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Abstract. The article analytically investigates the behavior of the frequencies and modes of 

natural vibrations of a rigid body, based on point elastic supports, when the position of the supports 

changes. It is assumed that the body is in plane motion and has two degrees of freedom. A linear 

description of body vibrations is accepted. The problems of determining such optimal positions of 

elastic supports at which the fundamental frequency of the structure reaches its maximum value are 

considered. Two groups of problems were studied. The first group concerns a body supported by only 

two supports. It was found that in the absence of restrictions on the position of the supports to 

maximize the fundamental natural frequency, these supports should be positioned so that the basic 

natural vibrations of the body are translational. Simple analytical conditions are formulated that must 

be satisfied by the corresponding positions of the supports. In real practical situations, these positions 

may be unreachable due to the presence of various kinds of restrictions due to design requirements. In 

this paper, optimization problems are considered taking into account a number of restrictions on the 

position of supports, typical for practice, expressed analytically by equations and inequalities. For each 

of the considered types of constraints, results are obtained that determine the optimal positions of the 

supports and the corresponding maximum values of the main natural frequencies. The approach 

applied allows us to consider other types of restrictions, which are not considered in the article. In the 

second group of problems for a body resting on an arbitrary number of supports, the optimal position 

of an additional elastic support introduced in order to maximize the fundamental frequency in fixed 

positions and the stiffness coefficients of the remaining supports was sought. It was found that this 

position depends on the value of the stiffness coefficient of the introduced support. Results are 

obtained that qualitatively and quantitatively characterize this position and the corresponding 

frequencies and modes of natural oscillations, including taking into account practically established 

limitations. The research method uses a qualitative approach, systematically based on the well-known 

Rayleigh theorem on the effect of imposing constraints on the free vibrations of an elastic structure. 

Keywords: vibrations, rigid body, elastic support, natural frequency, optimization. 

ДЕЯКІ ЗАДАЧІ ОПТИМІЗАЦІЇ І УПРАВЛІННЯ ВЛАСНИМИ 

ЧАСТОТАМИ ПРУЖНО ОПЕРТОГО ТВЕРДОГО ТІЛА 

Бекшаєв С.Я.
1
 

1
Одеська державна академія будівництва та архітектури 

Анотація. У роботі аналітично досліджується поведінка частот і форм власних коливань 

твердого тіла, опертого на зосереджені пружні опори, за умови зміни положень цих опор. 

Передбачається, що тіло здійснює плоскопаралельний рух і має два ступені свободи. 

Приймається лінійний опис коливань тіла. Розглянуто задачі визначення таких оптимальних 

положень пружних опор, при яких основна частота власних коливань конструкції досягає 

максимального значення. Вивчено дві групи задач. Перша група стосується тіла, опертого лише 

на дві опори. Встановлено, що за відсутності будь-яких обмежень на положення опор для 

максимального підвищення основної частоти ці опори повинні розташовуватися так, щоб 

основні власні коливання тіла були поступальними. Сформульовано прості аналітичні умови, 

яким мають задовольняти відповідні положення опор. У реальних практичних ситуаціях ці 
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положення можуть виявитися недосяжними у зв’язку з наявністю різноманітних обмежень, 

обумовлених проектними вимогами. У роботі розглянуто проблеми оптимізації з урахуванням 

низки характерних для практики обмежень на положення опор, які аналітично виражаються 

рівняннями або нерівностями. Для кожного з розглянутих видів обмежень отримано 

результати, які визначають оптимальні положення опор та відповідні максимальні значення 

основних власних частот. Застосований підхід дозволяє розглянути інші види обмежень, не 

розглянуті у статті. У другій групі задач для тіла, опертого на довільне число опор, 

розшукувалося оптимальне положення додаткової пружної опори, яка вводиться з метою 

максимального підвищення основної частоти при фіксованих положеннях і коефіцієнтах 

жорсткості інших опор. Встановлено, що це положення залежить від величини коефіцієнта 

жорсткості введеної опори. Отримано результати, які якісно та кількісно характеризують це 

положення та відповідні частоти та форми власних коливань, у тому числі з урахуванням 

практично обумовлених обмежень. Метод дослідження використовує якісний похід, що 

систематично спирається на відому теорему Релея про вплив накладання в’язі на вільні 

коливання пружної конструкції та її наслідки. 

Ключові слова: коливання, тверде тіло, пружне закріплення, власна частота, оптимізація. 



Механіка та математичні методи / 
Mechanics and mathematical methods 

 ІІІ, ғ2, 2021 

            Стор. 88-102 / Page 88-102 
 

 

 S. Bekshaev 

90    https://doi.org/10.31650/2618-0650-2021-3-2-88-102  

1. INTRODUCTION 

During the operation of engineering structures, instruments and equipment experiencing 

dynamic effects, significant forces and displacements can occur in the elements of these 

structures, which can make it impossible to use them. If the structure contains elastic elements 

and is subjected to periodic loads, such conditions can be associated with the occurrence of 

resonance phenomena. One of the ways to eliminate these phenomena is to purposefully 

control the spectrum of natural frequencies of the structure by choosing its elastic-geometric 

characteristics. In particular, it is possible to influence this spectrum by choosing the location 

of the elastic constraints available to the designer. In the proposed work, some problems of 

controlling the natural frequency of an elastically fixed rigid body are considered. A feature of 

the approach used is the predominant use of qualitative methods. 

2 LITERATURE ANALYSIS AND PROBLEM STATEMENT 

There is a large number of studies devoted to the problems of control and optimization of 

the characteristics of engineering structures, in particular the frequencies of their natural 

vibrations [1]. Most of them use algorithms based on some of the many general mathematical 

optimization methods [2]. For the problems of controlling the frequency spectrum of an 

elastically fixed rigid body, were used numerical methods based on an enumeration of options 

[3]. At the same time, the solution of some problems can be found on the basis of simple 

qualitative considerations dating back to Rayleigh [4], without using complex mathematical 

methods and the associated formalization. A similar approach has been successfully applied in 

solving some problems of controlling the natural frequencies of elastic rod systems by varying 

the positions of the supports [5, 6]. In the present work, it is used to solve some problems 

related to the search for the positions of elastic supports of an absolutely rigid body, which 

provide the maximum of its fundamental natural frequency. Some results concerning the 

influence of the position of the supports of an elastically fixed rigid body on its natural 

frequencies are presented in article [7]. This work can be considered as its continuation and 

uses the conclusions obtained in it. 

3 THE PURPOSE AND OBJECTIVES OF THE STUDY 

The aim of this work is to study the behavior of the fundamental frequency of an 

engineering structure installed on point elastic supports when the position of the supports 

changes. In particular, positions are sought in which the frequency reaches its maximum, 

including under some limitations typical for practice. A mechanical model of a structure in the 

form of an absolutely rigid body, supported on linear elastic supports of finite rigidity, is used. 

It is assumed that it is possible to describe the model as a linear elastic system with two 

degrees of freedom. A similar model for the case of two supports was considered in various 

works, in particular in [8–10], but without any connection with optimization. As in [7], the 

study is based on the qualitative results of the theory of oscillations. 

4 RESEARCH RESULTS  

4.1. Model description. The model of the structure is considered, shown in Fig. 1 a. The 

support points, like the center of mass of the model, are located on one straight line, 

hereinafter called the axis of the model. 
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Fig. 1. The base model BM (a) and its coordinates (b) 

It is assumed that during free oscillations, the displacements of the points of the model 

are parallel to the plane of the drawing, and the displacements of the points of the axis are 

perpendicular to the axis, so that the model has two degrees of freedom. The mass of the 

model is equal to, the moment of inertia about the axis passing through the center of mass and 

perpendicular to the plane of the figure is equal to. 

On the model axis, we introduce the coordinate axis with the origin at its center of mass. 

The support numbered has a stiffness coefficient and a coordinate. 

Along with the base model (BM), which has specific limited dimensions, we will also 

consider an extended model (EM) of the structure, which includes the points of its axis, 

unrestrictedly extended in both directions. The movement of the EM is completely determined 

by the movement of the BM. 

4.2. Preliminary results. In what follows, we use the notation 

2, , , 1,2, ,j j j j jC c S c x Q c x j N      ,  (1) 

1,2, , ,j N N  – number of resilient supports. In what follows, it is assumed everywhere 

that 0S  . This can always be provided by choosing the direction of the axis x . All 

considerations are carried out from the point of view of an observer positioned so that the axis 

x  is directed to the right. 

The article systematically uses  

4.2.1. Rayleigh’s theorem on the effect of imposition of constraint on the natural 

frequencies of an elastic system [4]: Let 1  and 2  be the squares, respectively, of the first 

(fundamental) and second natural frequencies of the elastic structure, 1

  – the square of the 

fundamental frequency of the reinforced structure, formed from the original by imposing one 

constraint. Then the relations are satisfied  

1 1 2

     .  (2) 

Equalities in (2) can be realized only if the constraint is established at the node of the 

vibration mode corresponding to one of the frequencies 1  or 2 . 

The following results are also used [7]. 

4.2.2. Properties of frequencies and modes of free vibration of the model. The 

frequencies and modes (eigenforms) of free vibrations are determined by the system  

 

 

0

0

C M Y S

SY Q J

     


     

,  (3) 
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where Y  and   are the amplitude values of the displacement y  of the center of mass G  and 

the angle   of inclination of the model axis (Fig. 1 b). The eigenforms satisfy the 

orthogonality relation 

1 2 1 2 0MYY J    ,  (4) 

where kY  is the vertical displacement of the center of mass, k  is the angle of inclination of 

the axis of the k-th eigenform corresponding to the frequency k .  

If, during free vibrations 0  , the corresponding mode has a node – the point of the 

EM axis, which remains stationary (point O in Fig. 1 b). 

Relation (4) shows that for 1 2 0Y Y   1  and 2  have different signs, i.e. if the center 

of mass is not a node of any of the modes, the nodes of two simple modes are located on 

opposite sides of the center of mass. It also follows from (4) that one of the two modes 

corresponding to simple frequencies is horizontal ( 0  , 0Y  ) if and only if the other has a 

node at the center of mass ( 0Y  , 0  ). 

Equations (3) show that such modes can be realized if and only if 0S  . 

As seen from Fig. 1 b, k k kY r   , where kr  is the distance of the center of mass from 

the node of the k-th mode, the "+" sign is chosen if the node is located to the left of G , "–", if 

to the right. Then the orthogonality relation (4) can be rewritten as 

1 2

J
r r

M
 .  (5) 

If the mode has a node, the square of the corresponding frequency is 

 

2

2
λ

j jc X

J Mr





 ,  (6) 

where r  is the distance from the node to the center of mass G , j jX r x   is the distance 

from the node to the j-th support. 

4.2.3. Change in natural frequencies when changing the position of the supports. If 

the mode corresponding to a simple frequency has a node, an increase in the distance of any 

of the supports from the node leads to an increase in this frequency. So, it follows that 

extremal values of frequencies can be reached when the movable support is in a node of the 

corresponding mode, or this mode does not have a node (the axis is horizontal). 

The following results are for a two-support model. 

4.2.4. Qualitative features of eigenforms. The modes of free vibrations of a two-

support model can be of three types. A mode of the 1st type has an external node located on 

one side of both supports, or does not have a node (horizontal). The form of the 2nd type has 

an internal node located between the supports. A special mode has a node located on one of 

the supports. 

If one of the two modes of the model (as a system with two degrees of freedom) is of the 

1st type, then the other is of the 2nd type. If one of the two modes of the model is special, 

then the other is also special with a node on the opposite support.  

4.2.5. Criterion of form type. The fundamental mode is a mode of the 1st kind, if 

J Mab , of the 2nd kind, if J Mab , and special, if J Mab . 

4.2.6. Criterion of node position. If 1 2c a c b , the fundamental mode has a node to the 

left of the center of mass. If 1 2c a c b , one of the two modes of the model (depending on the 

sign of J Mab ) does not have a node (the axis is horizontal), and the other has a node in the 

center of mass. 
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4.3. Optimization. The position of the supports is considered optimal if in this position 

the fundamental frequency of the model reaches its maximum. 

4.3.1. Optimization of a two-support model, 2N  , 1x a  , 2x b . The values of 

M , J , 1с  and 2с  are specified. Optimal values of a  and b  are sought. 

The imposition of one constraint prohibiting the rotation of the body leaves it with one 

degree of freedom, corresponding to the translational vertical (VT) oscillatory motion with a 

frequency whose square is equal to 

1 2
VTλ

c c

M


  (7) 

and which does not depend on the position of the supports, 
VTλ ( , ) consta b  . Hence, on the 

basis of Sec. 4.2.1, it follows 1 VT 2     , i.e. 1 1( , )a b    as a function of the support 

positions cannot exceed VT . In accordance with Sec. 4.2.6, translational oscillations with 

frequency VT  will occur if and only if 1 2c a c b . So this equality determines the optimal 

position of the supports, provided that the translational motion will be the fundamental one, 

i.e. at J abM . If the design requirements do not allow this inequality to be ensured, the 

fundamental vibrations will occur in the mode of the 2nd type. This can be the case if the 

project establishes restrictions on a  and b , in particular, on the distance a b   between 

the supports. In this case, the fundamental frequency will be less than VT , but, as can be 

seen from the inequalities 1 VT 2     , VT  is the lower boundary of the second 

frequency of the two-support model.  

To find the optimal positions of the supports, we will use the following graphical 

representation. 

Fig. 2 shows the coordinate plane, the point of which with coordinates a  and b  

corresponds to the position of the supports A  and B . Lines are the graphs of the 

dependencies 1 2( )b c c a  and b J Ma . Solid lines divide the plane into three areas, the 

points of which cannot correspond to the optimal positions. In the area I, inequalities 

2 1c b c a  and J abM  are satisfied, which, in accordance with Sec. 4.2.5 and 4.2.6, means 

that in these positions the fundamental mode of the EM has a node to the right of both 

supports (see the top row in the table on the right in Fig. 2), and in accordance with Sec. 4.2.3, 

the frequency can be increased by moving the supports away from the node, i.e. increasing a  

and decreasing b . In this case, the corresponding point of the plane moves in the directions of 

the "arrows of growth" shown in area I. 

 

Fig. 2. Mapping a set of two-support models on a plane аb 
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In the area II, inequalities 2 1c b c a  and J abM  are satisfied, which means that in 

these positions the fundamental mode of EM has a node to the left of both supports (see the 

second row in the table on the right), and the frequency can be increased by moving the 

supports away from the node, i.e. decreasing a  and increasing b . In this case, the 

corresponding point of the plane moves in the directions of the "arrows of growth" shown in 

area II. 

Finally, in area III, the inequality J abM  is fulfilled, which means that in these 

positions the fundamental mode of the model has a node between the supports (see the bottom 

row in the table on the right), and the frequency can be increased by moving the supports 

away from the node, i.e. increasing both a  and b . In this case, the corresponding point of the 

plane moves in the directions of the arrows shown in the area III. The dashed line does not 

separate qualitatively different fundamental modes.  

Thus, the maximum of the frequency of the EM can occur only in the positions 

corresponding to the solid lines. It should be kept in mind that the points lying on the curve 

b J Ma , according to Sec. 4.2.5, correspond to special modes. For the left branch, the 

fundamental mode has a node on the right support B   1 2, 0,X a b X r b     and, 

according to (6), the following equality is satisfied 

   
2 22 2 2

1 2 1 1 1 1
1 2 2 2 2

0
1 1 1

j jc X c a b c c a b c c ca Ma J

M b M J MJ Mr J Mb Mab Mb Mb

                            



 

 (8) 

The right branch corresponds to the modes with a node on the left support A  

 1 20, ,X X a b r a     and, accordingly  

   
2 22 2 2

1 2 2 2 2 2
1 2 2 2 2

0
1 1 1

j jc X c c a b c a b c c cb Mb J

M a M J MJ Mr J Ma Mab Ma Ma

                            



 

(9) 

The relations (8, 9) show that the fundamental frequency of the model corresponding to 

the curved line increases monotonically when approaching the branch point at which 

   2 2

1 2 2 1 1 2c a c b J Mab M c c b M c c a     , 1 VT   .  (10) 

Thus, the EM has infinite number of optimal positions corresponding to the points of the 

solid half-line. For these positions max VT     . 

In real structures, in contrast to EM, there are restrictions imposed on a  and b , which 

separate a certain permissible area on the plane a b . To find the optimal positions, this area 

should be superimposed on the plane a b  with the shown solid lines. If a solid rectilinear 

segment falls into it, then the corresponding positions will be the solution to the problem. 

Otherwise, the optimal positions should be sought on the border of the permissible area, 

taking into account the directions of the "arrows of growth"   (Fig. 2). 

Consider the following optimization problems. 

4.3.1.1. Problem 1. It is required to find the optimal positions of the supports under the 

given limitations 

1a a , 1b b , (11) 

where 1a  and 1b  are given constants. 
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Fig. 3. To the determination of the optimal positions of the supports of the two-support model under the 

limitations 

а) – for the case 1a a , 1b b ,       b) – for the case 1a a , 1b b  

Let us consider separately the cases 2 1 1 1c b c a  and 2 1 1 1c b c a . Let us introduce the 

notation  

1 1abJ Ma b , 2

1 2 1( )aJ M c c a , 2

2 1 1( )bJ M c c b . 

Let’s assume at the beginning that 2 1 1 1c b c a  (Fig. 3 a). Then ab aJ J . Let’s select three 

areas on the plane a b : abJ J , a abJ J J  , aJ J . In fig. 3a, they are separated by 

dashed curved lines. The admissible area (11) is a rectangle with sides 1a  and 1b . 

At abJ J  (line 1) none of the solid lines falls into the admissible area (point ( 1a , 1b ) 

turns out to be in the area III according to Fig. 2). Therefore, in accordance with the directions 

of the "arrows of growth" in Fig. 2, the optimal position is opt 1a a , opt 1b b . The 

fundamental mode has an inner node (is a mode of the 2nd type). 

In the case a abJ J J   (line 2), a part of the admissible area is cut off by line b J Ma

, above which at 2 1c b c a  optimal positions there cannot be (area I in Fig. 2). Therefore, in 

accordance with the directions of the "arrows of growth" the optimal position is opt 1a a , 

opt 1
b J Ma . In this case, according to (8),   2

max 11 1 Ma Jc M      and the 

fundamental mode has a node on the right support. 

Finally, at aJ J  (line 3), a solid rectilinear segment falls into the admissible area, the 

boundaries of which have coordinates  min 2 1( )a c cJ M , max 1a a . In this case, there 

are infinite number of optimal positions of the supports, the coordinates of which are 

determined by the relations 

2
opt 1

1

cJ
a a

M c
  , 1

opt opt
2

c
b a

c
 . (12) 

These provisions correspond to purely translational natural oscillations with a frequency 

equal to VT . 

The case 2 1 1 1c b c a  is considered in a similar way, but now the permissible area is 

represented by another rectangle (Fig. 3 a). Omitting reasonings similar to those for the 

previous case, we present the results: 
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abJ J   opt 1a a , opt 1b b .  (13) 

b abJ J J    opt 1b b , opt 1
a J Mb , 

2

2 1
max 1

c Mb

M J

 
   

 
, node on the left support. (14) 

bJ J  1
opt 1

2

cJ
b b

M c
  , 2

opt opt
1

c
a b

c
 , 1 2

max VT

c c

M


    , the mode is horizontal. (15) 

4.3.1.2. Problem 2. It is required to find the optimal positions of the supports under the 

given limitations 

1a a ,   1b b .  (16) 

Let us first consider the case 2 1 1 1c b c a , which corresponds to the permissible area in the 

form of a half-strip, bounded by bold straight lines (Fig. 3 b) above the straight line 

1 2( )b c c a . The dash-dotted line shows the graph of dependence abb J Ma . 

At abJ J , the boundary hyperbola b J Ma  (line 1 in Fig. 3 b) intersects the vertical 

border of the permissible area at a point P  and, in accordance with the directions of the 

"arrows of growth" (Fig. 2), this point corresponds to the optimal position of the supports. 

At abJ J  (line 2), the "arrows of growth" lead to the corner of the permissible area. So 

in the case 2 1 1 1c b c a   

abJ J  opt 1a a , opt
1

J
b

Ma
 , 

2

1 1
max 1

c Ma

M J

 
     

 
, node on the right support, (17) 

abJ J   opt 1a a , opt 1b b .  (18) 

In the case 2 1 1 1c b c a , the permissible area (bounded by thin lines in Fig. 3 b) is 

intersected by a straight line 1 2( )b c c a . The plane is divided by two dashed lines into three 

parts. 

When aJ J , the line b J Ma  (line 2) intersects the vertical border of the permissible 

area at a point Q  that, as above, corresponds to the optimal position of the supports. 

At b aJ J J   (line 3), a segment of the straight line 1 2( )b c c a  falls into the 

permissible area, the lower boundary of which depends on J . This segment corresponds to 

the optimal positions of the supports, at which the fundamental vibrations will be vertical and 

translational. 

When bJ J , the entire part of the straight line 1 2( )b c c a  that belongs to the 

permissible band becomes available. Thus, for 2 1 1 1c b c a  

aJ J  opt 1a a , opt
1

J
b

Ma
 , 

2

1 1
max 1

c Ma

M J

 
     

 
,  (19) 

b aJ J J   2
opt 1

1

cJ
a a

M c
  , 1

opt opt
2

c
b a

c
 , 1 2

max VT

c c

M


    .  (20) 

bJ J  2 2
1 opt 1

1 1

bJ c c
b a a

M c c
   , 1

opt opt
2

c
b a

c
 , 1 2

max VT

c c

M


    . (21) 

At aJ J , the optimal position of the supports corresponds to a horizontal mode. 
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4.3.1.3. Problem 3. It is required to find the optimal positions of the supports under 

the given limitation  

const.a b    (22) 

The position of the supports, at which the natural vibrations are translational, is 

determined by the equality 1 2c a c b , whence, taking into account (22) 

2 1

1 2 1 2

,
c c

a b
c c c c

 
 

.  (23) 

This position is optimal if at the same time J abM , i.e. 

 
21 2

2

1 2

c c
J M

c c



.  (24) 

Let us show that, under the condition (22), equality 1 2c a c b  still provides a maximum 

for the fundamental frequency, even if it is realized through a rotational mode (of 2nd type), 

i.e. when the inequality opposite (24) is satisfied. To do this, recall (Sec. 4.2.6) that for 

1 2c a c b , the rotational mode has a node in the center of mass G   1 2, , 0X a X b r    and 

it corresponds to the frequency determined by the equality 

 

2 22 2 2 2

1 2 2 1 1 2
R 1 22

1 2 1 2 1 2

1j jc X c a c b c c c c
c c

J J c c c c c c JJ Mr

     
                   


, (25) 

moreover, VT R J abM       . Let’s move the supports, breaking the equality 

1 2c a c b , but not changing const.a b   . In this new position, we will install the rigid 

hinge at the same distances a  and b  from the supports. The formed system with one degree 

of freedom has a "rotational" frequency, the square of which  

2 2 2 2

1 2 1 2
R R2

c a c b c a c b

JJ Mr

  
    


  (26) 

according to Sec. 4.2.1, is greater than the square of the fundamental frequency 1  of the 

system before the introduction of the hinge, from which it follows that as a result of the 

moving of the supports 1 R R

     , i.e. R  is the maximum of 1 . 

Thus, the solution to the problem is determined by relations (23), and 

 

   

21 2 1 2
VT 2

1 2

max 2
21 2 1 2

R VT 2
1 2 1 2

, if  ,

, if .

c c c c
J M

M c c

c c c c
J M

c c J c c


   

  
     
  

  (27) 

4.3.1.4. Problem 4. It is required to find the optimal positions of the supports under the 

limitation expressing by inequality 

const.a b     (28) 

If   22

1 2 1 2( )J M c c c c  , for any a  and b , for which a b    , the inequality 

  22

1 2 1 2( )J M c c c c
   holds, whence, according to (27), for these a  and b  

2 2

1 2 1 2 1 2 1 2( ) ( )c c c c J c c c c J     . Therefore, the maximum of frequency is reached 
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when equality is satisfied in (28) and a  and b  are determined by relations (23). In this case 

max R    (25). 

If 
2 2

1 2 1 2( )J Mc c c c  , we define 2

1 2 1 2( )J J c c Mc c   . For any J , there is the 

optimal position of the supports (23), described in Sec. 4.3.1.3, providing a translational 

fundamental mode. From here  

2 2 1
opt opt opt

1 2 1 2 2

,Jc c c
a b a

c c c c c
  

 
, 1 2

max VT

c c

M


    .  (29) 

4.3.2. Multi-support model. 

Problem 5. The values of M , J , jx , jс  are specified, 1,2, ,j N . The optimal 

position of the additional ( 1)N  -th support with a given stiffness coefficient с  is sought.  

Let us denote U  – the original N -support model, U   – the model formed from U  by 

introducing an additional support,   and   – respectively, the squares of their frequencies. 

The system (3) should be replaced with system 

 2

( ) ( ) 0

( ) 0

C c M Y S cx

S cx Y Q cx J





       


       

,  (30) 

where x  is a coordinate of the introduced support. 

Based on Sec. 4.2.1, we conclude that for any position of this support 

1 VT

C c

M
  

    .  (31) 

Let us determine cr 2c M C    – the value of the stiffness coefficient of the 

introduced support, at which, in accordance with Sec. 4.2.2, translational natural vibrations of 

the EM U   with a frequency 2  are possible. 

If cr 2c c M C    , VT 2

    and the optimal coordinate of the movable support in 

accordance with Sec. 4.2.1 is equal to  

opt

S
x

c
  ,  1max VT

C c

M
  

    . (32) 

If cr 2c c M C    
VT 2

   , the value VT

  cannot be exceeded by the 

fundamental frequency of U   after the imposition of one constraint by virtue of Rayleigh’s 

theorem (Sec. 4.2.1), i.e. VT 2

     is the second frequency of the EM U  . We’ll show 

that in this case the optimal position of the support of the EM U   is the node of the second 

mode of the EM U  corresponding to the frequency 2  (if it exists). 

If we place an additional support of stiffness c  in the node of the second mode of EM 

U , to which the natural frequency 2  corresponds, this mode and the corresponding 

frequency, and, consequently, the distance 2r  from the node, do not depend on the value of c . 

Therefore, as relation (5) shows, also the value of 1r  and, consequently, the other mode of the 

model U   do not depend on c . The corresponding frequency is determined according to (6) 

by the equality  
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2 2

1 2

1

j jc X cX

J Mr




 



,  (33) 

where X  is the distance from the node of the 1st mode of U  to the introduced support (to the 

node of the 2nd mode of U ). From here it can be seen that with growth of c  this frequency 

increases monotonically and indefinitely and at some moment becomes equal to 2 . Thus, 

the frequency 2  becomes double, since it corresponds to two linearly independent modes, 

and, consequently, any linear combination of them, in particular, corresponding to vertical 

translational oscillations. Therefore VT 2

   , whence, taking into account (32), it follows 

that the corresponding value of c  is equal to cr 2c M C   . 

With the growth of c  above crc , the fundamental mode, without changing its 

configuration, becomes the second, because the corresponding frequency, determined from 

(33), becomes higher than 2 , which, thus, becomes the fundamental for U  , 1 2

   . By 

virtue of inequality (2), Sec. 4.2.1, 1 2 1max

      . Therefore at crc c , the node of the 

second mode of the EM U  is the optimal position of the additional support in the EM U  . Its 

coordinate is  

opt
cr 2

S S
x

c M C
   

 
.  (34) 

The results (32), (34) make it possible to represent schematically the graph of the 

square of the fundamental frequency 1

  of the model U   as a function of the position of the 

additional support.  

If the second equation of system (30) is divided by x  and x  is tended to  , we 

obtain the equalities  

lim
x

x Y


   , lim 0
x

  .  (35) 

From the first equation, taking into account (35), we come to the conclusion 

( ) 0x C M Y cY cx      ,  (36) 

whence 

lim
x

C

M



  .  (37) 

Based on the results obtained, you can sketch a schematic graph of dependence of 1

  

on the coordinate x  of the support (Fig. 4), which allows you to find its optimal position. 

 

Fig. 4. Schematic graph of 

the dependence of the 

square of the fundamental 

frequency on the position x 

of the movable support 
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If the fundamental mode of EM U  has a node, then it is to the left of the center of 

mass G . To verify this, consider the first of equations (3). In accordance with Rayleigh’s 

theorem (Sec. 4.2.1) 1 VT C M     1 0C M   . In combination with the condition 

0S   (Sec. 4.2), this means that the fundamental mode of EM U  has Y  and   of the same 

sign, i.e. that the node is to the left of the center of mass. 

The function 1 ( )x  has two extrema: the node of the fundamental mode of EM U , to 

which the minimum 1min 1

    corresponds, and a point with a coordinate optx  determined 

from (32), if crc c , and from (34), if crc c  (the node of the second mode of EM U ), to 

which the maximum 1max VT

    , respectively 1max 2

    corresponds. According to Sec. 

4.2.3, the function 1 ( )x  has no other extrema, and these two extrema separate the areas of 

monotonicity. In fig. 4, the solid line corresponds to the case crc c , and the dashed line – to 

the case crc c . The results obtained make it possible to find the optimal positions of support 

under various constraints. 

E x a m p l e .  Consider the problem of maximizing the fundamental frequency for the 

case 2N  , 1x a  , 2x b , 1 2( )S c a c b   . The optimal position of the third support is 

sought taking into account the limitations a x b   . 

If J Mab , the node of the second mode falls inside or on the right border of the 

allowed range a x b   , and the node of the first mode is outside it or on the left border. 

If, in this case 1 2( )c c a c b b  , the maximum of the function 1 ( )x  according to (32) 

occurs at x b , and 1 ( )x  monotonically increases in the admissible range, whence 

optx b ,  1max 1 b    . 

If 1 2 cr 2 1 2( ) ( )c a c b b c c M c c       , according to (32) opt 1 2( )x c a c b c b   , 

1max VT 1 2( )c c c M       .  

Finally, if cr 2 1 2( )c c M c c     , the optimal position is a node of the second mode 

and 1max 2

   . 

In the case J Mab , only the node of the first mode, which corresponds to the 

minimum of 1 ( )x , falls inside the permissible range a x b   , and when the support 

moves to both sides from this node, 1 ( )x  monotonically increases within this range. It 

follows from this 

   

   

   

1 1

opt 1 1

1 1

, if ,

, if ,

and , if .

a a b

x b a b

a b a b

 

 

 

    


    

    

  

And in this case     1max 1 1max ,a b       . 

5 RESEARCH RESULTS DISCUSSION 

The performed research made it possible to find the position of elastic supports, which 

provides the maximum of the fundamental natural frequency of an elastically fixed rigid 

body. In particular, the conditions are described under which the maximum of frequency is 

achieved with purely translational vibrations of the body. These results greatly facilitate the 
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determination of these positions and do not require cumbersome calculations using a formal 

mathematical optimization technique. They also make it possible to qualitatively trace the 

behavior of the natural frequency with some changes in the parameters of the model. The 

approach used allows its optimization taking into account various limitations.. 

6 CONCLUSIONS 

A practically convenient approach for determining the position of elastic supports, which 

maximally increases the natural frequency of an elastically supported body, is proposed. It 

makes it possible to qualitatively characterize this position depending on the given design 

parameters. The results obtained can be used in the design and operation of various 

engineering structures in order to create conditions that ensure their reliable operation. They 

allow us to outline the directions for further research, including in consideration additional 

degrees of freedom of the body and a wider variety of elastic connections. 
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