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INTRODUCTION 

World practice shows that the volumes of using monolith and prefab-

ricated reinforced concrete are increasing, and in the coming decades they will 

remain the main structural material. Therefore, it is obvious that the effective 

using of reinforced concrete, is possible with the presence of reliable, accurate 

and economical calculation methods. Thereby, much attention is paid towards 

the development of the theory of reinforced concrete. 

The experience of designing, construction and exploitation of span re-

inforced concrete structures shows that, practically, all of them work at com-

plex stress-strain state. At the same time, the researchers pay much more at-

tention to the calculation of strength, deformability and crack-resistance of el-

ements in normal sections, than to the calculation of their areas near supports, 

including the inclined sections. 

Besides, a significant number of span reinforced concrete elements, is 

subjected to the action of low-cycle loads. They lead to such specific features 

of concrete work as nonlinearity of deformation, micro cracking, accumulation 

of residual deformations, low-cycle fatigue (fatigue damage), decompaction of 

concrete etc. The results of the research show that the destruction of structure 

under the action of low-cycle loads occurs at the smaller stresses, than the de-

struction of structure under the action of short duration static load. 
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CHAPTER 1 FUNDAMENTALS OF FORCE AND FORCE-DEFORMATION RE-

SISTANCE OF REINFORCED CONCRETE IN TERMS OF ITS COM-

PLEX STRESS-STRAIN STATE 

The data given in this chapter of monograph are based on the research 

of Romashko V.M. [3]. 

Analysis of modern studies of concrete and reinforced concrete struc-

tures was performed. It has shown that the overall theory of concrete and re-

inforced concrete continues to develop in the direction of compliance with 

generally accepted principles and preconditions of solids mechanics. Even 

though the problem of the general theory of resistance of concrete and rein-

forced concrete creation is far from perfect, certain ways to solve it have al-

ready been developed. 

According to numerous studies, summarized in Bondarenko V.M. work 

[1], following studies hierarchy is considered to be methodologically correct: 

physical model, calculation model, and mathematical model. 

The physical model should include the fullest possible description of the 

object of research in the physical objective terms. Obviously, the physical 

model cannot be created by purely empirical observation, since it is impossible 

to understand the experiment without analytical thinking and experimental 

data synthesis. Physical model creation is based on a synthesis of information 

storage array, sometimes chaotic, and contradictions, empirical and intuitive 

nature of related industries data and analogies with the following formulation 

of the initial principles and regulations, sometimes contradictory to traditional 

notions. Physical model should include, without any simplifications, all known 

functions and other relations and links between process parameters, which can 

be, both, deterministic and stochastic. 

However, the lack of certainty, and sometimes an excessive complexity 

of the relations between the factors and difficulties of logical and mathematical 

interpretations, necessitate the transition to the next stage of research- to the 

calculation model. 

The computational model, being released from minor and insignificant 

factors, replacing or complementing the primary information by means of hy-

potheses and invariants, thus simplifying the physical model makes it, firstly, 

an engineering graceful, and secondly solving in a modern way. However, the 
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transition from the physical model to the calculation, for example, by means of 

linearization and averaging the time processes, needs to be done very carefully 

to keep the right decision, not to aggravate the quality of the processes, to 

ensure sufficient accuracy of the results. Excessive simplification often does 

more harm than good. 

Computational models, as a rule, allow to determine the form and struc-

ture of the solutions that are expected. It is necessary to ensure the selected 

models adequacy. 

At the same time, the implementation of the computational model, the 

engineering attainability and significance of the results, depend on the applied 

mathematics. The mathematical model is a set of equations, and other rela-

tions, algorithms and solutions, as well as the programs agreed with the possi-

bilities of the existing computer equipment. Mathematical model has to be re-

produced. 

However, it should be noted that not all computational and mathemat-

ical models can be given in the form adapted for the development of engineer-

ing calculation methods. So, only full and unambiguous enough representa-

tions or research processes (physical model) and a reasoned setting of specific 

initial hypotheses and invariants (calculation model), statistical evaluation of 

experiment data, development of the empirical approximations do not contra-

dict the general concepts, as well as successful mathematical implementation 

(mathematical model) may result in a theoretical study of the problem with 

reliable results. 

Thus, solids mechanics, as a part of continuum mechanics, is the basis 

for the theory of the structures force resistance, in its particular sections as 

structural mechanics, strength of materials, theory of elasticity, plasticity, 

creep, and fracture mechanics of materials, rock and soils mechanics, design of 

structures, foundations and cellars. 

A distinctive feature of the reinforced concrete force resistance, in ad-

dition to the anisotropy and irreversibility, is the mode-genetic specificity of 

nonlinear, unbalanced deformation. Ignoring this fact (for example, an existing 

spring-piston simulation), undoubtedly, leads to qualitative losses and quanti-

tative errors. Therefore, modern science and computational engineering stud-

ies are developing in a phenomenological way, according to the fundamental 

provisions of mechanics, physics and thermodynamics. The logical framework 
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of the phenomenological method, as it is known, consist of research and sta-

tistical evaluation of deformation and fracture factors of materials and struc-

tures, the identification and analysis of the existing qualitative and quantitative 

relationships between them, a generalization of the results obtained with the 

formulation system of hypotheses and invariants, enough to create an applica-

tion theory of solving engineering problems, including the definition of elastic 

and inelastic deformations, creep deformation and others. 

Beneath strain-force model of reinforced concrete structures, re-

sistance force and other effects, mean a prototype of a real process of defor-

mation of concrete and reinforced concrete elements and structures, repro-

duced by some of the generalized state diagram. 

Deformation-force model is also discrete. In cross section of the ele-

ment or structure it is reproduced with a large number of elementary areas, 

within which the properties of the material are taken as constant. The continu-

ity of the curvature function is provided on the edge of cracking by the same 

generalized state diagram of reinforced concrete elements and structures, in 

the form of continual dependence without breaks, fractures and jumps. 

In addition, the entire process of deformation of concrete and rein-

forced concrete elements and their actual stress-strain diagrams, are repro-

duced in the strain-force models using the stiffness function. This connects the 

main force and deformation parameters of the stress-strain state of these ele-

ments and structures. Thus, as shown by experiments, up to the loss of ele-

ments’ bearing capacity, stiffness nonlinearly depends on these factors. Appli-

cation of the extreme criterion [2], which fixes the moment of the reinforced 

concrete element bearing capacity loss, and the force limits of deformation pa-

rameters, only emphasizes the power orientation of the model. Deformation 

orientation of the model is realized via deformation in the equations of equi-

librium and distribution law in the section height (usually flat sections hypoth-

esis). 

It should be emphasized that the basis of modern deformation models 

of reinforced concrete elements and structures resistant to external action lies 

in discretization of design schemes and their representation in the form of a 

elements set of certain structural levels. In particular, in work [3] a classifica-

tion of the objects of study in five interconnected levels of hierarchical subor-

dination are proposed to be introduced: 
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- material 

- section (a set or a combination of materials) 

- element (a set or a combination of sections) 

- construction (a set or a combination of elements) 

- structural scheme of the building or structure (a set or a combination 

of elements and constructions) 

1.1 Classical approaches to determining the stress-strain state of re-

inforced concrete structures 

The theory of resistance of reinforced concrete structures, as men-

tioned before [4], is aimed at the precise definition of the four major problems: 

- accurate calculation of the load at which the first cracks appear; 

- determining the width of the cracks in the operational phase, starting 

from the moment of their appearance; 

- calculation of rigidity and deflections, including the maximum permis-

sible; 

- definition of maximum possible bearing capacity (strength or stabil-

ity). 

Thus, under the influence of external loads or impacts, the internal forces 

in the most intense section of reinforced concrete elements, as well as defor-

mation of concrete in its extreme fibre, increase from zero to some limits. With 

double-digit stress diagram, the section usually goes through three typical 

stages of stress-strain state. 

Stage 1 (operation without fractures) is observed at relative elongation 

concrete tension area smaller than the limit value of εctu. At this stage, the de-

flection value and the rigidity of low reinforced structures operating without 

cracks in the tension zone, are calculated. 

Stage 1a occurs at the moment when the relative elongation deformation 

of concrete extreme fibres reaches the limit values εctu. Concrete starts to burst 

on and off from work, causing the reinforcement to work hard. An accurate 

assessment of stress-strain state of the cross sections at this stage will allow to 

determine the force at which the first cracks appear in the concrete tension 

area and calculate the element’s section stiffness (without cracks). 
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Stage 2 occurs after the appearance of the first cracks in the concrete ten-

sion area. It is considered as the main working stage of deformation of rein-

forced concrete bent elements. At this stage researches can determine the 

width of the crack opening, and calculate the stiffness and the magnitude of 

the deflection of reinforced concrete elements under the action of operating 

loads. 

Stage 2a represents the limit state. It occurs when the stress in the tension 

reinforcement reaches the characteristic strength values on the verge of its 

yield fyk or extreme fibre stress of compressed concrete − characteristic values 

of the compressive strength of fck, i.e, reinforced concrete element begins to 

form so-called "plastic hinge" in the cross section (start of the destruction). 

The final stage 3 represents the limit stress-strain state of reinforced con-

crete elements and characterizes its complete destruction. It occurs when the 

balance of forces in the most stressed section element can no longer be en-

sured. At the same time, the relative deformation of the extreme fibres of com-

pressed concrete reach the value εcu > εc1 and tension reinforcement can work, 

both, before and on the border of yield:  

εs < εs0, εs0 ≤ εs ≤ εsuk. 

Researches constructions on stages 2a and 3 make it possible to determine 

the real value of the destructive forces that should be displayed in the stand-

ards. 

As known from mechanics of solid deformable body two main and four 

additional conditions are needed for the task. There are two equilibrium equa-

tions for planar systems in a normal section, as well as auxiliary terms in the 

form of strain distribution law along the section height of the element 1/r = (εc 

+ εs) / d, physical dependence between stresses in the reinforcement σs = f(εc), 

and the compressed and tensioned zones of the concrete σc = f(εc) і σct = f(εct). 

It should be noted that the mapping of stages of the stress-strain state of 

reinforced concrete structures for force model of the previous standards [5] 

has a number of serious shortcomings: 

- simplified method of accounting for concrete plastic deformations in 

the form of a rectangular stress distribution; 

- adopted in [5] is approach of strength calculation of reinforced con-

crete elements that cannot be directly implemented in the calcula-

tions of their strenght and resistance to fracture; 
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- calculation method of the work impact of tensioned concrete be-

tween and above the cracks on the overall stress-strain state of rein-

forced concrete element weakly reflects the redistribution of forces 

between the concrete in tension zone and tensioned reinforcement; 

- a characteristic of strength tensile reinforcement on the verge of its 

yield fyk, or the characteristic value of concrete compressive strength 

of fck in its extreme fibroids, cannot act as the exhaustion criteria of 

bearing capacity of reinforced concrete structures. 

Deformation model, as opposed to force, more accurately reflects the 

stress-strain state of reinforced concrete elements in the limit stage. However, 

a single general criterion of the exhaustion of bearing capacity has not yet been 

developed in these models. 

If we assume that the real model of deformation of concrete and rein-

forced concrete structures is [3] the deformation force in nature, in its frame-

work, the only common criterion of the exhaustion of bearing capacity occurs 

in moment of imbalance of strenght that is secured by an extreme criterion of 

bearing capacity dM / d(1/r). 

So, the real state of the reinforced concrete structure cannot be displayed 

only by stress distribution or deformations diagrams. This can only be done 

when both diagrams are used in conjunction. In this case, the generalized 

model of the element deformation should be able to equally reflect both the 

nature of the growth of relative deformation of materials, and the process of 

continuous redistribution of stresses in them, especially at stages that are close 

to the limit equilibrium. 

Loss of reinforced concrete elements of the bearing capacity of normal 

cross sections is characterized by a violation of one of the two known equilib-

rium equations ΣN = 0 and ΣМ = 0. More rigid is the second equation, which 

implies defining the condition of limit equilibrium: 

MEd ≤ Mu (1.1) 

where MEd − estimated value of the bending moment on the external load; 

Mu − limit value of the moment of internal forces in the cross section of 

reinforced concrete element. 

In the design of concrete and reinforced concrete structures maximum 

bearing capacity is Mu or Nu by dM / d(1/r) = 0 or dN/dε = 0 according to [3]. 
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The characteristic that links the strength (M, N) and deformational (1/r, 

ε) parameters can be stiffness of the element in a certain section. The 

knowledge patterns of change in the rigidity are critical, not only in the calcu-

lation of reinforced concrete structures for deflections and crack resistance, 

but also in determining its load-bearing capacity. 

It is known that the rigidity of the concrete or reinforced concrete ele-

ment is an integral characteristic. Obviously, when the axial compression or 

tension of concrete element with small or occasional eccentricities varies, pri-

marily or only by changing the concrete strain module (fig. 1.1, a), since all the 

geometric parameters of such elements remain unchanged: 

cccccc IED ⋅= int   ,  ctctct IED ⋅= int  (1.2) 

where int
)(tccE  − integrated (averaged) module of compressed or stretched con-

crete strain; 

)( tccI  − moment of inertia of the compressed or tensioned concrete 

section. 

With double stress diagram in the reinforced concrete elements cracks 

can appear and develop, break tensile strength of reinforcement with concrete 

and its gradual removal from service. The value of the integral rigidity of these 

elements consists of stiffness of compressed and stretched zones of concrete, 

compressed and stretched reinforcement: 

 +++= ststscscctcccccc IEIEIEIED intint  (1.3) 

The function of rigidity in the section with a crack (Fig. 1.1, b) should 

reflect the relatively rapid (almost sudden) exclusion from the work of the con-

crete in tension and the corresponding redistribution of the stresses in the ten-

sion zone, from the concrete to the reinforcement. 

In the block between the cracks a reinforced concrete element stiffness 

varies by not geometric and deformation characteristics (modulus of concrete 

strain) but also can be reflected by the expression (1.3). 

The stress-strain state of a reinforced concrete elements at this time 

should describe the characteristics of a calculated (averaged) section of the 

block between the cracks, including the averaged integral rigidity, which will 

change as the expression (1.3), relatively smoothly, with no apparent jumps of 

function.  
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Calculation of the average integral stiffening of the reinforced concrete 

structure by the expression (1.3) is a difficult task with many unknowns associ-

ated, not only with the deformation characteristics of the materials, but also 

with geometric section parameters. Therefore, in practical calculations average 

integral stiffness is suitably in its classical expression: 

D = M / (1/r) (1.4) 

 
 Modifying stiffness of the compressed (tensioned) concrete element with a 

small eccentricity 

(a) and the diagram of the integral (averaged) bending stiffness of a reinforced con-

crete element 

(b) in section: 1 – with crack; 2 – between cracks; 3 – averaged in block between 

cracks. 

Obviously, connection between the stiffness and emerging internal 

forces in the section element and its curvature has to be nonlinear, capable of 

reproducing its stress-strain state only with simultaneous use of force and de-

formation characteristics. 

In real conditions, even if the axial load concrete and reinforced con-

crete elements stiffness is changing, both, due to the deformation properties 

of materials (E), and due to the geometric parameters of cross-section (I), that 

is, M / (1/r) = ЕІ. 

In general, the stiffening of the element is associated, not only, with the 

level of efforts exposure М / Мu, but also with its deformation level (1/r) / 
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(1/ru). Therefore, the force that an element has to take over, by work [3] can 

be calculated depending on its level of deformation by the formula: 
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(1.5) 

where Mu – bearing capacity of the concrete or reinforced concrete rod; 

ur/1  – element curvature in limit state; 

0,0 redc IE  – initial reduced stiffness of the concrete or reinforced con-

crete element section. 

It is obvious that the expression (1.5) describes the state diagram of the 

element or structure (Fig. 1.2) with the ascending and descending deformation 

branches. In this case, the descending branch of the diagram is not possible to 

statically determine reinforced concrete structures and concrete elements be-

cause achievement of the ultimate state in the most intense section will lead 

to geometric variability and destruction. 

 
 Relation between the curvature and the moment in the reinforced concrete 

structure (state diagram) 

Structural analysis of the expression (1.5) shows that it describes a 

smooth and monotonic function of the ascending and descending branches of 

the diagram, and can, therefore, be unconditionally used for reinforced con-

crete structures, operating without formation of the cracks in the tension zone. 

With the emergence of cracks, their stiffness will change more rapidly due to 

the accelerated elimination of the work of concrete in tension and increasing 

of the curvature 1/r. 
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Obviously, the rapid drop in stiffness (increasing of the curvature) oc-

curs as a result of intense changes in the geometric characteristics of its cross-

section. The majority of foreign scientists associates the stiffness of reinforced 

concrete structures with the, so-called, effective moment of inertia, which de-

pends on the level of loading. Typically, it is done by adjusting the effective 

moment of inertia Ie using different degree dependences [6−13]. 

Likewise, it is advisable to adjust the curvature itself and the reinforced 

concrete structures with cracks in the tension zone, using functions like [3]: 

 

ψi = 1 + m∙M / Mu(1 – M / Mu) (1.6) 

 

where m − option, which is recommended [3] to be taken as depending on 

character of the destruction: 

m = 3 at the work reinforcement yield in low reinforced elements (ρl ≤ 

1,5%); 

m = 2 at the yield in normally reinforced elements (1,5% < ρl < 3,5%); 

m = 1,5 at concrete smashing in over reinforced elements (ρl > 3,5%) 

and in structures with high-strength reinforcement. 

If in the equation (1.5) the replacement of 1/r with the adjusted (real) 

curvature 1/r* of the reinforced concrete element with cracks by 1/r = (1/r*) 

ψi, can be carried out, the traditional entry of the phase diagram can be saved 

in practical calculations in the form of: 
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(1.7) 

In the work [3] it is shown, that seeking a universal function σc = f(εc) 

based on the results of experimental studies of standard samples, is impossi-

ble, because in nature there are no two equivalent elements of the reinforced 

concrete, for which the stress-strain state would be the same. Therefore, a uni-

versal function should be required, not for the concrete stress-strain diagram 

and to the phase diagram of the RC element M − (1/r), which can be repre-

sented by irregular fractional-rational functions (1.5) or (1.7), since they allow 

us to describe the stress-strain state of a bent, and centrally or eccentrically 
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compressed, or tensile RC element. Thus, it is evident that the material defor-

mation diagram is a state diagram of standard sample, under the standard con-

ditions of testing. If applied to the generalized state diagram of reinforced con-

crete element M − (1/r), limit equilibrium hypothesis, and extreme criterion of 

the bearing capacity dM / d(1/r) = 0, you can get the actual diagram of the 

deformation of the compressed or tensile concrete. 

So, the real model of concrete and reinforced concrete elements and 

structures, is always a deformation-force and cannot be solely deformation or 

solely force. 

 

1.2 Strength calculation of normal sections of concrete and rein-

forced concrete elements of the first limit states group 

Following hypotheses and conditions are laid into the basis of calcula-

tion of the strength of normal sections of these elements when they are arbi-

trary bent, compressed or tensed: 

1. Discusses the elements and structures in which the lateral force influ-

ence on deflections is small and in the cross sections of which there is 

no torsion deformation. 

2. The actual stress-strain state of these elements is described by the 

corresponding diagram in the form of improper fractional-rational 

function (1.5) or (1.7). 

3. The process of deformation of reinforced concrete elements for their 

average sections is considered as equitable as the hypothesis of flat 

sections (fig. 1.3): 1/r = εc  / x = εs  / xs = (εc – εs) / d = (εc – εs) / (x + xs). 

4. Load bearing capacity (strength) of concrete or of reinforced concrete 

element and the resistance of its design section to the load is consid-

ered to be exhausted in violation of classical conditions of the limit 

equilibrium N ≤ Nu and   M ≤ Mu. 
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 Character of the deformation changes in the averaged cross section of rein-

forced concrete element 

5. The initial modulus of the deformation (initial modulus of elasticity) of 

concrete is calculated by the formula 

Ec0 = k0 ∙ Eст (1.8) 

with use of table data Ec0  and k0. 

6. The connection between stress and strain of compressed and tensed 

concrete is described by its complete deformation diagrams in the 

form of improper rational functions: 

2 2
1 1
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(1.9) 

where 

a = Ec0;  b = b1  / εc1 = fck  /���� ;  c = c1 / fck = Ec0 / fck – 2 / εc1 (1.10) 

Taking into account (1.10), the expression (1.9) is transformed into the 

formula: 
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7. Critical deformations of compressed and tensed concrete at the maxi-

mum compressive and tensile loads are determined by the respective 

formulas: 

εс1 = kel ∙ εс1, еl + kpl ∙ εс1, pl (1.13) 

εct 1 = kt, el  ∙ εct 1, el  + kt, pl ∙ εct 1, pl (1.14) 

where kel (kt, el) and kpl (kt, pl) − factors, taking into account the peculiarities of 

the concrete, work in the section element and the development of its elastic 

and plastic deformations. In "hard" mode, loading (dεc / dt = const = dεct / dt) 

kel = kt, el = kpl = kt, pl = 1 based on (1.13), (1.14) are transformed into expressions: 

 

εс1 = ���
	�
 + (140 – 0,7 ∙ ���) ∙ 10-5 (1.15) 

εct 1 = fctk  / Есо +(3− fctk  / 3) ∙ 10-5 (1.16) 

 

Under standard conditions test with a "soft" load mode 

(dσc / dt = const = dσct / dt), the critical strain εс1  and εct 1  is recommended [3] 

to be described by equations (1.15) and (1.16), taking kpl = kt, pl = 0,78, аnd  kel 

= kt, el = 1,05 for concretes with strength fck ≤ 40 N/mm2 and fctk ≤ 2,1 N/mm2;  

kel = kt, el = 1,03 for concretes with strength 40 N/mm2 < fck ≤ 80 N/mm2 and 2,1 

N/mm2 < fctk ≤ 3,3 N/mm2;  

kel = kt, el = 1,0 at fck > 80 N/mm2 and fctk > 3,3 N/mm2. 

8. Limit strains of boundary fibres of compressed concrete εсu are depend-

ent on the stress-strain state of the element with a rectangular cross-

section and the parameters of its reinforcement so it is recommended 

to determine them by using the general dependence: 
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 (1.17) 

where 
� − parameter of inhomogeneous deformation along the section 

height h: 
� = εc0,h / εc2; 
� = εc0,b / εc2; εc2 = εcu, a εc0 = 0; 
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ηεu – the level of ultimate strains in the most compressed fibre of the concrete 

ηεu = εcu / εc1 

xsi – the distance from the neutral line to the centre of gravity of compressed 

rods at σsi < fyk. If σsi ≥ fyk, xsi = 0. 

ρli = Asi / (bnhn) – ratio of section reinforcement with the same rods; 

βF – factor depending on the type of stress-strain state of the element. βF = 1 

for compressed elements. 

k – ratio, which relates the initial modulus of elasticity of concrete Есо with the 

section modulus of concrete deformations Ec0 =  fck / εc1 at critical stresses σс < 

fсk, k = Ec0 ∙ εc1  / fck. 

αs − relative value of the elasticity modulus of the reinforcement used 

αs = Еs / 200000. 

During plain bending at 0 < m < 1 at εs < εs0, dependence simplifies and 

reduces to the expression: 
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(1.18) 

During the yield reinforcement in plain bending at m = 0, εs > εs0 

ηεu =1 + 0,322∙√��� / [1 + ((k−2)  /6∙ lп(6 / k − -

0,2))2] (1.19) 

9. Limit deformation of concrete in tension, in the moment of normal 

cracks appearance is determined by εct0 = 0 and σct0 = 0  according to 

the formula: 

���� = 1 + 0,642 ∙ !(���#)�,%

1 + &�# − 26 ∙ ln &36
�#�

− 0,2++� 

(1.20) 

10. On the limit state, the effect of concrete in tension on the bearing ca-

pacity of the reinforced concrete element, is not considered. 

11. The relationship between stress and strain with physical reinforce-

ment yield strength is taken as the Prandtl diagram or two-line dia-

gram. 
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12. In the absence of physical yield strength of reinforcement, defor-

mation diagram is described by two-line dependencies or linear-para-

bolic functions. 

For bent concrete elements with double reinforcement (Fig. 1.4), or in 

the case of multi-row reinforcement equilibrium, equations in the limiting 

stage will change, mainly, due to the redistribution of efforts in reinforcing 

rods, neglecting the work of concrete in tension. 
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(1.22) 

where 
liρ  − coefficient element section reinforcing by separate rods, 

liρ = Asi 

/ (bn ∙ d); 

siε  − the relative deformation of the i-th of reinforcing bar in element 

section; 

1sε  − the current strain of the most tensed reinforcing bar; 

sik  − coefficient characterizing the position of specific reinforcing bar 

in element cross-section, with respect to the most tensed, 
sik  = xsi / xs1. 

ikρ
 − actuation coefficient specific of cross-sectional area of the rod to 

the cross-sectional area of the most tensed, 
ikρ
 = 

1lρ  / 
IIρ ; 

xs1 – the distance from the neutral axis to the most tensed reinforcing 

bar of concrete element. 

 
 Stress-strain state of reinforced concrete bent element with double reinforce-

ment 
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In the ultimate stage, deformation of the reinforcement can occur in 

three different schemes: 

- all reinforcing bars of bent concrete element are working elastically; 

- most stressed reinforcing bars are operating in the plastic stage and 

less tensed – are deforming elastically; 

- tension in all bars reaches the yield point. 

In the case of elastic deformation of reinforcing bars   (
siε <

0sε ), the 

deformation of the most tensed one, should be calculated from the expression: 

2
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In this case, bearing capacity of the element is determined by: 

2 2
1 12

1

( ( ) )
(1 / )

n
n

u c c s s cu s II i si
i

b
M E k k

r
ρδ β ε ε ε ρ

=
= ⋅ + ⋅ + ⋅ ⋅ 

 

(1.24) 

If the flow occurs only in the part of the reinforcing bars (
1sε … siε ≥

0sε
) and ( smε … snε <

0sε ) is not present in the other, then the total force which is 

perceived by reinforcement of the concrete element, can be calculated by the 

formula: 
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(1.25) 

Deformation of the most tensed reinforcing bar can be found from the 

equation: 

2
1 1 1 1( ) / ( ) 0s s cu so cu so c c sEρ ρ ϕε ε ε ε ϕ ε ε ϕ δ α ϕ+ + + − =  

(1.26) 

using the expression: 
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 (1.27) 

where the appropriate reinforcement parameters are: 

1ρϕ = ϕρ /
1ϕρ ; ϕρ =

1

l

II i
i

kρρ
=
 ; 

1ϕρ =
n

II i si
i m

k kρρ
=
  

(1.28) 
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0ϕρ =

1

l

II i si
i

k kρρ
=
 ; 

2ϕρ = 2

1

n

II i si
i

k kρρ
=
 ; 

2ρϕ = 
0ϕρ /

2ϕρ ; 
3ρϕ =

2ϕρ / 1ϕρ . 
(1.29) 

The bearing capacity of bending element takes the form: 

2
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 (1.30) 

Upon reaching the yield stress in all reinforcing rods ( siε ≥ 0sε ), the de-

formation of the most tensed one 
1sε  is determined by: 
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(1.31) 

and load-bearing capacity of the bending element has the form: 
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 (1.32) 

 

1.3 Conclusions on Chapter 1: 

1. Deformation model, as opposed to force, reflects the stress-strain 

state of reinforced concrete elements in a limit stage more accurately. How-

ever, in these models, a single general criterion of the exhaustion of the bear-

ing capacity, has not yet been developed; 

2. Generalized model of the element deformation should be able to 

equally reflect, both, the nature of the growth of relative deformation of ma-

terials, and a process of continuous redistribution of stresses in them. So, the 

real state of the reinforced concrete structure, can only be reflected when, 

both, stress and deformations diagrams are used in conjunction.  

3. Characteristic that links the strength (M, N) and the deformational 

(1/r, ε) parameters can be stiffness of the element in a certain section. 
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CHAPTER 2 GENERAL CASE OF NONLINEAR DEFORMATION MODEL OF SPAN 

REINFORCED CONCRETE STRUCTURE 

General case of stress state in random sections of span concrete struc-

tures involves a joint action of longitudinal and shear forces and bending mo-

ments. 

Fundamentals of modern ideas about the theory of strength of concrete 

and reinforced concrete in the triaxial stress-deformed state were laid by 

M.M. Filonenko-Borodich, G.A. Heniyevym, V.M. Kyssyukom, G.A. Tyupinym, 

G.S. Pisarenko, A.A. Lebedev, T.A. Balan, S.F. Klovanychem, M.I. Karpenko and 

his students, Dei Poli, K.H. Gerstle, H.B. Kupfer and others. 

The appearance of modern computers as personal computers, made it 

possible to solve problems with complex computational models by numerical 

methods. 

Let us consider the reinforced concrete rectangular section rod-beam 

(Fig. 2.1) with constant stiffness by length, in whose computational sections, 

there is a general case of stress state. 

 
Fig. 2.1 Internal forces on rod’s random normal-section in its general stress-

strain state 

We consider that the rod-beam is made from heavy concrete, which was 

hardening in normal, natural conditions. Its reinforcement is random, in the 

form of orthogonally directed working rods and mounting reinforcement along 
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the axis z, transverse vertical (along the axis y) and horizontal (along the axis x) 

reinforcements. 

Let us consider the problem of determining the bearing capacity of re-

inforced concrete rod considering its central compression (tension), skew bend 

with free or compressed torsion, the impact of structural factors and factors of 

external action, nonlinear properties of concrete and reinforcement, a simple 

proportional, small cycle constant sign and alternating loads. 

The main hypotheses and conditions: 

- Reinforced concrete rod element is stiff; 

- Calculation sections normal to the longitudinal axis are considered; 

- Relations between stresses and deformations in the concrete and re-

inforcement are set using full diagrams; 

- the hypothesis of flat sections can be used during deformation of com-

pressioned (tensioned) bending RC elements; 

- Shear stresses in the element calculation section at its free torsion are 

determined in accordance with recommendations S.P. Tymoshenko 

[14] in the editorial of I.A. Birger and J.G. Panovko [15]; 

- Shear and normal stresses in rod calculation sections in its com-

pressed torsion are determined by the decision of M.I. Bezukhov in 

the editorial of Y.O. Shkola [16], [17]; 

- Concrete and rods of longitudinal reinforcement perceive normal σx, 

σy, σz and tangent τzx, τzy, τxy stress; 

- Transverse reinforcement rods perceive only tangent stresses τzx and 

τzy. Their distribution along the length of the rods is considered une-

ven; 

- Phenomenological condition of strength of M.I. Karpenko and his stu-

dents [18] or V.M. Kruglov [19], [20] can be accepted as a criterion of 

the destroying of concrete (macro cracks appearance); 

- Before the appearance of macro cracks it is considered as equitable 

condition of strain compatibility of concrete and reinforcement. Once 

concrete is excluded from work and stresses in the section with crack 

are taken over only by reinforcement; 

- Reinforcing rods are excluded from work with the appearance of yielding 

strains in them. As the criterion, the yielding condition of Huber-Mises-

Genk [16], is taken;  
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- During the transition from stresses to generalized internal force factors, the 

procedure of numerical integration of elementary internal force factors on 

the entire area of calculation section, is applied. Thus, current section of 

rod element is conventionally divided into separate small particle elements, 

within which stresses are considered as equal. 

According to the recommendations of G.A. Heniyev, M.I. Karpenko, S.F. 

Klovanych and others, the strength of concrete in the coordinate system of the 

main stresses σ1, σ2, σ3 is described by the continuous, convex, symmetric 

against octahedral normal stress σ0, and equally inclined to the said axes sur-

face plotted by the method of M. Filonenko-Borodich using the equation 

0 0 0 01 0( , , ) ( ) ( ) 0c c c c c c cf σ τ θ τ τ σ ρ θ= − ⋅ =  (2.1) 

where  
0 0,c cσ τ  − octahedral normal and   tangent stresses; 

θ – angle of stress state type; 

( )cρ θ  − interpolaUon funcUon between 
01τ ( 60 )cθ = °  and 

0 2τ
( 0 )cθ = ° , which is determined, as it is proposed by D.I.Bezushko 

[21], by the formula:  

( ) ( ) ( )2 2 2 22 cos 4cos 1 4 cosc c c c c c c c c ca b a b a bρ θ θ θ θ = + − + +
  

 
(2.2) 

where 2

2 11 , 2 1, .c c c c c o c o ca c b c c τ τ= − = − =  

Relation between octahedral stresses at angles of stress state type 

60 та 0c cθ θ= ° = °  can be shown as: 

2 2

1 1 1 1 1 2 2 2 2 1,oc o c o c oc o c o cA B C A B Cσ τ τ σ τ τ= + + = + +  (2.3) 

Factors 
1 2 1 2 1, , , ,A A B B C  are achieved by the way of “binding” of 

characteristic points in the surface of concrete strength. Using the experi-

mental relations of M.M. Bondarenko and V.I. Kolchunov, it is proposed to de-

termine them by these simplified formulas in author’s interpretation: 
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(2.4) 
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where ,ck ctkf f − characteristic (design value ,cd ctdf f ) concrete strength, ac-

cording, for compression and tension. With the formula (2.1), the surface of 

concrete strength can, uniquely, be described, because it consists of coeffi-

cients (2.4) of five independent parameters of (its) strength, which correspond 

to individual cases of stress state: 

- uniaxial compression 
c ckR f=  and tension 

p ctkR f= , 

- biaxial compression  
2 1, 2 1, 2c c ckR R f≅ =  and tension 

2 p p ctkR R f≅ = , 

- triaxial uniform tension ( ) ( )3 0,82 .p c p c pR H R R R R= ≅ ⋅ −   

Angle of stress state type in rod concrete which is considered, can be 

determined by M.I. Bezukhov [16] considering 0x yσ σ= =   

( )
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2 2 2 2
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3 3
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(2.5) 

where 
2 3,D D - second and third invariants of stress deviator. 

Considering (2.1), (2.3) we will get: 

( ) ( )
21 1

12oc oc oc

c c

A B
Cσ τ τ

ρ θ ρ θ
= + +  

(2.6) 

Limit values of concrete strength (on the “surface” of strength) in the 

form of ocσ)  and ocτ)  are determined by solution of equation system: 
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(2.7) 

where 
mσ  and 

mτ
 
− stresses on previous load level (at simple proportional 

loading 0m mσ τ= = ); 

mσ  − factor that characterized stress-strain state of concrete  

Huber-Mises-Hencky condition of reinforcing steel yield [16] at 

σx=σy=0 looks like:            

22222 ~
333 ydzyszxsxyszs f=+++ τττσ  (2.8) 

where 2

ydf%  – calculation strength of reinforcement on the yield limit considering 
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its decrease because of complex stress state compared with central tension-

compression. 

According to recommendations of M.I. Karpenko [18] concrete deformation di-

agram at compression (tension) can be shown as: 

c

cc

c

bb

b
b

EE
ε

ς
σ

ν
σε ===

0

0

(2.9) 

where 
b cε ε= − relative linear concrete deformations; 

b cσ σ= − normal stresses in concrete; 

Eb
0 = Ec0 – initial concrete modulus of elasticity; 

vb = ζc – factor of secant concrete modulus of elasticity change. 

Deformation relations for concrete, which is, in complex stress-strain 

state, advisable to formulate as a link between octahedral stresses and defor-

mations.  With next hypotheses considered as equitable: 

 

-  link between octahedral stresses ocτ  and shears on octahedral 

planes 
ocγ  is nonlinear: ( )oc c oc ocGτ γ γ= ⋅ , де ( )c ocG γ  - secant (octahedral) 

concrete shear modulus; 

 

-  link between octahedral normal stresses 
o cσ  and average defor-

mations ocε  is also nonlinear and can be shown as: ( ) ( )2

oc oc oc c ocKσ γ ε ρ γ= ⋅ − , 

where
cρ  − modulus of dilataUon (by G.O. Heniyev [22] − 

ocg ); ( )ocK γ  − mod-

ulus of volume deformations. 

 

For determination of secant modules analogically to the hypothesis of 

“single curvature of deformation”, it is advisable to use the hypothesis of S.F. 

Klovanych and D.I. Bezushko, according to which the form of link between 

stresses and deformations is not depending on the stress state type, i.e. link 

between 
ocτ  and 

ocγ  can be accepted similar to uniaxial compression and for 

determination of secant shear modulus the relation EKB (Fig. 2.2) 

( ) ( )c oc oc oG G fγ γ= ⋅  proposed by Siense can be accepted. Here: 
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( ) 2 3

1

1
ocf

A B C
γ

η η η
=

+ + +
 

(2.10) 

 
Fig. 2.2 Concrete deforming diagram at triaxle stress state 

where:

( ) ( )2
1 1 1 ; 1 2 ; 2; 0,85r r r r r r ckC B C A C fλ ξ ξ η η λ ξ σ = − − − = − = + − = ≈

 
і 

1,41; ; ; ;r r oc ck oc ocfη γ γ ξ σ η γ γ λ ξ η= ≈ = = =   

initial displacement module 

 

( ) ( ) ( )0 0
2 1 ; 3; 3;oc c c c oc xc yc zc oc xc yc zcG G E v σ σ σ σ ε ε ε ε = = + = + + = + + 

 

 
( ) ( ) ( ) ( )2 2 2 2 2 21 3 6 ;oc xc yc zc yc zc xc xyc zyc zxcτ σ σ σ σ σ σ τ τ τ= − + − + − + + +  

( ) ( ) ( ) ( )2 2 2 2 2 22 3 3 2 .oc xc yc zc yc zc xc xyc zyc zxcγ ε ε ε ε ε ε γ γ γ= − + − + − + + +  

 

Considering 0xc ycσ σ= =  for considered rod: 3;oc zcσ σ=  

( ) ( )2 2 2 2 2 2 2 23; 1 3 2 6 ; 2 3 2 3 2 .oc zc oc zc xyc zyc zxc oc zc xyc zyc zxcε ε τ σ τ τ τ γ ε γ γ γ= = + + + = + + + It is 

recommended to determine limit (maximum possible) shears 
rγ  on octahe-

dral planes by regression equation  of D.I. Bezushko [21], received as a result 

of processing of known A.V. Yashin and M.D. Kotsovos experimental data of 

triaxle compression: 

 

( ) ( )2
7,97 15,22 3,713r oc ck oc ckf fγ τ τ= + −  (2.11) 
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Dilatation modulus of concrete by Heniyev H.O. [22]:      

( )2 4c oc c c xc yc zñ oc bkg Ã G fρ θ ε ε ε= = − = − + +  (2.12) 

where ,c cÃθ
 
− respectively limiting volume deformation and intensity of con-

crete shear deformation at free shear; 

bkf − characteristic (design 
b df ) value of limit stresses of coupling 

which approximately is: 
, 0,7bd b sh b btf R R R= =  by V.M. Baykov. 

Modulus of volume deformations is determined analogically: 

( ) ( )c oc oc ocK K fγ γ= ⋅ , where 0

1 2

c
oc

c

E
K

v
=

−
 − iniUal modulus of volume de-

formations. 

Hence the secant modulus of elasticity 
cE  and coefficient of transverse 

deformations 
cv  of complex stressed concrete by M.I Karpenko [18],  are de-

termined by:  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ){ }

3 ,

2 2 .

c c oc c oc c oc c oc

c c oc c oc c oc c oc

E K G G K

v K G G K

γ γ γ γ

γ γ γ γ

 = + 

   = − +   

 

(2.13) 

Similarly, we can get the formula for secant modulus of elasticity at 

shear for reinforcement steel and relations for diagram of its shear:  

( )[ ]s

ssk
s

v

E
G

+
=

12

ϑ ; 
( )[ ] s

s

ssk
s

v

E γϑτ
+

=
12  

(2.14) 

where νs – factor of secant modulus of elasticity change. 

Axial deformation in rods of transverse reinforcement and relative angle 

deformation in adjacent concrete can be calculated by O.F. Yaremenko and 

Yu.O. Shkola [23]: 

[ ] 1

0

** )2/()1(1
−++== ccswcswswswccsw ElEd υννγγε

(2.15) 

Joint work of longitudinal and transverse reinforcement at reinforced 

concrete calculations is considered by reducing the design value of yield limit 

of longitudinal reinforcement by V.M. Baykov and Yu.O. Shkola [31] with re-

ducing factor k1: 
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where the value of reducing factor k1 = 0,08…0,10. 

 

2.1 Calculation  element cross section 

Concrete part of rod cross section is conditionally divided on small parts 

of rectangle form (Fig. 2.3), dimensions of which conform to the fineness of 

largest concrete fraction. 

Each of these particles is assigned a serial number. For each n particle 

of concrete in calculation cross section, there are fixed coordinates of its cen-

troid relative to the centre of symmetry axes of section xсп, yсп, area Асп, char-

acteristic concrete compression strength fck, tension strength fctk, initial modu-

lus of elasticity Еc0. Poisson ratio vc=0,2.  

Location of rods of longitudinal reinforcement is taken discrete. Each 

longitudinal reinforcement rod is assigned own number j, indicating its diame-

ter dsj, location of centroid relative to the centre of symmetry axes of elements 

section xsj, ysj, characteristic values of strength on yield limit fykj (or f0,2kj), rela-

tive reinforcement steel deformations εuk, initial modulus of elasticity Eskj and 

reinforcement grade. The Poisson ratio vs = 0,25. 

Location of transverse reinforcement in the plane of calculation section 

is taken as discrete too. 

Horizontal and vertical rods of transverse reinforcement (stirrups) are 

conditionally divided on separate areas, each of them assigned number i, are 

arranged with concrete surface area Acswi and coordinates of its centroid in the 

plane of calculation cross section xswi, yswi relative to symmetry axes.  

( ) ( )22 2 2 2 2

1 , ,1 3 4 1 ,yd yd sw x sw y sf f s k ctg l ctg l vα β  = − + +
 

%

(2.16)
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Fig. 2.3 Particle components of the calculation cross section of the rod 

Following vakues are set: characteristic value of strength on the limit of yield 

fywk, characteristic value of tension strength ftwk, modulus of elasticity Еsw, the 

Poisson ratio vsw=0,25, characteristic value of relative deformations εuwk, limit 

or level of elasticity and transverse reinforcement grade. 

On the element length the transverse reinforcement is considered as 

distributed layer of area per unit length on its edge: 

 

( )2 4zsw i sw i iA d sπ=  (2.17) 

 

where si – step of transverse rods on longitudinal direction. 
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Equilibrium equations. 
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(2.18) 

where σzсп – normal stresses in n particle of concrete section; 

σzsj – normal stresses in j longitudinal rod; 

τzxсп, τzyсп – tangent stresses in n particle of concrete section; 

τzxsj, τzysj – tangent stresses in j longitudinal rod; 

σxswi, σyswi – normal stresses in on i piece of, accordingly, horizontal and vertical 

transverse reinforcement. 

 

Normal and tangent stresses:  

zml ml zml zmlЕσ ζ ε= ; 
zxm l m l zxm l zxm lGτ ϑ γ= ; 

zym l m l zym l zym lGτ ϑ γ= ; 
xyml ml xyml xymlGτ ϑ γ=  

(2.19) 

where ζ− factor of secant modulus of elasticity of concrete Еml change;  

ϑ − factor of  secant shear modulus Gml change; 

m = c for particles of concrete section; m = s for rods of longitudinal 

reinforcement; m = sw for rods of transverse reinforcement;  

l – number of concrete or longitudinal reinforcement rod particle; 

і – number of transverse reinforcement rod particle. 

 

Generalized linear and angular deformations determined by the hy-

pothesis of flat sections, H. Han solutions of theory of elasticity [24] at bending, 
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Y.O. Shkola functions of stresses distribution at constrained torsion and Saint-

Venant functions at free torsion:  

 

),(0

tor
ml

tor
mlzzmlymlxzml YXYX ϕθβχχεε +++=  

zxmlzymlyxmlxzxml fhKgK θγ ++=  

zymlzxmlxymlyzyml fhKgK θγ −+=  

xymlzxyml fθγ −=  (2.20) 

 

where 
0ε  − axial relaUve deformaUon of element along axis z; 

xχ , 
yχ  − bending curvatures in planes of moments Мx, My accordingly; 

,x yK K , − shear curvatures in planes of shear forces Vx, Vy, accordingly; 

zθ  – relative (per unit length) angle of twist if rod unit length (rad/m); 

( ),tor tor
ml mlX Yϕ  - Saint-Venant center of twist related torsion function; 

βz – factor of section deplanation, which, for constrained torsion, is determined 

by the formula:  z
z e ηβ η −= , 

 

where η – Yu.O. Shkola compression factor [17]; 

z – distance along element axle to the closest rigid fixing. At free torsion 1zβ =  

xmlg , 
ym lg , 

xmlh , 
ymlh  − H. Han funcUons of angle deformaUon at transverse 

bending distribution; 

 

( ) ( ) ( ), ,
zyml xymlzxml

zxml zyml xyml

z ml z ml z ml

f f f
G G G

τ ττ
θ θ θ

= = =
⋅ ⋅ ⋅ – function of tangent 

stresses at free and constrained torsion distribution. 
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General physical correlations: 

Developing ideas [25] with considering the shear force action, general 

physical correlations for calculation cross section of reinforced concrete rod 

took the form: 
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or { } [ ]{ },N D ε=  

 

where D11 – axial stiffness of element: 
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D22, D33 – bending stiffnesses in planes zox, zoy: 
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D23 – stiffness of mutual influence of bending in two planes: 
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D12, D13 – stiffnesses of influence of longitudinal force on bending and bending 

moments on element elongation: 
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D44, D55 – stiffnesses of shear in planes zox, zoy from shear forces action: 
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D45, D54 – stiffness of mutual influence of bending in planes zox, zoy: 
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D16, D26, D36 – stiffnesses of influence of torsion moment Txy on elongation and 

bending curvatures in planes zox, zoy, longitudinal force N and bending mo-

ments Мx, Мy on shear in plane xoy: 
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D46, D56, – stiffnesses of influence of torsion moment Txy on shear in planes zox, 

zoy and shear forces Vx, Vy on shear in plane xoy: 
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D66, – stiffness at rod torsion in plane xoy: 
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where ψsj – V.I. Murashev factor: 

sjcrsjsj σωσψ /1 ,−=
 (2.38) 

 

where σsj,cr – stresses in в j rod at the moment of crack appearance; 

σsj – current stress in j rod of longitudinal reinforcement; 

ω  − factor of completeness of diagrams of tensioned concrete,  

0, 7ω = .
 

 

It is believed that physical correlations (2.22)…(2.38) are valid on all 

stages of stress-strain state of rod reinforced concrete elements of rectangle 

section at their simple proportional loading. 

On any loading stage the deformation vector 

{ } [ ] { }ND 1−=ε (2.39) 

 

The flowchart of algorithm of bearing capacity of reinforced concrete 

rods of rectangle section with arbitrary orthogonal reinforcement determining 

[26] is shown in Fig. 2.4. 

Algorithm consists of block of source data input, main part, auxiliary 

routines of conditions of load vector increasing check, bearing capacity exhaus-

tion and calculations printing block. 

On every loading stage the calculation is performed by performance of 

some quantity of iterations to the time, while the accuracy of all components 

of the deformation vector would not meet some predetermined value, i.e. until 

execution of condition: 

{ } { }( ) { } { }ηεεε <− − nnn /1
 (2.40) 

where {ε}n – deformation vector, calculated on n iteration; 

ε}n-1 – the same on previous n-1 iteration; 
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{η} – accuracy vector, combined of pre-set accuracies for each compo-

nent of deformation vector. 

Consistently increasing the vector of given ratio forces acting in rod, the 

bearing capacity of reinforced concrete rod can be determined. As a limit load 

maximum force vector {N} is applied, at which the system of equations (2.21) 

has a solution, i.e. matrix determinant [D] is not zero (with some pre-set toler-

ance ηdet) or reinforced concrete road bearing capacity is considered exhausted 

if  

[ ] detdet η<D  (2.41) 
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Fig. 2.4 The flowchart of algorithm of bearing capacity of reinforced concrete rod at 

complex stress determining  
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2.2 Conclusions on chapter 2: 

1. Accepted in general case, nonlinear deformational model of rod con-

struction allows to form the work union of reinforced concrete mechanics, that 

considers features of mutual work of concrete and reinforcement on all stages, 

including destruction. It can be used at design or strengthening of beams, 

cross-bars, columns and elements of girder frames of rectangle cross section 

and at check of bearing capacity of existing rod reinforced concrete structures, 

which are working in conditions of complex stress-strain state, including small 

cycle permanent sign load;
 

2. Prediction of cracking on the faces of reinforced concrete rod and 

checking concrete strength advisable to perform by three-level criterion of 

V.M. Kruglov or five parametric criterion of M.I. Karpenko, his students and 

followers; 

3. Crack appearance in concrete is considered by excluding from calcu-

lation that particles of concrete, which spatial stress-strain state does not sat-

isfy criterions of strength. 
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CHAPTER 3 RESISTANCE MODEL OF PREFABRICATED CONCRETE ELE-

MENTS FOR THE PERMANENT CYCLIC ACTION OF THE TRANSI-

TIONAL FORCES OF HIGH LEVELS 

In the current design standards, the calculation of durability in bay rein-

forcement concrete structures is performing under the assumption of concrete 

elastic work. Calculation of sloping sections is performed under the assumption 

that main tension stresses, which appear on the level of centroid of trans-

formed section, should be fully carried by transverse reinforcement at stresses 

in them, which are equal to calculation resistance of transverse reinforcement 

fsw, multiplied by condition load effect factor γsw, in elements without trans-

verse reinforcement – by concrete at stresses in it, which are equal to concrete 

calculation tension resistance fctd, multiplied by an appropriate  condition load 

effect factor γс.  

Such calculation approach contradicts the real work character of inelas-

tic work of reinforced concrete elements, and does not display reinforced con-

crete behaviour features in the zone of transverse forces actions at cycling 

loads, does not display real stress-strain state, does not consider the ambiguity 

of transverse forces perception by different elements at different shear bays 

and character of fatigue destruction crack appearance and propagation, does 

not consider or take into account indirectly the influence of a number of con-

structive factors and factors of external action, which ultimately leads to a sig-

nificant difference in the calculation and experimental data. 

Researchers’ main attention is paid to the study of durability and stress-

strain state of normal sections of elements which are bent, to the durability of 

concrete and reinforcement and their deformability at second loads. During 

these researches a lot of experimental data has been accumulated, and a num-

ber of practical methods of normal section calculation in the zone of structures 

pure bending have been proposed. 

Despite the large number of experimental and theoretic researches of 

reinforcement concrete elements resistance to the transverse forces action at 

static loads, the problem of reinforced concrete resistance to the second loads 

action remain mainly unexplored. 
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Theoretical researches of development of physical models of bending 

reinforced concrete elements fatigue resistance to the series action of trans-

verse forces and calculation methods on its base, are almost missing. There-

fore, the development of physical models of fatigue resistance and destruction 

of near support parts of beams, which correctly shows their real work consid-

ering real element concrete and reinforcement deforming at different shear 

spans and corresponding methods of their calculation, has just started. 

Complexity of results of previous researches in the field of reinforced 

concrete elements resistance to the action of transverse forces at static loads, 

and durability of concrete and reinforcement in normal sections of reinforced 

concrete structures considering their real deforming, had created objective 

conditions to design the science basics of the theory of fatigue resistance of 

their near support places to secondary action of transverse load. 

 

3.1 Model of reinforced concrete elements resistance with no shear 

span reinforcement 

O.S. Zalesov, Yu.A. Klimov, I.T. Mirsayapov [27] and others, identify 

main forms of fatigue destruction of reinforced concrete elements depending 

on the relative shear span с0  / h0: elements with zero shear span (с0  / h0 = 0), 

with small shear span (с0  / h0 ≤ 1,2), with middle shear span (1,2 < с0  / h0 ≤ 2) 

and with large shear span (с0  / h0 > 2). Their researches, using thermal imager, 

have shown that in elements with с0  / h0 ≤ 1,2 occur local stress strips  between 

points of applying of concentrated force and beam support, within which fa-

tigue destruction occurs. With the subsequent decrease of relative shear span, 

limit state occurs, when с0  / h0 = 0 і Mmax = Qmax = 0, i.e. force action lines and 

reactions converge and local compression occurs, which can, also, be included 

into general system of reinforced concrete elements resistance to the trans-

verse forces action. 

It is obvious that for each of indicated groups, a method of strengths 

and durability calculation of near support places of reinforced concrete ele-

ments considering the value of shear span, should be developed. Contrary to 

the normative method, it should be based on physical model of their fatigue 

resistance to mutual action of transverse forces and bending moments. Con-

struction of the settlement machine is carried out considering real stress state 
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of the elements, all internal forces and influence of the most significant factors 

on their fatigue resistance. Durability calculation is carried out by classic 

scheme: on the base of physical models, internal forces and stresses in specific 

sections are calculated; determining the limits of concrete durability and rein-

forcement durability, its anchoring; conditions of endurance are checked. 

In contrast to technique standards, stresses and factors of stresses 

asymmetry in concrete and reinforcement, are determined considering their 

change during cycle loading as a result of extension of deformations of vibro-

creep of compressed concrete in conditions of limited deformation capability. 

Limits of durability (objective fatigue strength at cycle and small cycle load) of 

concrete and reinforcement should be determined by appropriate criterions of 

fatigue strength considering appearance and extension of fatigue micro- and 

macro-cracks, nonelastic properties of concrete, real deformation modes of 

concrete and reinforcement as a part of a structure. 

Despite the number of theoretic and experimental researches of con-

crete and reinforced concrete resistance at local static load action, in literature, 

available to author, there was no information about concrete and reinforced 

concrete behaviour at local action of repeated load. Thus, in domestic design 

standards there are no clear recommendations about the calculation of rein-

forced concrete elements at local cycle compression load, particularly with 

zero shear span. 

Relying on researches, carried out by V.G. Donchenko, O.S. Zalesov, 

V.G. Kvasha, M.M. Kholmyanskiy, I.T. Mirsayapov [27] and other, physic model 

of fatigue resistance of concrete at such load can be represented as following: 

at local compression of concrete element, cross-directed force flow occurs be-

tween load areas, limited by dimensions of load areas. Stress state inside this 

flow is heterogeneous, since after applying the repeated load on flat element 

under load areas of limited width, friction forces between these areas and con-

crete surface appear, through which, impacted volumes in the form of wedge 

(Fig. 3.1, a) with edges appear in concrete, inclined to the area of load transfer 

with an angle that is equal to the angle of inner shear of concrete φ (Fig. 3.1, 

b), and inside the wedge stress state “compression-compression” (

1 2( ), ( )max max
c ct tσ σ ) is forming. Wedge displacements as a solid and its “wedg-

ing” in environing concrete cause appearance of thrust and, as a result, splitting 

(tensile) stresses 
2 ( )m ax

ct tσ  between vertexes of impacted wedges. Along the 
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edges of wedge the condition of pure shear is realized and tangential stresses 

appear
1 2 ( )m ax tτ . As a result of pressure of these wedges of impact as a solid on 

environing concrete, compression stresses appeared in it too 
1 ( )m ax

c tσ  (Fig. 3.1, 

c). The compression core with width of lef, less than width of load area lloc, ap-

pears in the middle zone, between vertexes of impacted wedges in elements 

with dimensions H ≤ 1,5L and lloc / H > 0,2 by results of B.S. Sokolov researches 

[28]. 

At the cycle load of concrete, fatigue destruction and nonlinear deformations 

of vibro-creep, are characterized by the appearance and extension of cracks of 

normal rupture. At the initial stage of loading, after the excess of the average 

compressive stresses 
1 0( )m a x

c tσ  of the initial level of formation of microcracks 

in concrete elements, there are microscopic fractures of the concrete separa-

tion. With the increase of the load level or the number of its cycles, the mi-

crocracks of the separation in the middle of the concrete element between the 

tops of the sealing wedges are first developed, which are then connected, 

forming a fatigue macro crunch, parallel or with a slight inclination to the line 

of external compressive forces (the main compressive stresses). When the total 

length l(t) of fatigue macro crack of detachment reaches critical length lcr, and 

the dynamic development of main detachment macro crack starts, that, in 

some circumstances, leads to ultimate destruction of compressed concrete el-

ement. Research of the destruction surface of concrete elements shows, that 

the ultimate destruction occurs due to shear by inclined areas under load ar-

eas, i.e. by maximum tangential stresses. Wherein, the volume is separated 

from the main mass wedge. It is “impact wedge”. The surface of wedge is une-

ven. Concrete is not destroyed inside the wedge and beyond its borders. 
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Fig. 3.1 Model of concrete deformation at local compression by repeated load (а), 

stress and forces distribution in compressed elements with zero shear span at 

cycle load at lloc / H < 0,2 (b) and lloc / H > 0,2 (c)  



-41- 

 

Thus, the criterion of fatigue destruction of concrete at local repeated 

compression can be shown as 
1 ,( ) ( )max

c cd rept f tσ > , where 
, ( )cd repf t  is the ob-

jective (residual) concrete strength in compression force flow of stresses at cy-

cle load at the moment of time t; 
1 ( )m ax

c tσ  is maximum compression stress of 

cycle from external load at the moment of time t. 

So, as a result of wedges pressure on environing concrete stress state 

“compression-tension” between the vertexes of wedges appears, inside the 

wedge – “compression-compression”, along the wedge edges the condition of 

pure shear is realized. In this case, on the one hand, up to fatigue failure all 

components of the stressed state remain less than the estimated resistance of 

the concrete at a one-time static load, that is, 
12 ( )max

csht fτ < , and on the other 

hand, even at external fixed cycle load (Pmax; ρ = const), stressed state in con-

crete and reinforced concrete elements is unstable (nonstationary), i.e. at re-

peated loading there is a continuous shift of stress-strain state of elements in-

side the compression force flow, formed between areas, through which, the 

load is transmitted. The reason for this is intensive extension of vibro-creep 

deformations ε1c,pl in compressed concrete along the axle of compression force 

flow. 

Based on kinematic compression model of S.M. Krylov, L.N. Zaycev, I.S. 

Ulbiyeva [29], model of concrete deformation at local compression by repeated 

load can be shown Fig. 3.1, a, according to which, as a result of intensive ex-

tension of vibro-creep deformations of compressed concrete, there is a dis-

placement of impact wedges in the vertical direction on value  

 

( )
0,5

1

0,5 cos sinloc

H

с c
l

h dh

ϕ ϕ
ε∆ = 

 

(3.1)

 

 

At vertical wedge displacement, along the axle of compression force flow on 

value с∆ , transverse displacement in concrete in the middle zone will be  

( )
0,5

2 1

0,5 cos sin

1

loc

H

t c
l

h dh
tgϕ ϕ

υ ε
ϕ

= ⋅
 

(3.2)
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And shear of concrete along the edges of impact wedge: 

( )
0,5

1

0,5 cos sin

1

sin
loc

H

сsh c
l

h dh

ϕ ϕ
ε

ϕ
∆ = ⋅

 

(3.3)

 

 

Transverse displacement 
2tυ  calls causes uprising of additional tensile stresses 

( ) ( )2 1 2
a d d
с t tt fσ υ=  

in concrete and shear, uprising of additional tangential 

stresses ( ) ( )1 2 2
a d d

с sht fτ = ∆  
in concrete along the edges of wedges. At incre-

ment of numbers N of cycle loads, vibro-creep deformations 
1 ,с plε  

of con-

crete increase. In turn, they cause enlargement of residual tensile stresses 

( )add tσ  and residual tangential stresses ( )1 2
a d d tτ  in concrete, which are dis-

tributed relatively evenly and have the same sign as initial stresses ( )x
2 0
m a
t tσ

, ( )1 2 0
m a x tτ  at first load, to maximum level of series load Pmax. It is obvious that 

total stresses ( ) ( )2 2 2( )
m ax m ax add
с t с t o с tt t tσ σ σ= +  and ( ) ( ) ( )12 12 0 12

max max addt t tτ τ τ= + . 

Stresses enlargement at repeated loads occurs not just at maximum value of 

external load, but at minimum, too. Thus, the actual factors of asymmetry 
of 

stresses series in concrete 2 с tσρ
and 12τρ

do not converge with the
 factor of 

asymmetry of external load series ρ = Pmin / Pmax. As the number of cycles and 

load levels increase, continuous increasing of maximum splitting normal 

max
2 ( )сt tσ

 and tangential
( )12

max tτ
stresses in concrete and their factors of cycle 

asymmetry 2 с tσρ  and 
12τρ

occur. Concerning this, based on the models of 

splitting of I.A. Rokhlin [30] and O.S. Zalesov, V.N. Sakharov, A.V. Starchevskiy 

[31] (3.1)…(3.3) Fig 3.1, а. the distribution of current stresses at repeated loads 

in concrete elements with dimensions H ≤ 1,5L and lloc / H < 0,2, can be repre-

sented as Fig. 3.1, b. Based on the compression model of B.S. Sokolov [28], the 

distribution of current stresses at repeated loads for concrete elements with 

dimensions H ≤ 1,5L and lloc / H > 0,2, are shown in Fig. 3.1, c.
 

Due to longitudinal fatigue micro cracks forming, following concrete re-

sistance to destruction depends on concrete’s ability to resist the extension of 
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fatigue micro and macro cracks. For analytical description of fatigue destruc-

tion process and changing of fatigue strength of the concrete, it is expedient to 

use the destruction mechanics methods. Based on this, it is necessary to make 

up the equilibrium equation of forces at the moment of time t for evaluation 

of the objective (residual) strength at cycle loading, i.e. limit of durability of 

concrete element at local compression. For concrete element with dimensions 

H ≤ 1,5L and lloc / H < 0,2 (Fig. 3.1, b) – conditions of equilibrium of vertical and 

horizontal forces for half-wedge ABO, and the condition of horizontal forces 

equilibrium for vertical section OO; in elements with dimensions H ≤ 1,5L and 

lloc / H > 0,2 (Fig. 3.1, c). As a result of impact wedges pressure as a solid on 

concrete, that environs it, compression stresses are appearing 
1 ( )
max
c tσ  in it too. 

Consequently, in the core of force flow, there is compression force in concrete 

N1c, which must be considered in stated conditions of equilibrium. 

Due to uniform distribution of maximum actual stresses ( )x
2
ma
сt tσ , ( )1 2

m ax tτ  

and 
1 ( )
max
c tσ  in the process of cycle loading, and geometric dimensions of com-

pression models after simple transformations, we get the analytic expression 

of the objective (residual) strength of concrete in compression force flow at 

cycle loading at the moment of time t, that is considering: 

( )
( ) ( )

t
,

h
( )

,

cсf
cd rep

loc

k t
f t ctg

ll t Y l
ϕ

π τ
= ⋅ ×

⋅
 

( )
( )

1

1

1 1
,

tk n

с е k е
с k сto

А В G L C K a C t dt
E E

ε υψ τ
τ τ

−
=

=

  ∂ × − ⋅ ⋅ + ⋅ ⋅ + +  ∂     

∏ 
 

(3.4) 

where 1А =  and 2
1 sinВ ϕ=  −  for concrete elements with dimensions of 

H ≤ 1,5L and lloc / H < 0,2, and for concrete elements with dimensions of H > 

1,5L;  

2cosА ϕ=  and 2В ctg ϕ=  − for concrete elements with dimensions of H ≤ 1,5L 

and lloc / H > 0,2;  

ht – tensioned zone length; 

( ) ( )( )1
2 2к к н нL tg tgε θ π θ θ π θ

π
= − ⋅ − − ⋅

 

де н sin cosarctgθ ϕ ϕ= ,
к

loc

H
arctg

l
θ =

. 
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As can be seen from Fig. 3.1, c, the limit of durability  (objective fatigue 

strength) fcd, rep(t) of the concrete at local cycle compression, depends on criti-

cal factor of concrete stresses at repeated load Kccf (t) at the moment of time t, 

which is considered, on fatigue separation crack length l(t) inside the compres-

sion force flow at the actual moment of time and deformation properties of 

concrete, and depends on the angle of internal concrete shear φ, elements di-

mension ratio H/L and load areas to element height ratio δ = lloc /H. Since the 

critical ratio of concrete stresses intensity at cycle load goes down, and the 

separation fatigue crack length inside the compression force flow increases and 

inelastic deformations of concrete with cycle numbers enlargement increase, 

the objective strength of the concrete has a variable value.  

It is obvious that the presence of reinforcement affects the nature of 

extension of separation cracks, nature of compressed strip destruction and the 

value of objective strength fcd, rep(t) at local cycle compression load. 

As a result of joint work of concrete and reinforcement repeated load, 

due to vibro-creep of compressed concrete, additional (residual) stresses ap-

pear and accumulate in the reinforcement. Accumulation of residual stresses 

in concrete and reinforcement that are equal by sign with initial stresses, leads 

to the increase of actual stresses in concrete and reinforcement and their ratios 

of cycle asymmetry. Even at continuous (stationary) external cycle load (Pmax; 

ρ = const), with an increase of its cycle amounts, there is a continuous increase 

of maximum stresses m ax ( )sc tσ  and ratios of cycle asymmetry ( )sc tρ  in vertical 

compressed reinforcement Аsc, maximum stresses m ax ( )s tσ  and ratios of cycle 

asymmetry ρs(t) in horizontal reinforcement Аs. They are located in the middle 

zone between vertexes of impact wedges. Increase occurs in maximum tangen-

tial stresses max( )12 tτ  and their cycle asymmetry ratios ( )
1 2

tτρ  in the concrete 

along the edges of impact wedges, and forces in horizontal reinforcement Аsg, 

that are crossed by shear area along the edges of impact volumes and maxi-

mum tangential stresses max( )s tτ  in them and asymmetry factors ρsτ(t).  

The base of fatigue resistance of reinforced concrete element model at 

local compression, serves the model of fatigue resistance of the concrete ele-

ment. Its geometric parameters and principles of formation converge. Stress 

distribution in concrete of reinforced concrete element as at first load, and at 

the process of cycle loading, is taken into account. Concrete deformations 
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schemes are the same as in concrete elements (Fig. 3.1 a, b, c). External con-

crete resists to vertical displacement of impact wedges in reinforced concrete 

elements. The vertical displacement of the seal wedges in the reinforced con-

crete elements rests around the concrete, and the effect of the horizontal and 

vertical reinforcement in the above-mentioned equilibrium conditions for the 

semi-wedge ABO and for the vertical section of the OO (Fig. 3.1, b, c) is taken 

into account in the form of forces in the reinforcement 

( ) ( ) ( )m a x m a x m a x; ;s c s sN t Q t N t . 

Here from, we get the analytical expression of objective strength of re-

inforced concrete in compression force flow at cycle load at the moment of 

time t: 

( )
( ) ( )

( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )
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 (3.5) 

where А, В – see explanations (3.4); С = 0 – for reinforced concrete elements 

with dimensions H ≤ 1,5L and lloc / H < 0,2, and for reinforced concrete elements 

with dimensions H ≤ 1,5L and lloc / H > 0,2; m ax ( )s і tσ  and s – actual stresses in 

horizontal tensed reinforcement and its step. 

 

For durability provision for concrete and reinforced concrete elements with 

zero shear span (а0  / h0 = 0), i.e. at local compression, it is necessary to deter-

mine the compression stresses m ax
1 ( )c tσ , which appear inside the compression 

force flow, and limit them by concrete (or reinforced concrete) durability limit 

at local compression fcd, rep(t) for given mode of cycle load, i.e. inside the com-

pression force flow, it is necessary to provide the condition of durability: 

( ) ( )max
1 ,с cd rept f tσ ≤  

(3.6)
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Since the extension of vibro-creep deformations ε1c, pl in compressed 

concrete in the direction of stress action m ax
1 0( )c tσ  is going in free conditions 

and nothing interrupts their extension, we can accept 
1 ( ) 0дод

c tσ =  and, thus, 

actual compression stresses max
1 ( )c tσ = max

1 0( )c tσ  at first load. Ratio of stress cycle 

asymmetry is equal to ratio of asymmetry of external load cycle, i.e. ρс = ρ = 

Pmin / Pmax. Limits of concrete durability are determined by (3.4) or (3.5). 

 

3.2 Reinforced concrete elements resistance models with small, mid-

dle and large shear spans 

Further researches of authors and I.T. Mirsayapov [27] and other have 

shown, that at с0  / h0 > 2 fatigue destruction of near support parts of bending 

elements occurs with the appearance of critical inclined crack, whose location 

is connected, not only with points of external force applying and support reac-

tion, but with internal force factors, which occurs in shear span (moments and 

transverse forces). At  1,2 < с0 / h0 ≤ 2 destruction of near support parts of beam 

elements at cycle load has little similar signs of destruction of elements with 

small and large shear spans. In this case, internal force factors and local con-

centrations of stresses in corresponding zones near points of external concen-

trated forces, influenced the behaviour of appearing and extension of cracks 

and fatigue destruction in this zone at indicated load. 

The feature of “long” bending reinforced concrete elements work at 

small shear spans (а0  < 1,2h0) appears on local stress strips, connected with 

points of concentrated forces applying, within which fatigue destruction oc-

curs. This feature of usual reinforced concrete beams with small shear spans 

joins them with “short” (high) elements. In both cases, this feature occurs at 

small values of relative distance between the forces, applied to the element. 

T.I. Baranova, O.S. Zalesov [32], B.S. Sokolov [28] and other, consider 

that for practical calculations of “short” elements, the simplest solution of the 

problem is formation of calculating model as a frame-rod system (FRS), which 

consists of inclined compressed strips and tensed bottom, and compressed top 

reinforcing zones, which enclose at points of concentrated forces and support 

reactions applying (Fig. 3.2). 
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Fig. 3.2. Formation of force flows in usual (“long”) beam with small shear spans at 

repeated load (а) and its frame-rod analogue (b) 

Frame-rod analogue is widely used in the practice of reinforced con-

crete structures design abroad. In the last 30 years, in our country a lot of ex-

perimental and theoretic researches on the development of calculation models 

of short elements at static load in form of frame-rod system which confirmed 

its usability even at static load of experimental beams with shear span а0  < 

1,2h0, have been performed. 

The principle of calculation model development is in determining the 

compression stresses in inclined force flows and tensile stresses in horizontal 

flow, intersection of which creates a system which can, conditionally, be called 

as frame-rod model of short elements. Main parameters which determine cal-

culation inclined strips are dimensions of load top
supl  and support bot

locl  areas, un-

der which flows of compression stresses are forming. The smaller the sizes of 

areas, the highest trajectory density. So, support and load areas form an incline 

strip and its width at top and at bottom. The angle of incline of main compres-

sion stresses flow, approaches the angle of line incline which connects centres 

of applying of support reaction and external concentrated force. 

It is obvious that in the process of modelling of near support area of the 

concrete, element works at small shear spans using frame-rod analogue and it 

could be considered that its fatigue strength is determined by durability of 

every FRS element: inclined compressed strips and strength of tensed rein-

forcement. Fatigue destruction of tensed elements zone occurs as a result of 

fatigue rupture of longitudinal reinforcement at place of intersection with in-

clined crack, or as a result of violation of reinforcement anchoring by inclined 

crack. Thus, occurring stresses should be limited by values of objective con-

crete and reinforcement strength at cycle load (durability limit) and its friction 
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between themselves, i.e. for provision of durability of such reinforced concrete 

elements, it is necessary to follow the durability conditions: 

 

( )max
1 , ( )с cd rept f tσ ≤ , ( )max

, , ( )s в ydq rept f tσ ≤
 

( )max
, ( )s yd ant f tσ ≤  

(3.7) 

 

where ( )max
1с tσ  − compression stress on compressed force flow; 

( )m ax
,s в tσ  − actual tensile stresses in most loaded fibres of longitudinal rein-

forcement in the place of intersection with inclined crack; 

( )max
s tσ  − actual (maximum) axle tensile stresses in longitudinal reinforcement 

in the place of intersection with inclined crack; 

( ),cd repf t  − limit of concrete durability at local compression; 

, ( )ydq repf t  − limit of reinforcement durability on tension; 

, ( )yd anf t  − limit of longitudinal reinforcement anchoring durability. 

Experimental researches [27, 28, 32] have shown, that stress-strain 

state inside the inclined compression force flow, is the same as in flat-stressed 

elements at local load. Thus, for evaluation of fatigue strength of inclined strip, 

the model of fatigue destruction at compression and equations of objective 

(residual) strength of the concrete and reinforced concrete at cycle load, can 

be used. Wherein, if axle “1” (Fig. 3.3) is directed along the longitudinal axle of 

inclined compression force flow, and axle “2” in orthogonal direction, and use 

the same designations as in elements with zero shear span, stress state inside 

the inclined compressed force flow can be represented as Fig. 3.3. 

Since the vibro-creep deformations ε1c, pl extension in compressed con-

crete in the direction of stresses ( )m ax
01с tσ  action, as at local compression, oc-

curs in free conditions and nothing interrupts its extension, we can accept that

( ) ( ) ( ) ( )m ax m ax
1 1 1 00; 0; ;
a d d a d d
с s с сt t t tσ σ σ σ= ≈ = ( ) ( )max max

0 ,s st tσ σ≈  and

( )m ax
0і s tσ slightly simple determines at first load from the conditions of equi-

librium on the base of fatigue resistance model. 

Because stress-strain state inside the inclined compressed strip and the 

behaviour of its fatigue destruction are analogical to stress-strain state and the 
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behaviour of fatigue destruction of flat-stressed elements at local load action, 

expression for determining the objective fatigue strength (limit of durability) of 

inclined compressed stripe at the moment of time t by analogy (3.4) and (3.5) 

takes the form: 

  
Fig. 3.3. Physic model (a) and calculation scheme (b) of bending reinforced concrete 

element resistance with small shear span at joint action of transverse force and 

bending moment 
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(3.8) 

where ( )iswK t  − stress intensity factor which characterizes influence of trans-

verse reinforcement on crack extension inside incline compressed flow; 

α  − angle of compressed strip incline; 

нпА  = 1, 21/ sinнпВ ϕ=  − for reinforced concrete elements with load areas sizes 

lsup / h < 0,2; Aнп = cos2φ, Bнп = ctg2φ – for reinforced concrete elements with 

load areas sizes lsup / h ≥ 0,2; in elements without transverse reinforcement 

iswK  = 0. 

Multi-cycle fatigue of reinforcement is characterized by appearance and 

extension of fatigue cracks in it. The formation of fatigue cracks occurs as a 

result of intensive plastic deformation of reinforcement steel in local volumes 

of stress concentration in reinforcement, main source of which, is its periodic 

shape. It leads to significant closed hysteresis loops, whose area is equal to en-

ergy spent by one cycle of the load. After plastic deformations are exhausted, 

micro cracks appear in these local volumes, one of which can transform into 

the main crack. Following the enlargement of cycle numbers, extension of the 

main crack up to the critical size, occurs. Thus, for analytical description of fa-

tigue destruction process and change of fatigue strength of steel reinforcement 

in reinforced concrete element at repeated loads, methods of destruction me-

chanics are used. The durability limit (objective strength of longitudinal rein-

forcement at the moment of time t, at the place of its intersection with inclined 

crack in conditions of flat stressed state becomes:  

2 2
, ( ) ( ) ( ( ) ) ( ) ( )sd в sc scf sc s cff t K t Y l l t K tσ σ= ⋅ ⋅ ⋅ +  

(3.9) 

( ) ( )2
1 exp 2 1 3

рес max max
sc u s su si sвiplEσ σ ε σ τ σ= + − ⋅ +

 

(3.10) 
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where 
,maxsbσ , 

,maxsτ − normal stresses in most loaded (tensioned) fibres and 

tangential stresses in longitudinal reinforcement in the place of its intersection 

with inclined crack; 

( )sl t −length of fatigue crack in reinforcement at the moment of time t; 

scfK  − criUcal factor of reinforcement stresses intensity at repeated loads at 

the moment of time t; 

suσ  − temporary steel resistance to rupture; 

рес
plε  − residual plasUc resource of steel. 

Process of multi-cycle fatigue anchoring of reinforcement is character-

ized by the appearance and extension of fatigue cracks in the contact zone be-

tween the reinforcement and concrete. If the clutch stresses of reinforcement 

and concrete τg are high, and these stresses are larger than limit of durability 

of the clutch, i.e. condition τg / τrep  > 1 is true, generation and extension of 

through (inner) fatigue cracks in the contact zone between the reinforcement 

and concrete occur. As it is shown in researches by B.Broms, I. Goto [33], M.M. 

Kholmyanskiy [34], M.I. Karpenko [18] these through inner cracks form cone-

shaped volumes. Indicated cracks permeate into concrete thickness, which 

crumples under these protrusions. Thus, objective fatigue strength of the con-

crete under protrusions and forces of clutch of reinforcement protrusions with 

concrete, should be determined as function of cone-shaped crack length l(t), 

which is permanently increasing with increasing of load cycle number. How-

ever, for analytical characteristic of process of fatigue destruction of contact 

zone, and for change of fatigue strength of longitudinal reinforcement anchor-

ing at repeated loads, it is also expedient to use methods of destruction me-

chanics. Then, the limit of durability (objective strength) of longitudinal rein-

forcement anchoring at the moment of time t is determined by:  
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;  

d - rod diameter;  

rс , rs , rα − accordingly height, step and angle of incline of reinforcement pro-

trusions;  

а – concrete cover;  

, plL L
 
− the length of reinforcement fastening in concrete and plastic place of 

this fastening;  

kϕ − angle of wedge under reinforcement protrusions;  

( ),l t τ  
− length of fatigue crack in concrete under reinforcement protrusions 

at the moment of time t . 

During cycle loading under the influence of high stresses of concrete 

crumpling under the reinforcement protrusions, there are intensively extents 

deformations of vibro-creep. With enlargement of load cycles number N, due 

to concrete vibro-creep under reinforcement protrusions which surrounds 

them, increasing of displacement increment ( )0
m a xg t  on loaded end and in-

side the fastening ( )max
xg t  occurs, and this, in its turn, leads to redistribution 

of clutch forces 
,i rP from more loaded protrusions in the end of fastening, to 

protrusions that are situated in the depth of fastening, i.e. redistribution of 

clutch stresses 
gτ along fastening occurs. Wherein, enlargement of load cycle 

number leads to continuous increasing of plastic area length and increasing of 

completeness of clutch stress diagram. 

Analysis of a number of experimental data shows that fatigue strength 

and limit of durability of reinforced concrete bending elements in the zone of 

joint action of transverse forces and bending moments, exceeds appropriate 

stresses (loads), at which, inclined cracks in the tensed zone of the element 

appear, even for short time static load, i.e. bending reinforced concrete struc-

tures resist to repeated cycle loads at presence of normal and inclined cracks 
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in near support areas. Concerning this, during the development of calculation 

model for evaluation of fatigue strength or durability of such structures at the 

transverse force and bending moment action, it is necessary to consider the 

existence of cracks in the tensed zone, because the appearance and the exten-

sion of inclined cracks, radically change the quality of stress-strain state, espe-

cially, in the elements with large shear spans. 

The condition of the formation of cracks in the stretched zone of ele-

ments under the vertical displacement of wedges in sealing concrete elements 

that resists surrounding concrete, and the impact of horizontal and vertical re-

inforcement in the above-mentioned equilibrium conditions for the semi-

wedge ABO and for the vertical section of the OO (Fig. 3.1, b, c) is taken into 

account in the form of forces in the reinforcement. 

In elements with large shear spans (а0  / h0 > 2) in the zone of joint action 

of transverse forces and bending moments, first of all normal cracks appear, 

and then, at optimal quantity of longitudinal work reinforcement (in not over 

reinforced structures), they are warping on near support areas by trajectories 

of main compression stresses and transform into inclined cracks. By increasing 

the cycle number, one of such inclined cracks starts to expend more intensively 

and becomes critical. Trajectory of main compression stresses, along which ap-

pearance and extension of initial place of critical incline crack occur, can be 

described by equation ( )y h m n h а= + , where ;m n  – are determined 

from boundary conditions. Analysis of character of appearance and expansion 

of fatigue cracks, fatigue destruction of experimental  beams, their stress-strain 

state in the zone of joint action of transverse forces and bending moments at 

repeated loads of high level and experimental thermograms [27] of near sup-

port areas of experimental elements, allow to propose the following hypothe-

sis of following expansion of critical inclined crack and developing the physic 

model of fatigue destruction of bending reinforced concrete elements with 

large shear spans. Long before the appearance of normal and inclined cracks in 

shear span, especially, before forming end expansion of critical inclined crack, 

in normal section, at the end of shear span, where maximum moment occurs, 

normal crack appears (section 1-1 on fig. 3.4). 

Until the remaining cracks appear in the zone of transverse force and 

bending moment action, this normal crack in the end of shear span extends on 

high  
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Fig. 3.4 Physic and calculation model of fatigue resistance of not over reinforced con-

crete element with large shear span 

height and tensed zone is practically fully off from work, the diagram m ax ( )x tσ  

is twisted, increases the completeness of this diagram σω  and in top part of it, 

plastic area starts to form; reduction of compressed part of concrete section 

height which has no cracks, yet leads to sharp increase of completeness of di-

agram τω  of tangential stresses and to sharp increase of maximum value of 

tangential stresses max ( )xy tτ . Thus, inside the plastic area 
plx  of compressed 

zone, it is sharply increased resulting max
2RN  of normal 

 max max( )

pl

с x
A

N t dAσ= ⋅
 and tangential

max max max ( )

pl

с с xy
A

Q V t dAτ= = ⋅
 

forces, where plA  – area of plastic part of compressed zone in normal section 

with crack at the end of shear span. Under the influence of the force m ax
2RN  in 

a compressed zone operating in limits of load area cosplx γ , in the direction 

of the line of this force there is an inclined compressive force stream inclined 

at an angle γ to the longitudinal axis of the element. Pattern of stress distribu-

tion inside this inclined compressed force flow, is the same as at local compres-

sion. Action line of tensile stresses generates and extend fatigue separation 

microcracks during the cyclic loading. 
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That happends before the appearance of critical inclined crack inside the in-

clined compressed force flow from micropores in concrete body and extend 

fatigue separation microcracks, that later join into separation macrocrack еd at 

angle γ to longitudinal element axle. 

The most characteristic feature of normal separation cracks on near 

support parts of not over reinforced beams, is the tendency of any, even ini-

tially inclined to compression force action line, crack to align its trajectory in 

the direction of this force. Wherefrom, we can accept the hypothesis, that from 

all inclined cracks which were formed on near support part from joint action of 

transverse force and bending moment in the tensed zone at first load or at 

increasing of cycle numbers and load levels, that inclined crack becomes criti-

cal, which comes to zone of influence of inclined compressed force flow, gen-

erated by action of resulting m ax
RN of forces in compressed zone inside the 

plastic area 
plx . This can only be explained by the fact that the critical, as a 

rule, becomes the extreme (closest to the support) fracture that forms and de-

velops along the less stressed trajectory of the main compressive stresses. 

What is happening further is development of the critical sloping crack and its 

disclosure that is more intensive in comparison with other inclined cracks. Also, 

there is a severe increase in normal stresses in the longitudinal reinforcement 

in place of its intersection with a critical sloping crack, that is, the alignment of 

longitudinal forces. 

Fatigue destruction of reinforced concrete element on the inclined sec-

tion occurs due to compressed zone or as a result of fatigue rupture of the most 

stressed rods of transverse reinforcement which intersects with initial area of 

critical inclined crack, or on the tensioned zone as a result of fatigue rupture of 

longitudinal reinforcement in normal section 1-1, or because of anchoring vio-

lation of longitudinal reinforcement on and out of support. 

So, for assurance of operability of the element at repeated load, one 

needs to adhere to conditions: 

( ) ( ),
max
1с сd rept f tσ ≤ , ( ) ( )max

, ,sw ydw rept f tασ ≤ , 

( ) ( )max
,sв ydq rept f tσ ≤ , ( ) ( )max

,s ydan rept f tσ ≤  
(3.12) 
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where ( )max
,sw tασ  − actual  maximum stresses in the most loaded rods of trans-

verse reinforcement at the moment of time t, on the place of their intersection 

with initial part of critical inclined crack in the tensed zone;   

( ),ydw repf t  − durability limit of transverse reinforcement rods at their axle, 

loading at the moment of time t; 

The same as in elements with large shear span, action of repeated load, 

which leads to extension of vibro-creep deformations of compressed concrete 

in the direction of stresses max
x1σ , max

1сσ  , is accompanied by the appearance 

and extension of additional (residual) stress-strain state on near support part 

of bended reinforced concrete element. With the aim of stress-strain state 

evaluation simplification, the action of repeated load and reinforced concrete 

element work, is divided into two stages. The first stage shows the stressed 

state of the structure at the first cycle (N = 1) of load, to maximum cycle load 

Pmax. The second stage is characterized by the stressed state of the element in 

the process of its repeated load (N  > 1), which is continuously changed through 

intensive extension of vibro-creep deformations ε1c, pl of compressed concrete. 

In the general flow, stresses in concrete and reinforcement, and the fac-

tors of cycle asymmetry, have the form: 

 

( ) ( ) ( )max max
0

add
i i it t tσ σ σ= ±  

(3.13) 

( ) ( ) ( ) ( ) ( )max max
0 0

add add
i i i i it t t t tρ ρ σ σ σ σ= ⋅ + +  

(3.14) 

 

where
min maxP Pρ = , ( )max

0i tσ  − iniUal stresses in concrete or reinforcement 

at the first half-cycle of load; ( )дод
i tσ  − addiUonal (residual) stresses in concrete 

or reinforcement, which appear as a result of concrete vibro-creep defor-

mations accumulation. 

Initial stresses at first load max
0( )i tσ  are determined from conditions of 

external and internal forces equilibrium based on the model of fatigue re-

sistance of the element. Additional stresses ( )add
i tσ , which appear during the 

process of their repeated load, starting from the second load cycle, are deter-

mined based on the deformation relation for normal section (1-1) at the end of 
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shear span and inclined section (2-2), which are placed on the critical inclined 

crack (Fig. 3.4). 

Fatigue destruction of compressed concrete zone over critical inclined 

crack, occurs under the action of resulting max
2RN  of transverse and longitudinal 

forces, which appear inside the plastic part of normal section 1-1. Due to stress-

strain state of the compressed concrete zone over critical inclined crack (inside 

the inclined compressed force flow), and the behaviour of fatigue destruction, 

we can conclude that they are analogical to stress-strain state and the behav-

iour of fatigue destruction in flat-stressed elements at the local load action, 

objective fatigue strength over critical inclined crack at the moment of time t, 

so we determine: 

( ) ( )( )
( ) ( )

t cos
  ( )

ccf 1sw
сd,rep

pl

k t k t l ctg
f t

x l t Y l

γ ϕ

π

+ ⋅
= ×

⋅

( )
2 3

4 4

6 cos sinL
1

sin
1, 4 1, 25 sin

s sс

s s
s

s

E І L nG

E a
d

Eс d

εε ϕ γ γ
ϕ

ϕ

 
⋅ ⋅ − × − + ×

 
    ⋅ ⋅ +   

  

( )
( )

1

1

1 1
,

o

tk n

е k
с сk t

C K a H C t dt
E E

υ σψ τ
τ τ

−
=

=

  ∂ × + + +  ∂     

∏ 
 

 (3.15) 

 

Durability limit of longitudinal reinforcement ( ),sd bf t  on the place of its in-

tersection with critical inclined crack in conditions of flat-stressed state, is de-

termined by (3.9) and (3.10). Durability limit of longitudinal reinforcement an-

choring ( ),yd anf t  by critical inclined crack, is determined by (3.11). Durability 

limit ( ),ydw repf t  at axial load, is determined by (3.9) and (3.10), taking into 

account that, m a x 0s wτ = .  

Testing [27] reinforced concrete beams with rectangle cross section 

with shear span а0 = с0 = (1,51 – 1,67)h0 ,has allowed us to specify the following 

picture of appearance and extension of cracks and character of fatigue destruc-

tion in the zone of transverse forces and bending moments action. Since the 

elements with middle shear span 1,2 h0 < с0  = а0 < 2 h0 are on the borders of 

elements with small and large shear spans, in their operating and in mechanics 
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of fatigue destruction at middle shear spans, features of the first and the sec-

ond are determined, i.e. the  behaviour of appearance and extension of cracks 

in the zone of transverse force and bending moment action and fatigue de-

struction of these elements is influenced by internal force factors. Local fields 

of stress state and stresses concentration in corresponding zones in places of 

concentrated external forces are applied. Thus, at the middle shear spans, the 

fatigue destruction occurs with the appearance of critical inclined crack, but 

local fields of stressed state and concentration of stresses in indicated zones 

influence the destruction. Critical inclined crack can appear on the distance 

(0,2…0,3) h from the tensed edge and extends in support or concentrated ex-

ternal force direction. In the tensed zone, it disclosures along the line 2-2 (Fig. 

3.5), which connects the inner edge of supporting plate with the external edge 

of load plate, and fully intersects (to the inner edge of the support plate). But, 

in its extension from support to concentrated force, critical inclined crack, after 

approaching point O, i.e. intersection of lines 2-2 and 3-3, changes its direction 

and resumes extension along the line 3-3 by the axle of inclined compressed 

flow. At the same time, inside the compressed force flow on the line of tensile 

stresses max
2tσ , rupture crack d – e along the axle 3-3 appears and extents, 

which afterwards merges with the initial part ОО2 of the critical crack. It is ob-

vious that the appearance, extension and disclosure of the critical crack in 

tensed zone (area ОО2) are connected with flat rotation and shear of inclined 

section 2-2. Their extension and disclosure in compressed zone (ed) are caused 

by the appearance and the extension of micro cracks rupture on the line of 

tensile stresses max
2tσ (Fig. 3.5) action in the zone of “tension-compression”, in-

side the inclined compressed force flow, formed under the action of force 

maxРβ , and following  
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Fig. 3.5 Physic model and calculation scheme of fatigue resistance of inclined, not over 

reinforced element with middle shear span 

merge into macro crack, following the extension and disclosure of this macro 

crack rupture. Behaviour of stress distribution inside the inclined compressed 

force flow is the same as at crumpling. 

For this cause of stress-strain state and destruction character objective 

fatigue strength (durability limit) of inclined concrete strip over critical inclined 

crack becomes: 

0

1

,

2 3
1

4 4

( ) ( )
( )

( ) ( )

6 ( ) 1 1
1 ( , )

( )

1,4 1,25

ccf sw t
cd rep

sup

k n tc s s
e k t

c ck
s s

s
c s

k t k t l ctg
f t

l sin l t Y l

G L E I L ncos sin
c K a C t dt

E Esin
E a

d sin
E d

ε ε
υ

ϕ
β π

ϕ β β ψ τ
τ τϕ

ϕ

=

=

 + = ×

 
 
 
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.

−



 (3.16) 

Durability limits of transverse and longitudinal reinforcement, and the 

durability limit of its anchoring are determined by (3.9), (3.10) і (3.11). 
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3.3 Conclusions on chapter 3:
 

1. The analysis of present methods of calculation of reinforced concrete 

structures at joint action of transverse forces and bending moments, shows 

that, in most cases, they are performing in assumption of elastic concrete work 

without considering its physic nonlinearity and change of deformation modes 

of materials in structures at cycle loading; 

2. Considered physical models and calculation schemes of near support 

areas resistance of not over reinforced span, reinforced concrete structures, to 

repeated load of high level, different types of fatigue destruction of materials 

are envisaged considering vibrocreep deformations, accumulation of the dam-

ages in form of fatigue micro- and macro cracks.  
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CHAPTER 4 ENGINEERING METHOD OF INCLINED SECTIONS OF BEAM 

STRUCTURES CALCULATION ON THE FATIGUE FRACTURE 

MODEL 

Practical application of calculation methods of used materials and rein-

forced concrete elements on durability by models reviewed in p. 3, is bound 

with some computational difficulties. Besides, special knowledge connected 

with the crack theory and destruction mechanics, that caused additional diffi-

culties for the designers, are needed. At that, main difficulties occur evaluating 

the objective (residual) strength of concrete and reinforcement at repeated 

loads. They are related to accumulation of damages and reduction of plastic 

resource of material through integral parameters: fatigue crack length l(t) and 

critical values of stress intensity factor at fatigue destruction Kcf(t). In addition, 

the development of fatigue cracks in concrete, leads to increase of vibrocreep 

deformations, because concrete deformations at cycle load consist of linear 

and nonlinear parts. Nonlinear part of vibrocreep deformations appears as a 

result of creation and development of fatigue micro cracks in concrete, and is 

a function of fatigue macro crack length l(t). In this connection, the determina-

tion of the nonlinear part of the deformation of creep vibration (vibrocreep) 

also encounters the corresponding difficulties. Determining these three param-

eters complicates the calculated dependencies.  Linear part of vibrocreep de-

formation also meets appropriate difficulties. Thus, for practical calculations, 

we consider engineering method which is based on theoretical results of p. 3 

and some simplifying preconditions. Change of the stress state in the process, 

as well as change of strength properties of the reinforcement, concrete and 

their adhesion, should be taken into account. Wherein, vibrocreep defor-

mations, concrete and reinforcement fatigue strengths, reinforcement anchor-

age and stresses in them, are calculated by simplified method at the moment 

of time t. 

The main element of the simplified technique is the application of sim-

plified method for calculating the limits of concrete and reinforcement dura-

bility. 

It is known that the change of the materials strength under cyclic load-

ing in half-logarithmic coordinates fcd = lgN is described by linear dependence. 

The durability line is characterized by inclined and horizontal areas. Therefore, 
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the characteristic points of the durability line are the beginning and the point 

of its inflection. 

For concrete, the beginning of the durability line is a point on the axis of 

stress (Fig. 4.1) at N = 1, which corresponds to its dynamic strength at a one-

time load at a speed equal to the speed of cyclic load applied. Herewith, the 

larger their frequencies, the greater the strength at a one-time dynamic load.  

 
Fig. 4.1 Calculated durability concrete lines 

In practical calculations, we accept: 

,cd d d cdf k f= ⋅  (4.1) 

where dk , cdf  − coefficient of dynamic strengthening of concrete and its 

strength at static loading. 

According to the proposition [35], the coefficient of dynamic strength-

ening of the concrete is determined as loaded for the first time by the formula: 

[ ]0,27 0,8 (0,15 ) 0,358
1 0,6

1 0,358 ( )
d

th lg
k

tg lg

υ
υ

+ −
= + ⋅

−
 

(4.2) 

and taking into account the plastic resource at the previous stages of loading: 

max 5
1 1

5
1

2

( , ) (1 ) 1 (1 ) 10
( , )

1 0,085
( , )(1 ) 1 (1 ) 10

N
c c

cd

kd
N

c b
i
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c t a
c t

f
k lg lg

c t a

f

τ σ ρ
τ

υ
σ τ ρ

∞
∞

∞
=

  − − −
  − +

 
 = +  

 ∆ − − − 
  + 

 



 

 (4.3) 

where ν – loading speed. 
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For concrete, the absolute durability limit at ρс = 0 at [35] varies within 

(0,47…0,55)fcd, and coincides with the lower limit of micro cracking. Therefore, 

in practical calculations, the absolute limit of durability 
,

a
cd repf  at ρс = 0 equals 

0,5fcd, and the relative durability limit in this case is: 

, , / 0,5a a
c rep cd rep cdk f f= =  

(4.4) 

The relative value of concrete durability at tensile, shearing and torsion 

are taken the same. Since the lower limit of micro cracking 0
crcf  depends only 

on the level of the action stress and the type of stress state, then for any ρс , 

the durability limit will be the same, and its value will have an effect on the 

structure durability, that is, on the cycles number at which the durability lines 

will come to an end. As known, the overlap of these lines begins at N ≥ 107. For 

ρс = 0, it can be assumed N = 107, which creates some reserve. For larger values 

of ρс this point moves to the right along the lgN axis, the greater, the larger ρс 

[35]: 

,

, ,
,

1 1
a
c rep

d

a
cd rep c rep

c rep
kcd

c k

f k
k

f
ρ

= =
 

− − 
 

 

(4.5) 

and durability strength at N < 107 

( ), , , ,
7

i
cdi rep cd d cd d cd rep

lgN
f f f f= − −

 

(4.6) 

or in relative values taking into account (4.1) і (4.6) 

,
0,5

1,3 1,3
7 1 0,616

i
ci rep

c

lgN
k

ρ
 

= − − − 

 

(4.7) 

Taking kd = 1,3 and considering (4.4) we get: 

,
0,5

1,3 1,3
7 1 0,616

i
ci rep

c

lgN
k

ρ
 

= − − − 

 

(4.8) 

For reinforcement, А.P. Kirillov [35] recommends to accept the follow-

ing expression as the beginning of the durability line: 

,yd d uf η σ= ⋅  (4.9) 

and the overlap of the durability line (Fig. 4.2) in the point with coordinates  

0
,

01 1

c r
yd rep u

c r
s

k k k
f

k k k
σ

ρ
η

⋅ ⋅=
 ⋅ ⋅− − 
 

 

lgN = 6,3 

(4.10) 
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where 0,
0

yd rep

u

f
k

σ
=  − relaUve reinforcement durability limit at ρs = 0; 

ck  − a coefficient that takes into account the presence of a weld joint or 

other stress concentrator; 

rk  − a coefficient that takes into account the reinforcement diameter; 

uσ  − temporary reinforcement resistance to breakage; 

η = 1,8 – empirical coefficient. 

The element fatigue strength for the number of cycles N < 2∙106 is: 

( ), , , ,6(2 10 )

i
ydi rep yd d yd d yd rep

lgN
f f f f

lg
= − −

⋅
 

(4.11) 

and taking into account (4.9) and (4.10) in relative values, it has the 

form: 

0
,

0

lg

6,3
1 1

i c r
ydi rep

c r
s

N k k k
k

k k k
η η

ρ
η

 
 ⋅ ⋅ = − −

 ⋅ ⋅ − −  
  

 

(4.12) 

 

 
Fig. 4.2 Calculated durability reinforcement lines 

In practical calculations the stress change, which occurs as a result of 

development of vibrocreep deformation of compressed concrete, in conditions 

of complex stress state, takes into account the functions of stress accumula-

tions in concrete 
c

Hσ , longitudinal 
s

Hσ  and transverse 
w

Hσ  reinforcement. 
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These are functions of concrete vibrocreep deformations which are calculated 

on the theory of vibrocreep [36]. 

Actual stresses in concrete, longitudinal and transverse reinforcement, 

at the moment of time t, in calculations, are presented in the form: 

max max
0( ) ( )

cс сt t Hσσ σ= ⋅ ; max max
0( ) ( )

ss st t Hσσ σ= ⋅ ; 

max max
0( ) ( )

swsw swt t Hσσ σ= ⋅  
(4.13) 

where max
0( )с tσ ; max

0( )s tσ ; m ax
0( )sw tσ  − iniUal stresses, corresponding, in con-

crete, longitudinal and transverse reinforcement.  

In concrete and reinforced concrete elements with zero shear span а0 / 

h0 = 0, and in engineering method of durability calculation, the method of stress 

calculation is accepted without changes because
1 ( ) 0add
с tσ = , max max

1 1 0( ) ( )с сt tσ σ=  

and 0
c

Hσ = , and m ax
1 0( )с tσ  is defined at the first loading from equilibrium 

conditions on the base of fatigue destruction model. Therefore, only the right 

part of the condition (3.6) from p. 3, i.e. fatigue strength of concrete elements 

with simplifying preconditions [27] taken into account, will take the form: 
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(4.14) 

 

and for reinforced concrete structures: 
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     
 ⋅ ⋅ ⋅ +   

    (4.15) 

 

where А, В, С – see explanations for (3.4) and (3.5) in p. 3; 

,cdi repf ; 
,ydi repf  − faUgue strengths of concrete and reinforcement at tension; 

Нε  − funcUon of deformaUons accumulaUons in concrete at repeated loads; 

sE , cE , cG  − modulus of elasUcity of reinforcement and concrete, and con-

crete shear modulus. 
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At small shear spans, taking into account (4.1) condition (3.7) will be 

represented as: 

( ) ( )max
1 0 , cс cdс rept f t Нσσ ≤ , ( ) ( )max

0 , ssв ydq rept f t Нσσ ≤
 

( ) ( )max
0 , ss yd ant f t Нσσ ≤  

(4.16) 

 

Initial stresses ( )m ax
1 0с tσ  and ( )max

0s tσ  at first load are determined from equi-

librium conditions on the base of fatigue resistance model. 

Fatigue strength of inclined strip in elements with transverse reinforcement 

and without it, after accepted simplifying preconditions, are determined by for-

mulas: 
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(4.17) 
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(4.18) 

 

Longitudinal reinforcement fatigue strength in the place of inclined crack inter-

section in conditions of flat stress state, is determined as: 

( )
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u ds ds o c r s o c r ds i
ydq rep

s sв

k k k k k k k k k N
f t

σ ρ

τ σ

 − − − ⋅ =
+

 

(4.19) 

 

Longitudinal reinforcement anchoring fatigue strength has the form: 

( ) ( ) 2
, ,, 2yd an cdi rep о r cdf t f В d c L f dτ = + ⋅  

(4.20) 

 

where 
оВ  − reference clutch parameter. 
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Fatigue strengths of concrete and reinforcement in free conditions at axle load 

at compression on equation of A.P. Kyrykov [35]:  

 

( ){ }, , ,1 1 lg 7 ,
a a

cdi rep cd dc dc c rep c c rep dc if f k k k k k Nρ  = − − − − ⋅    
 

 (4.21) 

for concrete at tension:  

( ){ }, , ,1 1 lg 7 ,a a
cdti rep cdt dc dc c rep c c rep dc if f k k k k k Nρ  = − − − − ⋅    

 

 (4.22) 

for reinforcement: 

( ){ }, cт1 lg 6,3ydi rep u ds ds o c r s o r ds if k k k k k k k k k Nσ ρ = − − − ⋅ 
 

 (4.23) 

 

where dck  and dsk  − factors of dynamic strengthening of concrete and rein-

forcement; 

cρ  and sρ  − factors of stress cycle asymmetry in concrete and reinforcement; 

, , /
a a
c rep c rep cdk f f=  − concrete absolute faUgue strength; 

0, /o yd rep uk f σ=  − reinforcement relaUve faUgue strength at 0sρ = ; 

cтk  − factor that takes the presence of welding or another stress concentrator 

into account; 

rk  − factor that takes the reinforcement diameter into account; 

uσ  − reinforcement temporary resistance at its rupture. 

 

At large shear spans taking (4.1) fatigue condition into account, (3.12) be-

comes: 

( ) ( )max
1 0 , cс cdс rept f t Нσσ ≤ , ( ) ( )max

, 0 , swsw ydsw rept f t Нα σσ ≤

( ) ( )max
0 , ssв ydq rept f t Нσσ ≤ , ( ) ( )max

0 , ss ydan rept f t Нσσ ≤  
(4.24) 

Fatigue strength of compressed zone over critical inclined crack in rein-

forced concrete elements with transverse reinforcement and without it, after 

simplifying preconditions application, is determined respectively: 
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( )

,
1

2 3

4 4

0,75
cos 0,5sin cos

  

6 cos sin 1
1

sin
b 1, 4 1, 25 sin

w

ydi rep sw

cdс,rep

s sc

cs s
s

c s

h
f A сtg

x
f

E I nG
H b s L H

EE a
d

E d

γσ ε ε

ϕ γ ϕ ϕ
λ

ϕ γ γ
ϕ

ϕ

 
⋅ ⋅ ⋅ ⋅ − ⋅ =

 
 ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ + ⋅ +    

      ⋅ ⋅ +   
    (4.25) 

 

( )

,
1

2 3

4 4

0,75
0,5sin cos

  

6 cos sin 1
1

sin
b 1, 4 1, 25 sin

cdti rep

cdс,rep

s sc

cs s
s

c s

h
f ctg

x
f

E I nG
L H

EE a
d

E d

ε ε

ϕ ϕ ϕ
λ

ϕ γ γ
ϕ

ϕ

 
⋅ − ⋅ =

 
 ⋅ ⋅ − − ⋅ + ⋅ +          ⋅ ⋅ +   

  

 
(4.26) 

 

Fatigue strength of longitudinal reinforcement ( ),ydsq repf t  in the place 

of intersection with inclined crack, in conditions of flat stress state, is deter-

mined by (4.7). Fatigue strength of longitudinal reinforcement anchoring 

( ),ydan repf t , is determined by critical inclined crack – by (4.8), and fatigue 

strength if transverse reinforcement rods ( ),ydsw repf t  at axial load is defined 

by (4.7), taking into account max 0sτ = . 

At average shear spans taking (4.1) fatigue conditions (3.16) into ac-

count, transforms as follows: 

 

( ) ( )max
1 0 , cc cdс rept f t Нσσ ≤ , ( ) ( )max

, 0 , swsw ydsw rept f t Нα σσ ≤ ,   

( ) ( )max
0 , ssв ydsq rept f t Нσσ ≤ , ( ) ( )max

0 , ss ydan rept f t Нσσ ≤  
(4.27) 

 

Fatigue strength of compressed zone over critical inclined crack in rein-

forced concrete elements with transverse reinforcement, and without it, after 

taking simplifying preconditions into account, is determined respectively: 

(4.29) 
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( )

2
, 2

sup

2 3

4 4

cos cos
sin

  

6 cos sin 1
1

sin
b 1, 4 1, 25 sin

sw

ydi rep sw

cd,rep

s sc

cs s
s

c s

h ctg
f A ctg ctg

l
f

E I nG
H b s L H

EE a
d

E d

βσ ε ε

ϕβ ϕ β ϕ
β

ϕ β β
ϕ

ϕ

 ⋅ ⋅ ⋅ ⋅ − ⋅ −
 
 =

 
 
   ⋅ ⋅ −
 ⋅ ⋅ ⋅ − ⋅ + ⋅ + 

      
 ⋅ ⋅ +       

(4.28) 

( )

( )

2
, 2

sup
,

2 3

4 4

cos
sin

,

6 cos sin 1
1

sin
b 1, 4 1, 25 sin

ci rep cdt

cd rep

s sc

cs s
s

c s

h ctg
k f ctg ctg

l
f t

E I nG
L H

EE a
d

E d

ε ε

ϕ ϕ β ϕ
β

τ

ϕ β β
ϕ

ϕ

 ⋅ ⋅ − ⋅ −
 
 =

 
 
   ⋅ ⋅ −
 − ⋅ + ⋅ + 

      
 ⋅ ⋅ +       

(4.29)

 

At reinforced concrete structures design sometimes, the need for ap-

proximate estimation of reinforced concrete structures durability at transverse 

forces and bending moments’ action, without performing any difficult calcula-

tions, appears. Applying proposed approach for determining the durability of 

near supports parts of reinforced concrete structures by corresponding 

stresses and methods of structural mechanics, we can prepare calculation de-

pendencies for determining the corresponding boundary forces which can be 

carried out by given structure, at repeated load, and at the cycles number that 

is lower than base. 

So, taking fatigue condition max
1 ,( ) ( )с cd rept f tσ ≤  into account, bound-

ary force that can be carried out by structure element with zero shear span at 

local cycle load with cycles number that is lower than the  base, is determined: 

- for element without reinforcement: 

2
,

1

ci rep cdt loc

lim,0

c
c

ctg
k f cos b l

P

A G L B H
Eε ε

ϕ ϕ
δ

 ⋅ − ⋅ ⋅ 
 ≤

 
− ⋅ ⋅ + 

 

 

(4.30) 

- for reinforced concrete element: 
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,

3

44

6 1

1,4 1,25

si rep u s
lim,0

s s
loc c

c
s

s
c s

k m A ctg
P

E I L n
H b l A G L B C H

E
aE

b d
E d

ε
σ ε ε

σ ϕ⋅ ⋅ ⋅ ⋅
≤

 
 
  ⋅ ⋅ ⋅ − + + +  

    
+   

      . 

(4.31) 

As is known, in reinforced concrete elements with small shear span (с0 

≤ 1,2h0), fatigue destruction in the zone of transverse forces action can take 

place by inclined compressed strip between support and load area, or by its 

stretched zone, as a result of longitudinal reinforcement rupture in the place 

of intersection with inclined crack, or reinforcement anchoring violation by in-

clined crack. To provide their bearing capacity it is necessary to adhere to cor-

responding fatigue conditions: 

( )max
1 0 , ( , );c cd rept f tσ τ≤    ( ) ( )max

, 0 , , ;
ss в ydq rept f t Нσσ τ≤

 

( )max
0 ( , ).s ydant f tσ τ≤  

(4.32) 

Based on these conditions, boundary forces which can be carried out by 

structural element with small shear span, can be determined by formulas at 

cycle number lower than: 

- in reinforced concrete beams without transverse reinforcement: 

 

2 2
, 2

3

4 4

,

6 ( ) 1

1,4 1,25

0

ci rep cdt sup
sup

s s
НП c НП

c
s s

smin
c slim,h
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h ctg
k f ctg ctg cos b l sin

l sin

E I L n cos sin
A G L B H

E
E a

b d sin
E dP

або

k

ε
ε ε

ϕ ϕ α ϕ α
α

ϕ α α

ϕ
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 ⋅
 ⋅ ⋅ − ⋅ − ⋅ ⋅
 ⋅ 

 
 
   ⋅ ⋅ ⋅ ⋅ − − ⋅ ⋅ + ⋅ +   

    
⋅ ⋅ +   

≤      

⋅

( )

2

, 0

2

,

1 3
3

2
;

s
s m

МПС
s s

сi rep r s

a ctg
H к

W A

k В d c L A
або

d ctg

σ
α

α

















 Ω ⋅ + +   


⋅ + ⋅


⋅

(4.33) 
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- in reinforced concrete elements with transverse reinforcement: 

,

3

4 4

,

6 ( ) 1

1,4 1,25

1 3
3

W

0

s

si rep u sw

s s
НП c НП

c
s s

s
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s s

k m A ctg cos sin

E I L n cos sin
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b d sin
E d

P
або
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H к

W A
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σ ε ε

σ

σ ϕ α α

ϕ α α
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 
 
   ⋅ ⋅ ⋅ ⋅ − − ⋅ ⋅ + ⋅ +   

    
⋅ ⋅ +    

     
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⋅

 Ω ⋅ + + ⋅ 
 

( )

2

, 0

2

,

2
.

МПС

сi rep r sk В d c L A
або

d ctgα

















 ⋅ + ⋅


⋅  

(4.34) 

Taking into account fatigue conditions of concrete over danger inclined 

crack, longitudinal and transverse reinforcement on near support part of the 

beam, 

 

( ) ( )
1

max
1 0 , cc cdс rept f t Нσσ ≤ , ( ) ( )max

0 , ssв ydq rept f t Нσσ ≤ ,   

( ) ( )max
0 , ss yd rept f t Нσσ ≤ , ( ) ( )max

0 , ss ydan rept f t Нσσ ≤

( ) ( )max
, 0 , wsw ydsw rept f t Нα σσ ≤  , 

(4.35) 

we will find boundary forces that can be carried out by structural element with 

large shear span: 

- reinforced concrete beams without transverse reinforcement: 
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(4.36) 

Where 

( ) ( ) ( )

( )( ) ( )

0 1 1

1 1 2 3

1
1

1
1 2 3

1

0,5 2
1

;

1 1

с a Xctg z sin
к к к к ctg

a
j

z
к к к ctg

a

α λ ϕ
α

λ α

− − + ⋅
+ + + +

=
+ + + + ⋅

 

 (4.37) 

( ) ( )

( )

0

2 3

1
2

1
1 2 3

1

0,5
1

;

1

с Xctg
к к ctg

z
j

a
к к к ctg

z

α
α

α

−
+ + ⋅

=
+ + + ⋅

 (4.38)

- reinforced concrete span elements with transverse reinforcement: 
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(4.39) 

Based on conditions of concrete durability over danger incline crack, longitudi-

nal and transverse reinforcement (4.36) we will find boundary forces that can 

be carried out by structural element with medium shear span: 

- reinforced concrete beams without transverse reinforcement: 
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(4.40) 

where j1 and j2 determine (4.38) and (4.39) respectively; 
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- reinforced concrete span elements with transverse reinforcement: 
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(4.41) 

For determination of boundary forces that can be carried out by struc-

tural element, unlimited number of times with reusable variable load without 

breaking down, in expressions (4.31), (4.32), (4.34), (4.35), (4.37), (4.40), (4.41), 

(4.42) should be used 
, 0,5ci repk = ; and 

,si repk  ‒ taking into account (4.10). 

Relative fatigue strength of concrete at limited number of cycles 

7
,( 10 ) 0,5ci repN k< =  is determined by (4.7), and relative fatigue strength of 

reinforcement 
,si repk  – by (4.12). 

At low-cycle repeated load on testing beams, constituents of formulas 

(4.31)…(4.42) were defined by expressions: 

- factor of dynamic strengthening of concrete 
dk  by (4.2) with the load-

ing speed 6 0,6 /
кгс

МПа сек
см сек

υ = =
⋅

; 

- relative concrete fatigue strength 
,ci repk  at simple types of defor-

mations (compression, tension, shear and torsion) by (4.7) taking into account 
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the factor of stress cycle asymmetry in concrete 0 ( 1с сρ ρ= = −  at alter-

nating load); 

- relative fatigue strength of reinforcement 
,si repk  by (4.12) taking into 

account values of factors 
00 ( 1), 1,8; 1s s c rk k kρ ρ η= = − = = = = ; 

- functions of stress accumulations are determined in concrete 
c

Hσ , 

reinforcement 
s

Hσ , transverse reinforcement 
w

Hσ  by expressions: 

1 1 01 ( ) / ( )σ σ σ= +
c

add max
cH t t  

(4.42) 

2
1

s

s s

s s

E A L H
H

b l sin

ε ε
σ ω ϕ

⋅ ⋅ ⋅
= +

⋅ ⋅ ⋅
 

(4.43) 

2

0,5
1

w

s sw

sw sw

E m A L H
H

b l cosa× sin

ε ε
σ ϖ ϕ

⋅ ⋅ ⋅ ⋅ ⋅
= +

⋅ ⋅ ⋅
 

(4.44) 

where ,s swω ω  − stress distribuUon completeness coefficients respecUvely in 

longitudinal and transverse reinforcement. In the first approximation 

0,8s swω ω= = . Other constituents of formulas (4.43)…(4.45) are given be-

low; 

- angle of inclination of compaction wedge faces φ at loading areas by 

recommendations of T.I. Baranova [32] is determined: 

before rupture crack appearance: 

2/30,48( / )locarctg l hϕ  =
 

 
(4.45) 

after appearance and development of this crack: 

(0,25 / 1,56)cd cdtarctg f fϕ = −  (4.46) 

- factor Lε, that characterized the direction of force flow, is determined 

by expression: 

( ) ( )1
2 2н к н н к кL tg tgεθ θ θ π θ θ π θ

π
 ↔ = − − − 

 (4.47) 

where 

н arctgsin cosθ ϕ ϕ= ⋅  (4.48) 

2к

sup

h
arctg ctg

l sin
θ α

α

 
 = −
 ⋅ 

 at a / h0 = 1…3,

 (4.49)
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к
loc

h
arctg

l
θ =  at a / h0 = 0 (local compression); 

(4.50) 

 

- α – angle of inclination of straight line segment that models initial part 

of danger inclined crack, is determined by the formula: 

( )0 0,5 top bot
sup sup

h
arctg

c l l
α =

− +

 

(4.51) 

 

- β(=γ) – angle of inclination of straight line segment that models end 

part of danger inclined crack: 

0
1 1

0

; /max max
c c

h
arctg arctgV N

c
β γ= =  

(4.52) 

 

- А, В, С – factors connected with sizes of element and load area. On h 

≤ 1,5L and 0,2locl

h
δ = <  A = 1, B = 1 / sin2φ; C = 0 at        c0 / h0 = 0 

(local compression); 

AНП = 1, BНП = 1 / sin2φ at a / h0 = 1…3, lsup / h < 0,2; AНП = cos2φ, BНП = 

ctg2φ at lsup / h ≥ 0,2; 

 

- function of deformation accumulation in concrete in general form is 

determined by the formula: 

0( )
( , ) 1

t t c
c k

cd

H c t e k S
f

γ
ε ρ

στ − −
∞

  = ⋅ − ⋅ ⋅     

 

(4.53) 

where function of concrete deformations nonlinearity: 

max max

1

nm

c c
k n

cd cd

S
f f

σ ση
   

= +      
   

 

(4.54) 

, in which  

5 0,07 , 45 /n cd n cdm f fη= − =  − parameters of concrete nonlinearity; 

- εpl(N) – nonlinear constituent of concrete vibrocreep deformations is 

determined by: 

1 1( ) ( ) , ( ) / ( )max max
pl c pl cN t H H N tε εε σ ε σ= ⋅ =  

(4.55) 
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- ( , )c t τ∞  − boundary measure of concrete creep that is cycle loaded 

at the moment of τ; 

- γ – researched factor that characterized the velocity of creep and vi-

brocreep deformations passing; 

- 
ck ρ

 − concrete vibrocreep factor that is determined by: 

0(1 )c c c ck kρ ρ ρ= + −  (4.56) 

where 
0ck  − concrete vibrocreep factor at cρ =0; 

- ρ – cycle asymmetry factor: 

min

max

P

P
ρ =  − external load cycle asymmetry factor 

(4.57) 

 

min
s

s max
s

σρ
σ

=  − longitudinal reinforcement cycle asym-

metry factor (4.58)

1min
w

max
sw

w

P
H

P

H

σ

σ
ρ

 
+ − 

 =  − transverse reinforcement 

cycle asymmetry factor (4.59)
min
с

с max
с

σρ
σ

=  − concrete cycle asymmetry factor

 

(4.60) 

- n – number of transverse rods in shear span; 

- as – protective layer of working reinforcement of concrete; 

- ds – diameter of the working reinforcement; 

 

For given design of testing beams, minimum values of calculated bound-

ary forces (Table 4.1) take place at condition of exhaustion of concrete durabil-

ity over danger inclined crack and transverse reinforcement in shear span ac-

cording to  
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Table 4.1 Calculation values of boundary forces of near support areas durability of testing samples-beams, destructive transverse 

force and their ratio according to the experiment plan 

  
  

  
  

  
  

  
  

  
  

№
  o
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st
 

Natural and coded values of testing factors 
Boundary forces at durability con-

dition 
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w
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) 

Coded values Natural values 
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d
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, 
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, 

k
N
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Х1 Х2 Х3 Х4 a/h0 C, MPa 
ρsw 

(ВрІ) 
η 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 + + + + 3 С40/50 0,0044 0…0,8 29,77 105,6 120,4 66 2,22 2,10 

2 + + + − 3 С40/50 0,0044 0…0,5 29,77 105,6 120,4 68 2,28 2,34 

3 + + − + 3 С40/50 0,0016 0…0,8 10,72 105,6 120,4 52 4,85 4,96 

4 + + − − 3 С40/50 0,0016 0…0,5 10,72 105,6 120,4 54 5,04 5,20 

5 + − + + 3 С16/20 0,0044 0…0,8 17,52 113,7 129,7 62 3,54 3,66 

6 + − + − 3 С16/20 0,0044 0…0,5 17,52 113,7 129,7 64 3,65 3,90 

7 + − − + 3 С16/20 0,0016 0…0,8 6,31 113,7 129,7 48 7,61 7,52 

8 + - - - 3 С16/20 0,0016 0…0,5 6,31 113,7 129,7 50 7,92 7,76 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

9 − + + + 1 С40/50 0,0044 0…0,8 78,54 172,2 395,9 150 1,91 1,90 

10 − + + − 1 С40/50 0,0044 0…0,5 78,54 172,2 395,9 160 2,04 2,14 

11 − + − + 1 С40/50 0,0016 0…0,8 28,26 172,2 395,9 136 4,81 4,76 
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12 − + − − 1 С40/50 0,0016 0…0,5 28,26 172,2 395,9 146 5,17 5,00 

13 − − + + 1 С16/20 0,0044 0…0,8 48,93 433,5 395,9 114 2,33 2,10 

14 − − + − 1 С16/20 0,0044 0…0,5 48,93 433,5 395,9 124 2,53 2,34 

15 − − − + 1 С16/20 0,0016 0…0,8 17,61 433,5 395,9 100 5,68 5,96 

16 − − − − 1 С16/20 0,0016 0…0,5 17,61 433,5 395,9 110 6,25 6,20 

17 + 0 0 0 3 С30/35 0,0029 0…0,65 15,03 109,1 124,4 72 4,79 4,39 

18 − 0 0 0 1 С30/35 0,0029 0…0,65 46,32 253,7 395,9 144 3,11 3,51 

19 0 + 0 0 2 С40/50 0,0029 0…0,65 28,66 105,6 121,3 94 3,28 3,21 

20 0 − 0 0 2 С16/20 0,0029 0…0,65 16,37 113,7 129,9 74 4,52 4,59 

21 0 0 + 0 2 С30/35 0,0044 0…0,65 36,77 109,1 125,1 91 2,47 2,47 

22 0 0 − 0 2 С30/35 0,0016 0…0,65 13,24 109,1 125,1 77 5,82 5,83 

23 0 0 0 + 2 С30/35 0,0029 0…0,8 23,53 109,1 125,1 85 3,61 3,64 

24 0 0 0 − 2 С30/35 0,0029 0…0,5 23,53 109,1 125,1 92 3,91 3,88 

25 0 0 0 0 2 С30/35 0,0029 0…0,65 23,53 109,1 125,1 88 3,74 3,84 

-(y/ − y0)� 
 

0,930 

1 = 2-(3/ ∙ 30)�/24 
 

0,1970 

℧ = (1/67) ∙ 100, %  5,1% 



-80- 

 

described physic models of fatigue destruction that completely converges with 

real character of destruction of their near support areas at repeated transverse 

loads, in Chapter 3. These calculations show (Table 4.1) that fatigue destruction 

of longitudinal working reinforcement of testing samples, as a result of their 

rupture or slipping along danger inclined crack, is impossible, due to their suf-

ficient amount and appropriate anchoring on support and behind them. 

Comparison of calculation and actual values of bearing capacity of in-

clined sections of samples-beams showed that, despite the complete coinci-

dence of physic models and actual pictures of destructions of their near sup-

port areas, the destructive uploading transverse force Vu3 is 1,91…7,92 times 

higher than the predicted transverse force of concrete durability over danger 

inclined crack and transverse reinforcement Plim,c,sw, determined by formulas 

(4.34)…(4.42) and taking recommendations of I.T. Mirsayapov [27] and A.P. 

Kyrylov [35] into account. The reason of such misconduct is higher destructive 

influence of repeated cycle load, compared to low-cycle repeated transverse 

load, undervaluation of actual influence of different design factors in indicated 

works, and the fact that, at indicated levels of load, there was no destruction 

of beams.  

For this problem solution on common stage of research boundary forces 

2 3; ;
0 0 0

min min min
lim,h lim, h lim, hP P P  in expressions (4.34)…(4.42), it is recommended to 

multiply on the factor 
cyclk . That is the resistance of near support areas of span 

reinforced concrete structures, in particular, calculation values of transverse 

force VRd, which can be carried by inclined section of such structure with trans-

verse reinforcement or without it, with small, middle or large shear span. It is 

expedient to determine it by taking into account its durability at low-cycle re-

peated load action by expression: 

 

2

3

0

0

0

m in
lim ,h

m in
Rd cycl lim , h

m in
lim , h

P

V k P

P

 
 
 =  
 
  

 

(4.61) 

where 
cyclk  − raUo of destrucUve transverse forces to minimum calculaUon 

boundary forces of durability of near support areas of testing samples-beams, 
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calculated by formulas (4.34)…(4.42), using characteristic values of concrete 

and reinforcement strength i.e. prism concrete strength and yield strength of 

the reinforcement. 

Mathematical model of factor �,cycl, that characterizes the ratio of de-

structive (uploading) transverse force Vu3 to calculation value of boundary 

force, at a condition of concrete durability over danger inclined crack and trans-

verse reinforcement in shear span Plim,c,sw at low-cycle repeated load of testing 

samples-beams, has the form: 

2 2
1 2 3 4 1 2

2 2
3 4 1 2 2 3

ˆ( ) 3,84 0,44 0,69 1,68 0,12 0,11 0,06

0,31 0,08 0,34 0,25 , 5,1%.

cyclY k X X X X X X

X X X X X X υ

= + − − − + + +

+ − − + =

 

 (4.62) 

The highest influence on the value of factor 
cyclk  (Fig. 4.3) has the 

number of transverse reinforcement (factor Х3), then – concrete class (Х2), then 

– value of relative shear span (Х1) and, finally, − the level of low-cycle repeated 

load (Х4). So, the value �,cycl will decrease (calculation and actual bearing capac-

ity of near support areas of reinforced concrete beams will converge) relative 

to its average value 3,84: 

- at increasing the number of transverse reinforcement ρsw from 0,0016 

to 0,0044, concrete class from С16/20 to С40/50, level of low-cycle repeated 

load η from 0…0,5 to 0…0,8, respectively, on 88, 36 and 6%; 

- at decreasing the relative shear span a/h0 from 3 to 1 on 23%. 

Presence of quadratic effects at testing factors, proves that following 

increasing the number of transverse reinforcement, concrete beyond its 

changes, will not lead to significant reduction of factor 
cyclk , and following 

increasing the shear span and reduction of level of repeated load, will lead to 

their significant increase. 

Relative shear span, concrete class and number of transverse reinforcement 

interact substantially. So, 
cyclk  will be decreasing with simultaneous reduc-

tion of shear span and increase of concrete class, increase of number of trans-

verse reinforcement and reduction of concrete class. 
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 Fig. 4.3 Factor 

cyclk  dependency on relative shear span (a), concrete class 

(b), number of transverse reinforcement (c), level of low-repeated  

load of constant sign (d) and joint influence of testing factors on it 
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For convenience of practical application of factor cyclk , it is expediently 

to change a form of relation (4.63) by changing coding values of testing factors 

with natural ones: 

0

22 2
0

2
0

/ 2 0,002935
3,84 0, 44 0, 69 1,68

1 15 0,0014

/ 2 0,00290,65 35
0,12 0,11 0, 06 0,31

0,15 1 15 0, 0014

/ 20, 65
0, 08 0,34

0,15 1

sw
cycl

sw

a h C
k

a h C

a h

ρ

ρη

η

− −−     = + − − −    
    

− −− −      − + + + −     
     

−−   − −   
  

0, 002935 35
0, 25

15 15 0,0014

swC C ρ −− −     +     
     

 

(4.63) 

 

Relation (4.63) is fair, not only inside the change of testing factors, but 

its extrapolation is possible on the value up to 25% from the values of their 

intervals. 

For convergence of the test and calculation values of uploading trans-

verse force at stabilized low-cycle, repeated load calculation boundary forces 

of concrete durability, transverse and longitudinal reinforcement, calculated 

with taking into account the repeated cycle transverse load based on theories 

of A.P. Kyrylov [35] and I.T. Mirsayapov [27], it is expediently to increase, as a 

way of introduction of calculation relation (4.63), factor cyclk , which com-

prehensively takes into account the influence of the most important construc-

tive factors and level of repeated low-cycle load, both, individually and in in-

teraction with each other. 
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4.1 Conclusions on chapter 4: 

1. Presented engineering method takes into account change of stress-

strain state of span reinforced concrete structures at their repeated load, as 

well as the change of strength properties of concrete, reinforcement and their 

clutch, at the moment t, and can be used on all range of strength characteristics 

of materials change- from low-cycle repeated, to repeated cycle load; 

2. Proposed engineering method of near support areas strength calcu-

lation of beam reinforced concrete structures provides all possible destruction 

schemes, and allows to predict fatigue strength of the concrete over danger 

inclined crack, and presents transverse reinforcement, longitudinal working re-

inforcement on rupture or slippage on this crack because of its inadequate 

amount (break) or its inadequate anchorage. 
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GENERAL CONCLUSIONS: 

1) Generalized model of the element deformation should be able to equally 

reflect, both, the nature of the growth of relative deformation of materi-

als, and a process of continuous redistribution of stresses in them. So, the 

real state of the reinforced concrete structure can only be reflected when 

used in conjunction with, both, stress and deformations diagrams. 

2) Accepted in general case, nonlinear deformational model of bar construc-

tion allows to form the union positions of reinforced concrete mechanics, 

considers features of mutual work of concrete and reinforcement on all 

stages, including destruction, in its calculated cross sections in the general 

case of a stressed state, taking into account the joint action of longitudinal 

and transverse forces, bending and torque. It can be used for designing or 

reinforcing beams, crossbars, columns and trusses of a rectangular cross-

section, as well as checking the bearing capacity of existing core rein-

forced concrete structures operating in conditions of complex stress-

strain state. 

3) Described in Chapter 3, physical models and calculation schemes of near 

support areas resistance of not over reinforced span reinforced concrete 

structures to repeated load of high level, different types of fatigue de-

struction of materials considering vibro-creep deformations, accumula-

tion of damages in form of fatigue micro- and macro cracks, are envis-

aged. 

4) Presented engineering method takes into account the change of stress-

strain state of span reinforced concrete structures at their repeated load, 

as well as, a change of strength properties of the concrete, reinforcement 

and their clutch at the moment t, and can be used on all range of strength 

characteristics of materials change- from low-cycle repeated, to repeated 

cycle load. 
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