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The perturbed motions of a rigid body, close to the Lagrange case, are invest- 
igated. Conditions are presented for the possibility of averaging the equations 
of motion with respect to the nutatinn angle and the averaged system of equa- 
tions is obtained. An actual mechanical model of the perturbations,correspond- 
ing to the body’s motion in a medium with linear dissipation, is considered. 
A numerical solution of the averaged system is constructed. 

1, Original equations and the unperturbed mot- 
i 0 n. Perturbed motion relative to a fixed point of a dynamically symmetric heavy 
rigid body can be analyzed in the case of perturbations of arbitrary nature. The equa- 
tions of motion are 

Ap’ + (C-A) qr = mgl sin 0 cos rp + &MI ( 1.1) 

Aq’+(A -C)pr = -mgZsin8sincp+eM, 

Cr’ = dkfQ, Mi = Mi (P, Q, r, Cp9 09 4))~ i = 1,2,3 

cp’ = r - (p sin ‘p + q cos cp) ctg 0 

8’ = p cos cp - q sin cp, $,’ = (p sin cp + q cos ‘p) cosec 8 

The dynamic Eqs. (1.1) have been written in projections onto the body’s principle axeS 
of inertia. Here p, q and r ‘are the projections of the angular velocity vector onto 
these axes; &Mi (i = 1,2, 3) are the projections of the vector of perturbing moments 

OntO the same axes; cp, 8 and 11, are the Euler angles [l]; & is a small parameter 
characterizing the magnitude of the perturbations (in particular, when E = 0 the 
system (1.1) describes motion in the Lagrange case [l] ); m is the body’s mass; g is 
the gravitational acceleration; I is the distance from the fixed point 0 to the body’s 
center of gravity; A and c are the body’s respectively, equatorial and axial mom- 
ents of inertia relative to the fixed point 0 . 

The problem is posed of investigating the behavior of the solution of system (1.1) 
for nonzero values of the small parameter E on a sufficiently long time interval t - 
E-1. The averaging method [2,3] is used for solving the problem. 

Averaging with respect to the Euler - Poinsot motion of an asymmetric rigid body 

was first carried out in [4]. In contrast to the procedure of averaging with respect to 
the Euler - Poinsot motion, averaging with respect to the Lagrange motion permits us 
to examine the motion with external force moments, large in absolute value, as the 
generating solution. Papers [5 - 81 were devoted to the investigation of perturbed 
motions close to Lagrange motion. The method of reference motions was used in [5]. 
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In [S] the averaging method was applied for a special kind of generating solution. A 
numerical averaging procedure was suggested in [7]. The motion of a body differing 
slightly from a Lagrange gyroscope was studied in [8] with the aid of the theorem on 
the preservation of motions. 

Below we develop a averaging procedure for system (1.1) under arbitrary initial 
conditions for perturbations admitting of averaging with respect to the nutation angle 

e . The error in the averaged solution for the slow variables is of the order of E on 
the time interval in which the body accomplishes NE-I revolutions. At first we 
derive the necessary relations for the unperturbed motion [l], i. e. , when F z= 0. 

The first integrals of the equations of motion for the unperturbed system (1.1) are 

G, = A sin 8 (p sin cp -I- q COS Cp) d- CT' COS 8 z Cl (1.2) 
H = 1/2 [A (p2 + $) + Cr’l + mgl cos 0 = c2, r = c3 

where G, is the projection of the kinetic moment vector onto the vertical Oz, H 
is the body’s total energy, r is the projection of the angular velocity vector onto the 
axis of dynamic symmetry, Ci (i = 1, 2, 3) are arbitrary constants (cg > - mgl). 

The expression for the nutation angle 8 in the unperturbed motion as a function 
of time t , of the motion integrals ( 1, Z), and of an arbitrary phase constant /!i is 

well known [l] 

u = cos 8 = zc1 + (u, - UJ SD2 (at i- b) 

a = [lizgl (U, - UJ / (2A)P 
(1.3) 

511 (at + p> = sin am (at + B, k) 
k2 = (uZ - u1)(u3 - uJ1, 0 < k2 < 1 c 1.4) 

where sn is the elliptic sine [9], k is the modulus of ellipticity of the functions, 
and %Y U2 and ~3 are real roots of the cubic polynomial 

Q (u) = LI-~ [(2H - Cr2 - 2mgEu)(l - u2)A - 

(G, - CT-ZL)~], -1 \c u1 < u2 < 1 < u3 < f 00 
(1.5) 

Relations between the roots of the polynomial Q (IL) of (1.5) and first integrals ( 1.2) 
can be written, according to vieta’s theorem, in the following manner 

Cr2 
Uj. + 112 + ZLZ] :A: H - ~ 

r,1g1 hgl + 
Or2 

TGtgl (1.6) 
G,Cr 

U]U2 _I- WlUQ + u2u3 = p - 
Antgl 

1 

H 1_ Cr2 G,2 
lllU2U3 = - - 

rrigl ’ -+- 2mgl 2AmgL 

The variables (#I and 9 are obtained by quadratures from the following equations [l] 

Function u specified by relation (1.3) depends upon four constants of integration G,, 

H,r and b. The subsequent integration of Eqs. (1.7) yields two more arbitrary con- 
stants. Thus, formulas (1.2) - (1.7) describe the general solution of system (1.1) 
when E = 0. 
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2. The averaging procedure. betusreducetheequations of 
perturbed motion (1.1) to a form admitting of the application of the averaging 
method [2,3]. TO do this we pick out the slow and the fast variables. In the problem 
being analyzed the first integrals (1.2) are the slow variables for perturbed motion 
(1.1). The fast variables are the angles of natural gyration cp, of nutation 8 , and 
of precession 9. Using relations (1.2) as the formulas for transforming the variables 

(P, Q, r, Cp, 8, $,) to the variables (G,, H_, r, cp, 8, $), we reduce the first three 
equations in (1.1) to 

G,’ = E[(M~ sin cp + M, cos cp) sin 8 + MB cos 01 (2.1) 
H’ = E (MIP + M2q + Mar) 
r’ = tXw1M3, Mi = Mi (p, q, r, cp, 8, $,), i = 1, 2, 3 

Here and in the last three (kinematic) equations in (1.1) it is implicit that the vari- 
ables P, 4, r have been expressed as functions of G,, H, r, (p, 8, $ by using 
(1.2) and have been substituted into (1.1) and (2.1). The initial values of the slow 

variables G,, H, r can be computed from (1.2). 
The right hand sides of Eqs. (2.1) contain the three fast variables, which presents 

a difficulty for the application of the averaging method, connected with the possibility 
of the appearance of nonlinear resonances. To eliminate this difficulty we require that 

the right hand sides of the Eqs. (2.1) for the slow variables depend, in fact, on only 
one fast variable, viz., the nutation angle 8 and be periodic functions of 8 of per- 

iod 2n. Then Eqs. (2.1) can be averaged with respect to 8 and the equations of 
first approximation obtained. It happens that a number of applied problems possess 
the property indicated and admit of averaging with respect to one variable, viz., the 

nutation angle 8. 
Let us derive certain sufficient conditions for the possibility of averaging Eqs. (2.1) 

only with respect to the nutation angle 8. Under fixed values of the slow variables 

the right hand sides of ~qs. (2.1) being averaged contain combinations of the follow- 

ing kind 

MI sin ‘p -!- Ms cos cp, M,p + Msq, Me 

We require that these combinations be represented, using identity transformations, as 
functions of the slow variables and of the nutation angle 8, 2x -periodic in 8, 

1. e., 

Ml sin rp + M, cos cp = Ml* (G,, H, r9 0) 

MS + M,q = M,” (Gz, H, r, 0) 
M3 = M,* (G,, H, r, e> 

Note that the equalities 

(2.2) 

p sin (p + q cos cp = (G, - Cr cos 6) / (A sin 0) (2.3) 
p2 + $ = [2(H - mgl cos f3) - Cr21 / A 

ensure from relations (l. 2). Consequently, combinations of form (2.3) are expressed 
only in terms of the slow variables and the nutation angle 8 , and they are 23~ - 
periodic h 8. Therefore, the combinations (2.3) are reduced to form (2.2). Setting 
UP relations (2.2) and (2.3), we see that if the perturbing moments Mi satisfy the 
conditions MI = Pf, M, = qf, MS = Ma* (2.4) 
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or the conditions 

MI = F sin cp, Ma = F cos (p, M, = M,” 

where the arbitrary functions f, F and Ma* have the form 

f = f (G, H, r-7 0), F 5 F (G,, H, r, 0) 

M,* = M,* (G,, H, r, 8) 

(2.5) 

(2.6) 

and are 2n -periodic in tf , then the requirements (2.2) imposed are fulfilled. 
Thus, for the perturbed Lagrange motion the requirements (2.4) or (2.5) imposed on 
the moments of the forces applied are sufficient conditions for the possibility of averag- 
ing the Eqs. (2.1) for the slow variables with respect to the nutation angle 0 . In 
what follows we assume the fulfilment of the general (necessary and sufficient) condi- 
tions (2.2) or, in particular, of the sufficient conditions (2.4) or (2.5) (together with 

(2.6)), which ensures the validity of relations (2.2). Then system (2.1) can be present- 
ed in the form 

G,’ = &FI (G,, H, r, 0), F, = AI,* i- M,* cos 8 

H’ = EF~ (G,, H, r, f3), F, = M,* f M,*r 

r’ = &F3 (G,, H, r, 0), F, = C-lM,* 

(2.7) 

Here F,, F,, F, are 2n -periodic functions of 8. 
We propose to carry out the investigation of the perturbed motion in the slow 

variables Ui (i = 1, 2, 31, connected with G,, H and r by relations (1.6) and 
more convenient for analysis. The cubic Eq. (1.5) need not be solved relative to ui. 
The slow variables G,, H and r can be expressed in terms of ui from (1.6) as 
follows: 

G, = (AmgZ)‘i~(u, +uz + us + u1u2us -f- 6,X)“: x (2.8) 

6, sign (1 + uluz + UlU3 + u2u3) 

H = V2 mgl [(u, + u2 + u3)(1 + A/ c> + (&R - ul"2u3)~ 

(1 - A / C)l 

r = 6,CW1(AmgZ)‘b (~1 + u2 + u3 + ~1~2~3 - 6lR)" 

R = [(I - u12)(1 - u22)(u32 - 1)l”z 
& = sign (Gz2 - C2r2), 6, = sign r 

At the initial instant the quantities dl and 6, are determined from the initial con- 
ditions for G, and r. If during the motion one or both of the quantitites Gz2 - 

C2r2 and r pass through zero, a change of sign is possible for al and a2 , to 
determine which we can make use of the original system (2.7). We write relations 
(1.6) in the abbreviated form 

si (“17 %9 u3) = mi (G,, H, r), i = 1, 2, 3 (2. 9) 

where si and @i are known functions of their arguments (see (1.6)). Differentiat- 
ing (2.9) with respect to time and substituting expressions (2.7) in the place of G,‘, 
H’, r.‘, we obtain the relations 

3 

c 

as. 
T$- Uj' = EZi(Uh u2, un, q, i = 1,2,3 

.;=1 
I 

(2.10) 
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Here 
aa. 

aH F2+-$F3, i=l,2,3 (2.11) 

Further, we need to solve the linear Eqs. (2.10) relative to the derivatives ui. The 
determinant D of the Linear system (2.10) equals 

D = det (dSi / dnj) = (U 1 - %)(% - %)(% - us) 

and is nonzero by assumption. The partial derivatives in (2.11) can be represented, 
by using equalities (2.8), as functions of only the variables ui . Thus, after solving 
system (2.10) relative to the derivatives, the desired system of equations for the slow 
variables Ui takes the form, analogous to (2.7), 

iti’ = &Vi (Ur, Us, Us, Cl), i = 1, 2, 3 (2.12) 
Vi = VilF,” + ‘VizF,* + Vi3F3*, Vfj = l’ij (%9 $7 +J, 
j=1, 2, 3 

where we have 

Vll = 
G, - Cm1 

Am,@ (Ul - uz)(ul - us) 
(2.13) 

v12 = 
zQ-- 1 

wl(h - Q(u1- ~3) 

VI3 = mgl(ul-~2)(1,1-u3) [E- 1w -+ul+rl 

Here, instead of G, and r we must substitute the corresponding formulas (2.8). 
The functions Vsj and V,j(j = 1,2,3) are obtained from the corresponding ex- 

pressions in (2.13) for the same values of j by cyclic permutation of the indices on 
the quantities Ui . The functions Fi* are obtained by substituting into the Fi from 
(2.7) the expressions (2.8) for the integrals. The initial values Z6i” for variables 

U( are computed from the initial data G,“, H”, r” with the aid of relations (1.6). 

The procedure for averaging the first-approximation Eqs. (2.12) for the slow vari- 

ables pi is the following [2,3]. Into the right hand side of system (2.12) we sub- 
stitute the fast variable 8 from expression (1.3) for the unperturbed motion 

8 = arccos [ul + (us - ur) sn2 (at + @I (2.14) 

After the substitution of (2.14) the right hand sides of system (2.12) are periodic func- 
tions of t with period 2K (k) / a, where k and a are defined by relations (1.3) 

and (1.4). Averaging the right hand sides of the resultant system with respect to t, 
we obtain, in the slow time z = Et , the averaged system of first approximation 

(differentiation with respect to z is denoted by a prime, while the previous notation 

is retained for the averaged variables) 

Here 

(2.15) 

(2.16) 
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and expression (2.14) has been substituted as 8 = 8 (t) in (2.16). 
Thus, according to the procedure suggested, the investigation ofperturbed Lagrange 

motion is carried out in the following way. Let the perturbing moments .?Mi satisfy 
conditions (2.2) or, in particular, (2.4) or (2,5) (together with (2.6)). We compute 
in succession the functions Mi*, Fi*, Vi (i = 1, 2, 3) , using relations(2.2), 

(2.7), (2.12), (2.13). After this we average Vi in accord with (2.16), using ex- 
pressions (1.3), (1.4), (2.14), and we set up the averaged system (2.15). system 
(2.15) is significantly simpler than the original system (1.1) since it is of lesser order 
(third instead of sixth), is autonomous, and does not contain fast oscillations. After 

investigating and solving system (2.15) for ui ., the original slow variables G,, N, r 

are recovered from formulas (2.8). The fast variables 9, 8, ‘II, can be found by 

using relations (1.7) and (2.14). In accord with the general theorems of the averag- 
ing method [2,3] the slow variables ui or G,, H, F- are determined with an error 
of order E , while the fast variables are determined with an error of order unity on 
an interval of order E-I of variation of time t . 

3. Partutbed motion of a rigid body under lin- 

e a r d i s 8 i p a t i v e m 0 m C n t S. As an example of the procedure worked out 
we investigate the perturbed Lagrange motion with due regard to the moments acting 
on a rigid body from the wrounding medium. We take the perturbing moments EMI 
(i = 1, 2, 3) in the form [lo] 

MI L - ap, M, =-: - aq, M, = - br, a, b > 0 (3.1) 

where a and b are certain constant proportionality coefficients depending on the 
medium’s properties and the body’s shape. Moments (3.1) Sat&j the sufficient con- 

ditions (2.4) and (2.6) for the possibility of averaging with respect to only the nutation 

angle 8 . system (2.1) can be written as follows 

GZ’ = F e [a (P sin rp i_ q cos cp) sin 0 f br cos 81 
H’ = - E [a (p2 + q2) -I- bra] 

(3.2) 

r’ = - & bC’1? 

Having integrated the third equation in (3.2), we obtain (?‘O is an arbitrary initial 
value of the axial rotation velocity) 

r = r0 exp (- ebC_’ t) (3.3) 

In accord with the procedure in Sect. 2 we pass to the new slow variables ui and we 
average in accord with (2.16). We obtain an averaged system (2.15) in slow time 
‘G = Et of form 

C -- 
A ( J 4-I 

u = us - (us - ul) E (k) / K (k) 

Here the expressions (1.4) and (2.8) are substituted in the place of CZr H, r, k .The 
equations for ua and us are obtained from (3.4) by a cyclic permutation of the 
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indices on ui , However, under permutation the expression for c, wherein K (k) 
and E (k) ace the complete elliptic integrals of the first and second hinds , should 
remain unchanged in au three equations. 

The averaged system (3.4) was integrated numerically on a computer for z >/ 0 
under vacious initial conditions and problem parameters. Let us pcesent the calcula- 
tion reMt.s for three eases corresponding to the following initial data: 

U1° u2O u3O 8" 

9 0.913 0.996 1.087 5” 

2) 0 0.5 2 60” 

3) -0.992 -0.985 2.992 i70” 

The data presented correspond to a spinning top receiving at the initial instant au 
angular rotation velocity equal to r” = l/s around the dynamic symmetry axis and 

deviated from the vectical by the angle 8’ . In addition, we take A = 1.5, C = 1, 
a = 0.125, b = 0.1, mgt =0.5. Using the values of ui found as a result of the numeci- 

cal integration, we determine the variables G,, Ljl, -r from formulas (2.8). 

z? z 

-I -I 
Fig. 2 

Fig. 3 

The graphs of functions Ui (i = 1,2,3), Gz, Ii, 
r ace shown in Figs. 1 - 3 for the three cases 

mentioned. The total energy H decreases 
monot~ica~y and ~ympto~ca~y approaches 
the value H = - mgl = -0.5. The pcojec- 

tion of the kinetic moment vector onto the 
vertical G, in oases I and 2 decreases mono- 

tomoafiy, while in case 3 it increases mono- 
tonically, tending to zero in all three cases. 
The quantities u1 and us decrease mono- 
tonically and tend to - 1, while us asymp- 
totically approaches -.t 1. In this connection I 
as follows from (1.3), we have eos 6 - - 1 
(6 ----f n). 
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Thus, under the action of external dissipation the rigid body, for any initial condition, 
tends to the unique stable (lower) equilibrium position. In cases I and 2 the decrease 
of the variables takes place very slowly. Therefore, in these cases it becomes conven- 
ient to make the change of independent slow variable E = In (1 + z) in system (3.4). 
The correctness of the calculation was monitored by the fact that the values of r as 
obtained from the numerical data and from formulas (2.8) practically coincided with 
the exact solution (3.3). 

An averaging procedure can be carried out analogously for the motion of a rigid 
body in the Lagrange case with a cavity filled by a liquid of high viscosity. The corr- 
esponding formulas for the moments of the viscous forces were obtained in [ll]. 
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