика и механика. 2002. Т. 66. Вып. 2. С. 165–176.
- 18. Градитейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Наука, 1971.
- 19. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 1. Механика. М.: Наука. 1973.