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This artlcle investigates fast rotational motion of a heavy rigid body about a fixed
point when external resistance 1s present. The moment of the resistive forces is assumed
to be a linear functlon of the angular velocity. The system obtained after averaging with

respect toc Euler-Polnsot motion is analyzed, in the cisé of Tast TOLALIoNN —

s I

1. Consider fast motlon of an asymmetrical heavy rigild body about a fixed point O in
a resistive medium. Fast motions will be taken to be thqse for which the moment of exter—
nal forces relative to the fixed point 1s small as compared to the instantanecus value of
the kinetlc energy of the rotations. It .
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We introduce three Cartesian coordinate systems. The Oxi (L = 1:'2, 3) axes are flxed;
the 0x3 axls 1s vertically upward. The Ozi axes are assoclated with the principal axes of
inertia of the rigild body. The 0y3 axls of the Oyi system lles along the kinetlc moment
vector G of the rigid body relative to point 0; the 032 axis lies In the horizontal plane;
and Oy1 is in the vertical plane. The angles A and § deflne the direction of vector & in
space, as shown in Fig. 1.

The formulas for the cosines of the angles between the axes are given in the accom-
panying table.
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Here 0, ¢, ¥ are the Euler angles, which define the orientation of the Ozi axes rela-
tive to Oyi.

‘gWe can write the equations of motion of the body relative to the fixed point as fol-
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Here Li are the moments of external forces relative to the Oyi axes; G 1is the magni-
tude of the kinetic moment; and A, B, and C are the principal moments of inertia of the
body relative to the Ozi axes.

Projection of vector G onto the axes of the associated Ozi coordinate system yields
© 1982 by Allerton Pres, inc. :




Ap=G 512 8 sin 9, Bg=G sin 6 cos g, Cre cos § kieg)

Here p, q, r are the projectlions of the absolute angular velocity vector w of the
body onto the Ozi axes.

In some cases, instead of the angle 8 1t ls convenient to use the kinetic energy as
a variable: *
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The projections Li of the moment of external foreces, made up of the forces of gravity

and forces of external reslstance, onto the Oyi axes can be written in the following form
with allowance for (1.2):
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Here 1t 1s assumed that the moment of resistive forces L* ean be represented in the
form Le*=].@, where the tensor I has constant components I1 in the Ozi system associated

with the body [2]. Since we are investigating
rapid motion, we assume & small- ratiomga/T~e<l,
where a 1is the distance from the center gof
mass to the fixed point. The resistance of
the medium is assumed to be .weak and of the
same order of smallness: I1/G~e<1, where |1

is the norm of the matrix of the reslstance
coefficients.
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Let us investigate the solution of system
(1.1, (1.4) fop small € on a large time in-
terval t~e~'. To solve the problem, we can
employ the averaging method of (3]. The error
in the averaged solution for the slow varia-
bles 1s a quantity of order e on the time in-
terval over which the body executes ~e! revo-
lutions. We perform averaging with respect to
Euler-Poinsot motion using the procedure of
[1,4]. The eguations of averaged motion were
obtained earlier in [5],

Fig. 1 2. Let us consider unperturbed motion

(e = 0), when the moments of the external

forces are equal to zéro. In this case the rotation of the rigid body is Euler-Poinsot
motion. The quantities @, 8,4, T become constants, while 6, ¢, ¥ become functions of time
The slow variables in perturbed motion wlll be G, 8 A T, while the fast variables will be

For the sake of being deflnite, we take 4>B>C and conslder motion under the conditien
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27A=G*>2TB, corresponding to trajectories of the kinetlc moment vector that encompass the
0z, axis [6]. We introduce the gquantity

(B—C) (2T4A—G*) P |

which 1s a constant - the modulus of the elliptic functlons - in unperturbed motion.

To construct. the first-approximation averaged system, we substitute the solution of
unperturbed Euler-Poinsot motion [6] into the right sides of (1.1) and (1.4) and average
with respect to the varilable ¢, then with respect to time t, allowling for the. fact that
0, ¢ depend on t [1]. We retain the earlier notatlon for the slow a%eraged varlables. As

a result we obtain [5] 4
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Here K(k), E(k) are complete elliptie integrals of the first and second kind. Differen-
E;ating (2=1) for k2 and using the last two eguations in (2.2), we obtain the differentlal

I

¢ tion
ar E (k)
" (1—x) (1—k*) = [ (1—=) + (1+2x) k’]K_—(k)
w= (2 AC—1,,BC~14AB) /[ (Ind—1,.C) B] _—

E= (t—ft) /N, N"'AC/(:’:IA"‘II 10)

Here t,4 1s a constant. The value k2 = 1 corresponds to the equation 2TB = G2, which
1 turn corresponds to the separatrix for Euler-Poinsot motion. If the equation ke = 1

- i3 attalned for some solution of (2.3), then we choase ty 1in such a way that ke = 1 for
t=(), i=ty.

It follows from (2.2) that the presence of resistance in the medium leads to evolu-

tion of both the kinetic energy T of the body and the magnitude of the kinetic moment G.

It is directly evident that in first approximation only the resistive force affects the
change in T and G; the equations include only the diagonal coefficlents Iii of the matrix

of the mcment of friction. Terms containing nondiagonai components Iij (1 # J) drop out




upon averaging. The angular rotational velocity of the kinetic moment about the vertical
%* depends on both the force of gravity and the resistive force of the medium. We should
note that the action of these forces does not lead to change in the angular variable &,
and the departure from the vertical remains constant in the approximation under considera-
tion.

Equaticn (2:3) describes averaged motion of the end of the kinetic moment vector G on
a sphere of radius G. The third equatlon in (2.2) describes the change in the radius of
the sphere over time.

The expression in braces on the right side of Eq. (2.2) for G 1s positilve (for A >
> B > C), since we have (L—H)Kczcxj?]. Each coefficient for I11 is a nonnegative func-

tion of kz; these coefficlents cannot all simultaneously vanish. Therefore dG/dt<(Q for
G > 0, i.e., the variable G strictly decreases for any k<{01]. We can similarly show that
the kinetic energy also strictly decreases.

Equaticns (2.2) and (2.3) for G, T, k2 can be integrated in gquadratures. We write
them in the form :

G =—Gla(K), T'=—Tf: (), K =h(K) (2.1)

where fu, fps and f, are the functions defined in (2.2) and (2.3). From this we find
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Estimating fG from (2.4), we find that the followlng differential inequality is valid:
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where f;, fg are positive constants. Consequently, integrating (2.6), we obtain the fol-
lowing bound for G:

Gy exp(—fot) SG<G, exp(—fa*t). (2.7)

Similar ineqgualities are valid for T.

3. A basic stage 1in the investigation of the motlon of the body 1s the analysis of
Eq. (2.3). It is interesting that (2.3) coincides with the equation obtained .for the
case of free spatlal motion of & body with a cavity f1lled with a high=-viscosity fluld [4].
We should note that the acceleration due to gravity does riot appear in (2.3). Only the

resistance of the medium affects the evolution of ka; in view of the faect that thils equa-
tion can be integrated independently, the effects of resistance and gravity are partially
separ d. Complete separation dces not occur in this case, since the slowly decreasing
varis s G and T appear on the right side of the expression for A*. We should note that
paper [8] investigated the case in which a small perturbing moment of the forces of gravity
is present (no resistance); G and T remain constant in this case.

It 1is not hard to establish that » from (2.3) can be written in the form
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. Since i, % can assume arbitrary values, the value of = varles from -« to += depending
on the parameters of the problem. In [4], the inequalitiles x>0, #,>0 were observed, and
hence |x|<i. Paper [9] considered an equation of the form (2.3) for a rigid body with a
cavity of arbltrary shape, filled with a strongly viscous fluid, where x varied in the
range |x|<3. Numerical integration of (2.37 with 1nit15T eondition k2(0) = 1 was performed
in these studles. It was shown that k decreases monotonically from 1 to 0 with inecreasing
£, the decrease being more rapld, the larger x.

Then the family of solutions of {(2.3), corresponding to different x&(—w», =) , was in-
vestigated. Note that for x<-3 new qualitative effects appear, while for x>d the nature




~ the solution 1is the same as for |x|<3. Indeed, as can be seen from the graphs of k(x, &),
i; Fig. 2 for x=-3 0 1, 3, 5 8, large x correspond to mcre rapldly decreasing functions of

the argument &.

2 2

For x<—3, Eq. (2.3) for k" admits statlonary points k° = kf, i.e., independently of
g and T the guantity k2 remains a constant, in view of (2.3), with apprepriate choice of
initial conditions. Note that for »>-3 such stationary points do not exist (except for
K:O,kzl)-

Let us determine the quasi-steady solutions k2 = kﬁ, for which we set the right side
of (2.3) equal to zero. We solve the resultant equation for x:

_ -1+ (1) E (k) /K(R)
(1=4") (E(k) /K (k) —1]
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o4 The graph of x as a function cf kg, de-
termined numerlcally, is shown by curve 1 1in
ig. 3, it follows that for any =<-3 there
exlsts a unique solution k«=(0, 1), correspond-
Ing to quasl-steady motion Ai*=ke*=const. Equa-
tlon (2.3) was analyzed numerically for x<-—3.
For specified values ket=(0,1), corresponding
to quasi-steady motion, the corresponding x
values were 'determined on the basis of (3.1).
Figure 4 shows typlcal plots of functions
k*(x, B}, obtained as a ‘result of numerical in-
tegration of (2.3). Hede ke=02Tfbr the solid
curves and 0.8 for the dashed ones. Each graph contailns three branches. The indtial con-
dition for the upper branches was taken to be k2(0) = 1, The two lower branches on each
graph were plotted for initial conditions k'(0)=':k«' The Ilncreasing branch corresponds to
integration for £ > 0, whlle the decreasing branch 1s a mirror image, wilith respect to the
axls £ = 0, of the relationshipk*(x, §),obtained for § < 0.

o4

The curves make 1t possible to investigate (2.3), for the indicated parameter values,
and to construct a solution for any initial conditlon. 1Indeed, in view of the self-con-

talned nature of Eg. (2.3) for k2 the solution k*(x, §) for arbitrary initial conditions 1is
determined by shifting the origin along the £ axis. For any initlal value k:==k?*, therefore,
by choosing the corresponding branch of the graphs, we can describe the subsequent change

in k2 by thils branch. If k'>ks', the upper branch is chosen; if ‘/.ile=k’<ks’, the middle one.
I, however, ki<'. ks the lower branch is rhosen; with increasing §, motion along this

tranch is 1n the negative direction up to k'='/,k!, after which we change -ocver to the middle
tranch. For Ef=s® we have a stationary solution. z :

4, Let us consider scome particular cases of moticn. For l.4=1,C we have {N|, |x|== 1in
2.3). After expanding the indeterminacy, we ubtain instead cof (2.3)
a2 o [ E(k)]
. dag i L -y |tl—-—— .
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Consequently, for f,C>[.A the variable k° increases and tends to unity; for LO<I.d,

k° decreases and tends to zero, 1.e., the motion tends to rotation about the axls with mo-
nent of inertla A.

It fellows from (2.3) that the sclutioen k2 = 0 satisfiles the equation. This quasi-
steady motion corresponds to retarded rotation about the axls with greatest moment of
lnertia.

Equations (2.2) yield the following expressions for the variables G and T for k2 = 0:
I o I
GnG.exp(—-ﬁ—’-t), I'=F.axp(—2%:)

Formally setting k2 = 1, thls cocrresponding to motlon along the separatrix of Euler-
Poinsot moticn, we have



stable with respect to the variable k2 (in the sense of [12]) for £ > 0. This can alsc be
ceen from Fig. 4. ;

In true time t > t, we have stability for N > 0 orl.,A>I,; see (2.3). In the oppo-
gite case, for N<O, Iul<I.,C, these guasi-steady motions are unstable.

In accordance with (4.2), quasi-steady motion k% = 0 for E > 0 is asymptotically sta-
ble for »>—3 and unstable for x<-3. In true time for t > ty the motlon can be either
agsymptotically stable or unstable, depending on the value of % and the sign of the parame-

ter N.

The above analyslis ylelds the following qualitative pleture of motion. Let us first
consider the case N > 0. Function (4.2) and formulas (2.1) for k2, (2.2) and (2.3) de-
scribe moticn for t > tg, i.e., in the region 2T4»G'>2TBE. TFor t < ty the inequalltles2TB>
»G@'»2TC. are satlsfled, these corresponding to trajectories of the kinetic moment vector
that encompass the C axis. In this case we can interchange A and C and Ill and 133 in

(2.1)=(2.3), and also replace ay by ag in (2.2). Then Eq. (2.3) retains its form, but we

need to replace x by —x, and N by -N in it. Motion for N < 0 can be s8lmlilarly determined.
It is assumed that at t = t, the motion (one of the branches in Fig. 4) passes through the
separatrix; as already noted, however, "sticking" for an indeterminately long time 1s pos-
sible for a set of Initial data of small measure [10,11].

Figure 5 shows ka as a functlon of =, Ni1n true time t. Points corresponding to gquasi-
steady motions are indicated; the arrows show the direction of motion. The letters zl, Z5,
z4 denote the axes of the body corresponding to the given value ofgyg; to the left of z,
there 1s a region where 2TA>G'>2TB, while to the right of it there 1is a reglon-~where
ITB>G=»2TC.

Our results can be interpreted as follows. We introduce the notation

I./A =d,, I;;/B-dg, I;;/C"’di, &fﬂg—ﬁr (i, 1, 8) (4. 5 )

Rotatlon of the body about one of the principal axes, e.g., Ozl, under the action of
a disslpative moment 1s decribed by the expressions Aw'=—~I, @, w=const exp(—a,l).

Therefore the oy in (4.5) have the meaning of the attenuation factors of the rota-
tions about the principal axes of inertia Ozi. The dimenslonless quantitiles 81 are equal
to the corresponding coefficients referred to %53 here 32 = 1. We rewrite expressions
(2.3) for »N in terms of By as follows:

Z—ﬁ.-ﬁ- i
- - (4.6)
TR Ba—pr
In the Bl, 63 plane we draw the straight line 83 = 81, on which N changes sign, and

h (4.6). These lines partition the quadrant p,>0, >0 1into six reglons, shown in Fig. 6.
e numbers of the regilons correspond to the ordinal number of the qualltative portraits
of motion shown in Fig. 5. It can be seen that the number of quasi-steady modes of motion
and their stability depend on the relative magnitude of the attenuation coefficlents of the
rotations ay about the principal axes of inertia.

$ straight lines 1+p=2f; and 1+§,=2p,, corresponding tc the equations x==23 in accordance
B

Thus, 1n the approximation under consideration, perturbed motion of the body 1is made
up of rapid Euler-Poinsct rotatlon about the vector G and slow evolution of the parameters
of this motion. The magnitudes of the kinetlc moment and kinetic energy strictly decrease;
their change depends only on the presence of resistance of the medium.  The motion of vec-
tor G 1ltself in space 1s described by the first two .equations of system (2.2), and involves
a constant deviation from the vertical § = const. Unlike the case in which only a small
gravity acts [8], the rotational velocity of G about the vertical is variable. The evolu-
tion of the parameters of Euler-Poinsot motion in the coordinate system assoclated with
the body is described by Eq. (2.3) and 1s shown qualitatively in Fig. 5.
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