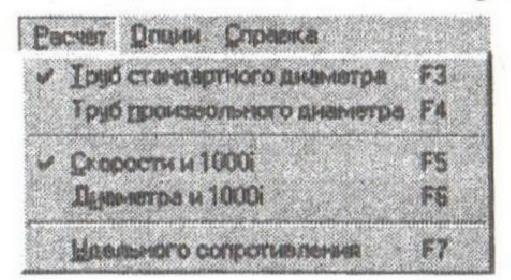
Грабовский П.А., Прогульный В.И., Грачёв И.А. Одесская государственная академия строительства и архитектуры

ГИДРАВЛИЧЕСКИЙ КАЛЬКУЛЯТОР


Разработана новая версия программы АкваПайп. В отличие от предыдущей версии [1] данная программа позволяет производить гидравлический расчёт водопроводных труб как стандартного, так и произвольного диаметра.

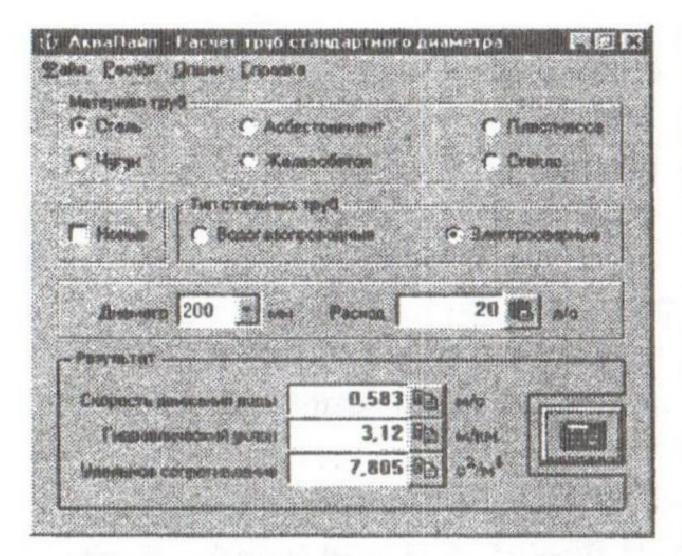
Программа даёт возможность определить скорость движения воды в водопроводных трубах, удельные потери напора и удельное сопротивление при заданном расходе воды и диаметре трубопровода, а также по заданной скорости и расходу для стандартных труб позволяет подбирать диаметры, соответствующие ГОСТам, а для труб

произвольного диаметра при известной шероховатости определять диаметр.

АкваПайп работает в нескольких режимах:

- расчёта скорости и потерь напора для труб стандартного диаметра
 (D),
- подбора D и расчёта потерь напора для труб стандартного диаметра,
- расчёта скорости и потерь напора для труб произвольного диаметра,
- » вычисления D и потерь напора для труб произвольного диаметра.

Переход из одного режима работы в другой осуществляется в меню «Расчёт». В этом же меню можно включить и отключить функцию определения удельного сопротивления.


Расчёт удельного сопротивления тру-

бопровода можно производить как в режиме расчёта скорости и удельных потерь напора, так и в режиме определения диаметров и 1000 і для труб стандартного и произвольного диаметра.

Для того чтобы произвести вычисления, необходимо:

- 1. Выбрать необходимый режим работы.
- 2. Указать материал (для труб стандартного диаметра), либо шероховатость (для труб произвольного диаметра). Нажав кнопку , можно воспользоваться рекомендациями для назначения шероховатости.
- 3. В режиме расчёта труб стандартного диаметра для стальных, чугунных и асбестоцементных труб указать дополнительные параметры. Для стальных выбрать тип труб; для стальных и чугунных указать являются ли они новыми (установить флажок перед надписью "новые"), либо нет. Для асбестоцементных труб задать тип и класс труб.
- 4. В зависимости от режима работы нужно указать необходимый диаметр, либо скорость движения воды.
- 5. В поле «Расход» ввести значение расчетного расхода воды.
- 6. Нажать кнопку , либо клавишу Enter для получения результатов.

Интерфейс программы представлен ниже.

Эквинычиния шере	повытость		0,08	巴	244
Реконтициная шероковатость:			0.02 - 0,1		(7) same 4
"Для стальных ценьногом	yrus toyd				
24-10-60-5-C					
Динитр 125 мм	Pacieta		12	16	10/0
apynitht					
-	0,978				
		400 A 100 A	17 THE R. P. LEWIS CO., LANSING, MICH.	1000 No. 100	particular and residence
Гоправиненский укасн		-	DAPEN.		California,

Для удобства в меню «Опции» при помощи команды «Параметры» можно изменить единицы измерения исходных и вычисляемых величин.

По умолчанию расчет производится для температуры воды 10°С. Температура влияет на кинематическую вязкость, а, следовательно, и на результаты расчетов. При помощи той же команды «Параметры» в меню «Опции», можно задать другое значение температуры воды.

Принцип расчёта.

Трубы стандартного диаметра.

Расчёты могут выполняться для стальных труб двух, типов — водогазопроводных и электросварных; чугунных; асбестоцементных двух типов — 1 и 2 и четырех классов ВТ-6, ВТ-9, ВТ-12 и ВТ-15; железобетонных; пластмассовых и стеклянных. Кроме того, для стальных и чугунных труб, можно выполнять расчёты как для новых труб, на стенках которых отсутствуют заметные признаки коррозии или отложений, так и для неновых труб.

Гидравлический уклон определяется по формуле:

$$i = \frac{\lambda}{d} \frac{V^2}{2g},\tag{1}$$

где g – ускорение свободного падения, м/c².

V - средняя скорость воды в трубе, м/с;

d – расчетный внутренний диаметр труб, м;

λ – коэффициент сопротивления трения по длине(коэффициент Дарси).

Коэффициент λ определяется по формуле[2]:

$$\lambda = \frac{k_1}{d''} \left(k_2 + \frac{v}{V} \right)^n, \tag{2}$$

где k_1, k_2, n — коэффициенты, зависящие от материала и состояния труб;

– Для новых стальных труб -
$$k_1 = 0.312$$
; $k_2 = 1.9 \times 10^{-6}$; $n = 0.226$;

– Для новых чугунных труб -
$$k_1 = 0.863$$
; $k_2 = 0.55 \times 10^{-6}$; $n = 0.284$;

- Для неновых стальных и чугунных труб:

- при
$$V/v \ge 9,2 \cdot 10^5$$
 1/м, $k_1 = 0,021; k_2 = \left(1 - \frac{v}{V}\right); n = 0,3;$
- при $V/v < 9,2 \cdot 10^5$ 1/м, $k_1 = 1; k_2 = 1,5 \times 10^{-6}; n = 0,3;$

– Для асбестоцементных труб - $k_1 = 0,184$; $k_2 = 0,37 \times 10^{-6}$; n = 0,19;

– Для железобетонных труб - $k_1 = 0,26312$; $k_2 = 0,37 \times 10^{-6}$; n = 0,19;

- Для пластмассовых труб - $k_1 = 0,2875; k_2 = 0; n = 0,226;$

- Для стеклянных труб - $k_1 = 0,3125; k_2 = 0; n = 0,226;$

 v – коэффициент кинематической вязкости воды, м²/с, который определяется в зависимости от температуры воды:

$$v = 0,0001775 / (1+0,0337t_e+0,000221t_e^2),$$

 $t_{\rm e}$ – температура воды, °C;

Удельное сопротивление труб (c²/м⁶) определяется формулой:

$$A = i/q^2. (3)$$

Трубы произвольного диаметра.

Расчёты могут выполняться как для новых труб, так и для труб находящихся в эксплуатации, изготовленных из различных материалов.

Гидравлический уклон определяется по формуле (1). Для труб произвольного диаметра коэффициент λ рассчитывается в зависимости от режима движения воды по формулам /3/:

$$-$$
 при Re ≤ 2320 - $\lambda = \frac{64}{\text{Re}}$, $\lambda = 0.11 \left(\frac{\Delta}{d} + \frac{68}{\text{Re}}\right)^{0.25}$,

где $Re = \frac{Vd}{v}$ – число Рейнольдса; Δ – эквивалентная шероховатость, мм.

Разработанная программа даёт возможность производить гидравлические расчёты труб как стандартных диаметров, выпущенных отечественными производителями, так и труб произвольных диаметров, изготовленных из различных материалов, что существенно расширяет область применения программы, и позволяет использовать программу для расчётов труб зарубежного производства, новых труб и находящихся в эксплуатации длительное время.

Программа облегчает выполнение гидравлических расчётов труб, и повышает точность вычислений, поскольку обычно пользуются различными таблицами для гидравлического расчёта и при этом про-изводят интерполяцию значений расходов, чего при использовании данной программы делать не нужно.

- 1. Грабовский П.А., Прогульный В.И., Грачёв И.А. «Программа Аква-Пайп» // Сборник докладов международного конгресса «ЭТЭВК-2005» — Ялта: НИКТИ ГХ. — 2005 — с.132-135.
- 2. Шевелев Ф.А., Шевелев А.Ф. Таблицы для гидравлического расчета водопроводных труб: Справ. пособие. М.: Стройиздат, 1984. 116с.
- 3. Справочник по гидравлическим расчётам. /Под редакцией П.Г. Киселёва М.: «Энергия», 1972 312с.