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SOME PROBLEMS OF OPTIMIZATION AND CONTROL OF THE
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Abstract. The article analytically investigates the behavior of the frequencies and modes of
natural vibrations of a rigid body, based on point elastic supports, when the position of the supports
changes. It is assumed that the body is in plane motion and has two degrees of freedom. A linear
description of body vibrations is accepted. The problems of determining such optimal positions of
elastic supports at which the fundamental frequency of the structure reaches its maximum value are
considered. Two groups of problems were studied. The first group concerns a body supported by only
two supports. It was found that in the absence of restrictions on the position of the supports to
maximize the fundamental natural frequency, these supports should be positioned so that the basic
natural vibrations of the body are translational. Simple analytical conditions are formulated that must
be satisfied by the corresponding positions of the supports. In real practical situations, these positions
may be unreachable due to the presence of various kinds of restrictions due to design requirements. In
this paper, optimization problems are considered taking into account a number of restrictions on the
position of supports, typical for practice, expressed analytically by equations and inequalities. For each
of the considered types of constraints, results are obtained that determine the optimal positions of the
supports and the corresponding maximum values of the main natural frequencies. The approach
applied allows us to consider other types of restrictions, which are not considered in the article. In the
second group of problems for a body resting on an arbitrary number of supports, the optimal position
of an additional elastic support introduced in order to maximize the fundamental frequency in fixed
positions and the stiffness coefficients of the remaining supports was sought. It was found that this
position depends on the value of the stiffness coefficient of the introduced support. Results are
obtained that qualitatively and quantitatively characterize this position and the corresponding
frequencies and modes of natural oscillations, including taking into account practically established
limitations. The research method uses a qualitative approach, systematically based on the well-known
Rayleigh theorem on the effect of imposing constraints on the free vibrations of an elastic structure.

Keywords: vibrations, rigid body, elastic support, natural frequency, optimization.

JESKI 3AJAYI ONTUMI3ALIL I YIIPABJIHHS BJIACHUMU
YACTOTAMMU IIPYKHO OIIEPTOI'O TBEPAOI'O TIJIA

bexmaen C.5.!

1 . . .
Ooecvra deparcasna akademis 6yOieHuYymMea ma apximexmypu

AHoTanisi. Y poOOTi aHANITHYHO OCIIIKYETHCS MOBEMIHKA YacTOT 1 OpPM BIIACHUX KOJHMBaHb
TBEPJIOTO Tija, OMEPTOTO Ha 30CEpEeKEHI NMPYXKHI OMNOPH, 33 YMOBU 3MiHH IOJOXEHb IUX OMOP.
[lepenbauaeThbest, MmO TINO 3MIMCHIOE TUIOCKOTApalIeIbHUA pyX 1 Mae JBa CTyHeHI CBOOOU.
[puiimaeThbest THIMHUN OMUC KONMBaHb Tina. Po3risiHyTO 3a/iadi BU3HAYCHHS TAKHX ONTUMAIBHHX
MOJIOKEHb TIPYXHHUX OTOp, TMPH SKUX OCHOBHA YacTOTa BIACHWUX KOJIMBaHb KOHCTPYKIII Jocsrae
MaKCUMaJIbHOTO 3HaYeHHs. BuB4ueHo nBi rpynu 3ana4. Ilepma rpymna cTocyeTbes Tijla, ONEPTOTO JIUIIE
Ha 7ABi omopu. BcraHoBieHO, 1m0 3a BiACYTHOCTI Oynb-sIKHX OOMEXEHb Ha MOJOKEHHS OIop AJIs
MaKCUMAaJbHOTO TiJIBUIIEHHS OCHOBHOI YacTOTH IIi OMOPH TOBHHHI PO3TAIIOBYBATHCS TakK, 100
OCHOBHI BJIaCHI KOJIMBaHHA Tina Oynu noctynaibHUMHA. ChOpMyIbOBaHO MPOCTi aHAJIITUYHI YMOBH,
SKMM MAIOTh 3a/I0BOJBHATH BiAIMOBIIHI MOJOXKEHHS OHOp. Y pealbHUX MPAKTUYHUX CUTYalisx i
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TIOJIOXKEHHSI MOXYTh BUSBHUTHCS HEAOCSIKHUMH Yy 3B 3Ky 3 HAsABHICTIO PI3HOMAaHITHHUX OOMEKEHb,
00yMOBIICHUX MPOEKTHUMH BUMOTaMHU. Y poOOTi pO3IIIIHYTO NMpoOIeMu onTuMizamii 3 ypaxyBaHHIM
HU3KH XapaKTepPHHUX IS TPAKTHUKKA OOMEKEHb Ha TMOJOXKEHHS OMOp, AKi aHATITUIHO BHUPAXKAIOTHCS
piBHAHHSME a00 HepiBHOCTAMH. [l KOXHOTO 3 PO3MNIAHYTHX BHAIB OOMEXKEHb OTPHUMAaHO
pe3yJIbTaTH, SKi BU3HAYAKOTh ONTHUMAJLHI TMOJOXKEHHS OMOp Ta BIAMOBIAHI MaKCHMMadbHI 3HAYCHHS
OCHOBHHUX BJIACHHUX YaCTOT. 3aCTOCOBaHMN MiJXiJ MO3BOJSIE PO3MISHYTH iHII BUAM OOMEKEHb, HE
po3TNsAHYTI y crarti. Y [Ipyriil Tpym 3amad A Tija, OMepPTOro Ha JIOBUIBHE YHCIO OIIop,
PO3IIYKyBaJIOCS] ONTHMANbHE TOJOXEHHS OJAaTKOBOI MPY)KHOI OMOPH, SKa BBOJUTHCS 3 METOIO
MaKCUMaJbHOTO MiJBUILCHHS OCHOBHOI 4YacTOTH MpH (HIKCOBAaHMX MOJOXKEHHSAX 1 KoedilieHTax
JKOPCTKOCTI 1HIIMX Omop. BCcTaHOBIEHO, IO 1€ MOJOXKEHHS 3aJICKUTh BiJ BEIMYUHHA KOedillieHTa
YKOPCTKOCTI BBeZleHOI ormopu. OTpuMaHO pe3yiabTaTH, SKi SKICHO Ta KiJBKICHO XapaKTepH3YIOTh Iie
MOJIOKEHHS Ta BIAMOBIAHI 4acTOTH Ta ()OPMU BIACHHX KOJHMBAaHb, Y TOMY YHCII 3 ypaxXyBaHHSIM
MPakKTUYHO OOyMOBIEHHX OOMexeHb. MeToN MOCHi[HKEHHS BUKOPUCTOBYE SIKICHMHM TMOXiHd, LIO
CUCTEMAaTUYHO CITMPAETHCS Ha BiIOMy TeopeMmy Penes mpo BIDIMB HakiIaJaHHS B’sI31 Ha BiIBbHI
KOJIMBAaHHS MIPY>KHOI KOHCTPYKIII Ta 11 HAaCIiAKH.

KarouoBi ciioBa: konmuBaHHs, TBEP/E TLI0, IPYKHE 3aKpiIJIeHHs, BJaCHA 4acTOTa, ONTUMI3allisl.
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1. INTRODUCTION

During the operation of engineering structures, instruments and equipment experiencing
dynamic effects, significant forces and displacements can occur in the elements of these
structures, which can make it impossible to use them. If the structure contains elastic elements
and is subjected to periodic loads, such conditions can be associated with the occurrence of
resonance phenomena. One of the ways to eliminate these phenomena is to purposefully
control the spectrum of natural frequencies of the structure by choosing its elastic-geometric
characteristics. In particular, it is possible to influence this spectrum by choosing the location
of the elastic constraints available to the designer. In the proposed work, some problems of
controlling the natural frequency of an elastically fixed rigid body are considered. A feature of
the approach used is the predominant use of qualitative methods.

2 LITERATURE ANALYSIS AND PROBLEM STATEMENT

There is a large number of studies devoted to the problems of control and optimization of
the characteristics of engineering structures, in particular the frequencies of their natural
vibrations [1]. Most of them use algorithms based on some of the many general mathematical
optimization methods [2]. For the problems of controlling the frequency spectrum of an
elastically fixed rigid body, were used numerical methods based on an enumeration of options
[3]. At the same time, the solution of some problems can be found on the basis of simple
qualitative considerations dating back to Rayleigh [4], without using complex mathematical
methods and the associated formalization. A similar approach has been successfully applied in
solving some problems of controlling the natural frequencies of elastic rod systems by varying
the positions of the supports [5, 6]. In the present work, it is used to solve some problems
related to the search for the positions of elastic supports of an absolutely rigid body, which
provide the maximum of its fundamental natural frequency. Some results concerning the
influence of the position of the supports of an elastically fixed rigid body on its natural
frequencies are presented in article [7]. This work can be considered as its continuation and
uses the conclusions obtained in it.

3 THE PURPOSE AND OBJECTIVES OF THE STUDY

The aim of this work is to study the behavior of the fundamental frequency of an
engineering structure installed on point elastic supports when the position of the supports
changes. In particular, positions are sought in which the frequency reaches its maximum,
including under some limitations typical for practice. A mechanical model of a structure in the
form of an absolutely rigid body, supported on linear elastic supports of finite rigidity, is used.
It is assumed that it is possible to describe the model as a linear elastic system with two
degrees of freedom. A similar model for the case of two supports was considered in various
works, in particular in [8-10], but without any connection with optimization. As in [7], the
study is based on the qualitative results of the theory of oscillations.

4 RESEARCH RESULTS

4.1. Model description. The model of the structure is considered, shown in Fig. 1 a. The
support points, like the center of mass of the model, are located on one straight line,
hereinafter called the axis of the model.
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Fig. 1. The base model BM (a) and its coordinates (b)

It is assumed that during free oscillations, the displacements of the points of the model
are parallel to the plane of the drawing, and the displacements of the points of the axis are
perpendicular to the axis, so that the model has two degrees of freedom. The mass of the
model is equal to, the moment of inertia about the axis passing through the center of mass and
perpendicular to the plane of the figure is equal to.

On the model axis, we introduce the coordinate axis with the origin at its center of mass.
The support numbered has a stiffness coefficient and a coordinate.

Along with the base model (BM), which has specific limited dimensions, we will also
consider an extended model (EM) of the structure, which includes the points of its axis,
unrestrictedly extended in both directions. The movement of the EM is completely determined
by the movement of the BM.

4.2. Preliminary results. In what follows, we use the notation

C=>rc;, S=>c¢X%, Q=>c X, j=12...,N, (1)

j=12,...,N, N — number of resilient supports. In what follows, it is assumed everywhere

that S<0. This can always be provided by choosing the direction of the axis x. All
considerations are carried out from the point of view of an observer positioned so that the axis
X is directed to the right.

The article systematically uses

4.2.1. Rayleigh’s theorem on the effect of imposition of constraint on the natural

frequencies of an elastic system [4]: Let A, and A, be the squares, respectively, of the first
(fundamental) and second natural frequencies of the elastic structure, A; — the square of the
fundamental frequency of the reinforced structure, formed from the original by imposing one
constraint. Then the relations are satisfied

A <A<, (2)

Equalities in (2) can be realized only if the constraint is established at the node of the
vibration mode corresponding to one of the frequencies \/Z or JE

The following results are also used [7].
4.2.2. Properties of frequencies and modes of free vibration of the model. The
frequencies and modes (eigenforms) of free vibrations are determined by the system

(C—Mr)Y +sq>:o}

SY +(Q-J1)d=0 )
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where Y and @ are the amplitude values of the displacement y of the center of mass G and
the angle ¢ of inclination of the model axis (Fig. 1 b). The eigenforms satisfy the
orthogonality relation

MYY, +JD,®, =0, 4)
where Y, is the vertical displacement of the center of mass, @, is the angle of inclination of

the axis of the k-th eigenform corresponding to the frequency (/A .

If, during free vibrations @ #0, the corresponding mode has a node — the point of the
EM axis, which remains stationary (point O in Fig. 1 b).
Relation (4) shows that for Y, =Y, #0 ®, and @, have different signs, i.e. if the center

of mass is not a node of any of the modes, the nodes of two simple modes are located on
opposite sides of the center of mass. It also follows from (4) that one of the two modes
corresponding to simple frequencies is horizontal (® =0, Y #0) if and only if the other has a
node at the center of mass (Y =0, ® #0).

Equations (3) show that such modes can be realized if and only if S=0.

As seen from Fig. 1 b, Y, =+r®,, where 1, is the distance of the center of mass from

the node of the k-th mode, the "+" sign is chosen if the node is located to the left of G, """, if
to the right. Then the orthogonality relation (4) can be rewritten as

J
AR ()

If the mode has a node, the square of the corresponding frequency is

k_zcjsz (6)
S J+Mr?]

where r is the distance from the node to the center of mass G, X =r+X; is the distance

from the node to the j-th support.

4.2.3. Change in natural frequencies when changing the position of the supports. If
the mode corresponding to a simple frequency has a node, an increase in the distance of any
of the supports from the node leads to an increase in this frequency. So, it follows that
extremal values of frequencies can be reached when the movable support is in a node of the
corresponding mode, or this mode does not have a node (the axis is horizontal).

The following results are for a two-support model.

4.2.4. Qualitative features of eigenforms. The modes of free vibrations of a two-
support model can be of three types. A mode of the 1st type has an external node located on
one side of both supports, or does not have a node (horizontal). The form of the 2nd type has
an internal node located between the supports. A special mode has a node located on one of
the supports.

If one of the two modes of the model (as a system with two degrees of freedom) is of the
1st type, then the other is of the 2nd type. If one of the two modes of the model is special,
then the other is also special with a node on the opposite support.

4.2.5. Criterion of form type. The fundamental mode is a mode of the 1st kind, if
J < Mab, of the 2nd kind, if J > Mab, and special, if J =Mab.

4.2.6. Criterion of node position. If ca>c,b, the fundamental mode has a node to the
left of the center of mass. If ca=c,b, one of the two modes of the model (depending on the

sign of J —Mab) does not have a node (the axis is horizontal), and the other has a node in the
center of mass.
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4.3. Optimization. The position of the supports is considered optimal if in this position
the fundamental frequency of the model reaches its maximum.

4.3.1. Optimization of a two-support model, N =2, x, =-a, x, =b. The values of
M, J, ¢, and ¢, are specified. Optimal values of a and b are sought.

The imposition of one constraint prohibiting the rotation of the body leaves it with one
degree of freedom, corresponding to the translational vertical (VT) oscillatory motion with a
frequency whose square is equal to

}"VT = C1'\‘:|Cz (7)

and which does not depend on the position of the supports, A,;(a,b)=const. Hence, on the
basis of Sec. 4.2.1, it follows A, <A <A,, i.e. A, =A,(a,b) as a function of the support
positions cannot exceed A, . In accordance with Sec. 4.2.6, translational oscillations with

frequency a/xw will occur if and only if cia=c,b. So this equality determines the optimal

position of the supports, provided that the translational motion will be the fundamental one,

i.e. at J <abM. If the design requirements do not allow this inequality to be ensured, the
fundamental vibrations will occur in the mode of the 2nd type. This can be the case if the

project establishes restrictions on a and b, in particular, on the distance {=a+b between
the supports. In this case, the fundamental frequency will be less than /A, , but, as can be

seen from the inequalities A, <A <A,, a/xw is the lower boundary of the second

frequency of the two-support model.
To find the optimal positions of the supports, we will use the following graphical
representation.

Fig. 2 shows the coordinate plane, the point of which with coordinates a and b
corresponds to the position of the supports A and B. Lines are the graphs of the
dependencies b=(c,/c,)a and b=J/Ma. Solid lines divide the plane into three areas, the
points of which cannot correspond to the optimal positions. In the area I, inequalities
c,b>ca and J <abM are satisfied, which, in accordance with Sec. 4.2.5 and 4.2.6, means
that in these positions the fundamental mode of the EM has a node to the right of both
supports (see the top row in the table on the right in Fig. 2), and in accordance with Sec. 4.2.3,
the frequency can be increased by moving the supports away from the node, i.e. increasing a

and decreasing b . In this case, the corresponding point of the plane moves in the directions of
the "arrows of growth"” shown in area I.

oVl
N

Z b=1J/Ma
111
//

Fig. 2. Mapping a set of two-support models on a plane ab

b
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In the area Il, inequalities c,b<ca and J <abM are satisfied, which means that in

these positions the fundamental mode of EM has a node to the left of both supports (see the
second row in the table on the right), and the frequency can be increased by moving the
supports away from the node, i.e. decreasing a and increasing b. In this case, the
corresponding point of the plane moves in the directions of the "arrows of growth" shown in
area Il.

Finally, in area Ill, the inequality J >abM is fulfilled, which means that in these
positions the fundamental mode of the model has a node between the supports (see the bottom
row in the table on the right), and the frequency can be increased by moving the supports
away from the node, i.e. increasing both a and b. In this case, the corresponding point of the
plane moves in the directions of the arrows shown in the area Il1l. The dashed line does not
separate qualitatively different fundamental modes.

Thus, the maximum of the frequency of the EM can occur only in the positions
corresponding to the solid lines. It should be kept in mind that the points lying on the curve
b=J/Ma, according to Sec. 4.2.5, correspond to special modes. For the left branch, the

fundamental mode has a node on the right support B (X,=a+b, X,=0,r=b) and,
according to (6), the following equality is satisfied

- YeX: c(ath)+c, 02 c(a+b) ¢ (1+§)=&(1+ Mazjzi(lJrLj ®)

J+MrZ J+MPB2 Mab+Mp2 MU b)) M T ) MU vp?

The right branch corresponds to the modes with a node on the left support A
(X, =0, X, =a+b, r=a) and, accordingly

X2 ¢ .0 2 2 2
. D eX] ¢ 0% +c,(ath)’  c,(a+h) —i(ng):i(H Mb} c, (1+L) )

LTI EME . J+Ma? | Mab+MaZz M M T )" MU Ma?

The relations (8, 9) show that the fundamental frequency of the model corresponding to
the curved line increases monotonically when approaching the branch point at which

ca=chb=J=Mab=M(c,/c,)b*=M(c/c,)a’, A =Ayr. (10)

Thus, the EM has infinite number of optimal positions corresponding to the points of the
solid half-line. For these positions A =X, =Ayr.

In real structures, in contrast to EM, there are restrictions imposed on a and b, which
separate a certain permissible area on the plane a b. To find the optimal positions, this area
should be superimposed on the plane a b with the shown solid lines. If a solid rectilinear
segment falls into it, then the corresponding positions will be the solution to the problem.
Otherwise, the optimal positions should be sought on the border of the permissible area,
taking into account the directions of the "arrows of growth" A (Fig. 2).

Consider the following optimization problems.

4.3.1.1. Problem 1. It is required to find the optimal positions of the supports under the
given limitations

a<a, b<b, (11)

where a, and b, are given constants.
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Fig. 3. To the determination of the optimal positions of the supports of the two-support model under the
limitations

a)—forthecase a<a,, b<b, Db)—forthecase a<a, b>b

Let us consider separately the cases c,b >ca, and c,b <ca,. Let us introduce the
notation

Jap = Ma:l.b.l.’ Ja = M(Cl/cz)alz’ Jy=M (CZ/Cl)blz'
Let’s assume at the beginning that c,b, > ca, (Fig. 3a). Then J_, > J,. Let’s select three
areas on the plane ab: J>J,, J,<J<J,, J<J,. In fig. 3a, they are separated by

dashed curved lines. The admissible area (11) is a rectangle with sides a, and b, .

At J >J, (line 1) none of the solid lines falls into the admissible area (point (a,,b;)

turns out to be in the area Il according to Fig. 2). Therefore, in accordance with the directions
of the "arrows of growth" in Fig. 2, the optimal position is a,, =a, b, =b. The

fundamental mode has an inner node (is a mode of the 2nd type).
In the case J, <J < J, (line 2), a part of the admissible area is cut off by line b=J/Ma

, above which at c,b>c,a optimal positions there cannot be (area I in Fig. 2). Therefore, in
accordance with the directions of the “arrows of growth” the optimal position is a,, =a,,
b, =J/Ma,. In this case, according to (8), A=A, =(¢/M)(1+Ma’/J) and the

fundamental mode has a node on the right support.
Finally, at J <J, (line 3), a solid rectilinear segment falls into the admissible area, the

boundaries of which have coordinates a,,, =a}(J/M )(C,/C), @, =a,. In this case, there

are infinite number of optimal positions of the supports, the coordinates of which are
determined by the relations

f\] c C
Vc—i S aopt S aia bopt = éaopt ' (12)

These provisions correspond to purely translational natural oscillations with a frequency
equal to \/Ay; -
The case c,b, <ca is considered in a similar way, but now the permissible area is

represented by another rectangle (Fig. 3 a). Omitting reasonings similar to those for the
previous case, we present the results:

ab !
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J 2‘]ab = aop’[ :ai’ bopt :bl' (13)

2
Jy,<J<J,= b, =b,a,=3/Mb, & = IS/I_Z(“ MJbl J node on the left support.  (14)

<by <b, ag, = &b Max = Myt = Cll\;—% the mode is horizontal. (15)

4.3.1.2. Problem 2. It is required to find the optimal positions of the supports under the
given limitations

a<a, bx>b. (16)

Let us first consider the case c,b, > ca,, which corresponds to the permissible area in the
form of a half-strip, bounded by bold straight lines (Fig. 3 b) above the straight line
b=(c,/c,)a. The dash-dotted line shows the graph of dependence b=J_, /Ma.

At J > J,,, the boundary hyperbola b=J/Ma (line 1 in Fig. 3 b) intersects the vertical

border of the permissible area at a point P and, in accordance with the directions of the
"arrows of growth™ (Fig. 2), this point corresponds to the optimal position of the supports.
At J <J, (line 2), the "arrows of growth" lead to the corner of the permissible area. So

in the case c,b, >ca,

h —J c, Ma; :
J2J,= a, =a, 0y ~Ma,* A=A =M 1+ 7| node on the right support,  (17)
J<dp = au=a, by, =h. (18)

In the case c,b <ca, the permissible area (bounded by thin lines in Fig. 3 b) is
intersected by a straight line b=(c,/c,)a. The plane is divided by two dashed lines into three

parts.
When J >J_, the line b=J/Ma (line 2) intersects the vertical border of the permissible

area at a point Q that, as above, corresponds to the optimal position of the supports.
At J,<J<J, (line 3), a segment of the straight line b=(c/c,)a falls into the

permissible area, the lower boundary of which depends on J. This segment corresponds to
the optimal positions of the supports, at which the fundamental vibrations will be vertical and
translational.

When J <J,, the entire part of the straight line b=(c;/c,)a that belongs to the

permissible band becomes available. Thus, for c,b <ca,

J C Ma?
‘]Z‘Ja = aopt:a'l’bopt:Mai’x‘:kmax:Vl[l_'_ J j’ (19)
JC C C, +C
J,<J<), = ’VC—:SaOptSai, b"p‘:c_ia"p“ xmaxzxwzlvz, (20)
J,c, ¢C C c +cC
‘JS‘]b = Vbc_izc_iblsaoptgam boptzc_iaopt’ }\'max:)\’VT:TZ' (21)

At J <J,, the optimal position of the supports corresponds to a horizontal mode.
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4.3.1.3. Problem 3. It is required to find the optimal positions of the supports under
the given limitation

a+b=(=const. (22)

The position of the supports, at which the natural vibrations are translational, is
determined by the equality c,a = c,b, whence, taking into account (22)

L U - U (23)
C, +C, C, +GC,

This position is optimal if at the same time J <abM , i.e.

JsMm—492 2 (24)
(c,+¢,)
Let us show that, under the condition (22), equality c,a=c,b still provides a maximum

for the fundamental frequency, even if it is realized through a rotational mode (of 2nd type),
i.e. when the inequality opposite (24) is satisfied. To do this, recall (Sec. 4.2.6) that for

c,a=Cc,b, the rotational mode has a node in the center of mass G (X, =a, X, =b, r=0) and
it corresponds to the frequency determined by the equality

c.X?2 2 2 2 2 2
%=%R=§:’ S :é{q( %ﬁ) +%( qg:j}=(q%f . (25)

J + Mr? J J c +C, c +C, C,+C,)J

moreover, Ay <>Ap < J<>abM. Let’s move the supports, breaking the equality
c,a=Cc,b, but not changing (=a-+b=const.. In this new position, we will install the rigid

hinge at the same distances a and b from the supports. The formed system with one degree
of freedom has a "rotational” frequency, the square of which

2 2 2 2
ar 8 +C,b _ca +Cb”

A 26
J + Mr? J R (26)

according to Sec. 4.2.1, is greater than the square of the fundamental frequency A, of the
system before the introduction of the hinge, from which it follows that as a result of the
moving of the supports A, <A <Ay, i.e. Ay isthe maximum of .

Thus, the solution to the problem is determined by relations (23), and

xwzq&%,ﬁJsM GG
A = (6+c.) (27)
B YT SN VR )

"o(erg)d T (c,+¢,)°

4.3.1.4. Problem 4. It is required to find the optimal positions of the supports under the
limitation expressing by inequality

a+b<(=const. (28)
If J=M(cc,/(c, +c,)?)¢%, for any a and b, for which a+b=¢"<¢, the inequality
J>M(cg,/(c,+¢,)?)L? holds, whence, according to (27), for these a and b
A <cC,0? [(c,+¢,)d <cc,t?/(c,+¢,)d . Therefore, the maximum of frequency is reached
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when equality is satisfied in (28) and a and b are determined by relations (23). In this case
Aax = Mg (25).
If J <Meyc,?/(c, +¢,)? , we define ¢, =/ (c, +¢,)?/Mcc, < (. Forany (¢, there is the

optimal position of the supports (23), described in Sec. 4.3.1.3, providing a translational
fundamental mode. From here

C,(, <a. < C,( _G,

C,+GC, 29
C1+C2_ opt—C1+C2’ opt C2 opt * . ( )

A

4.3.2. Multi-support model.
Problem 5. The values of M, J, X;, ¢; are specified, j=1,2,...,N. The optimal

position of the additional (N +1)-th support with a given stiffness coefficient ¢ is sought.

Let us denote U — the original N -support model, U* — the model formed from U by

introducing an additional support, A and A" — respectively, the squares of their frequencies.
The system (3) should be replaced with system

(C+c—MA)Y +(S+cx)@ =0 (30)
(S+cx)Y +( Q+cx? —JK*)CD =0’
where X is a coordinate of the introduced support.
Based on Sec. 4.2.1, we conclude that for any position of this support
X - C+c
7\,1 S )\’VT = T . (31)

Let us determine c, =MA,—-C — the value of the stiffness coefficient of the
introduced support, at which, in accordance with Sec. 4.2.2, translational natural vibrations of
the EM U™ with a frequency 4/7% are possible.

If c<c, =MA,—C, A,; <A, and the optimal coordinate of the movable support in
accordance with Sec. 4.2.1 is equal to

X =—§, A

opt c 1max

C+c
M

=My = (32)

If c2c,=MA,-C = A{; 2A,, the value \/?; cannot be exceeded by the
fundamental frequency of U”* after the imposition of one constraint by virtue of Rayleigh’s
theorem (Sec. 4.2.1), i.e. M:ﬁ is the second frequency of the EM U". We’ll show
that in this case the optimal position of the support of the EM U” is the node of the second
mode of the EM U corresponding to the frequency \/E (if it exists).

If we place an additional support of stiffness ¢ in the node of the second mode of EM
U, to which the natural frequency \/Z corresponds, this mode and the corresponding
frequency, and, consequently, the distance r, from the node, do not depend on the value of c.
Therefore, as relation (5) shows, also the value of r, and, consequently, the other mode of the

model U™ do not depend on c. The corresponding frequency is determined according to (6)
by the equality
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K*_ZCij+cX2

, 33
SRV (33)

where X is the distance from the node of the 1st mode of U to the introduced support (to the
node of the 2nd mode of U ). From here it can be seen that with growth of ¢ this frequency

increases monotonically and indefinitely and at some moment becomes equal to W»z . Thus,

the frequency \/E becomes double, since it corresponds to two linearly independent modes,
and, consequently, any linear combination of them, in particular, corresponding to vertical
translational oscillations. Therefore A{, =A,, whence, taking into account (32), it follows
that the corresponding value of ¢ is equal to ¢, = MA,-C.

With the growth of ¢ above c,, the fundamental mode, without changing its
configuration, becomes the second, because the corresponding frequency, determined from
(33), becomes higher than % which, thus, becomes the fundamental for U*, 1] =A,. By

the node of the

second mode of the EM U is the optimal position of the additional support in the EM U . Its
coordinate is

__S___ S
Xopt = C "ML, —C (34)

cr

virtue of inequality (2), Sec. 4.2.1, A; =\, =7, . Therefore at c>¢

Imax * cr?

The results (32), (34) make it possible to represent schematically the graph of the
square of the fundamental frequency A, of the model U" as a function of the position of the
additional support.

If the second equation of system (30) is divided by x and X is tended to oo, we
obtain the equalities

lim®x=-Y, lim®=0. (35)

X—>o0 X—>+o0

From the first equation, taking into account (35), we come to the conclusion

X — 100 = (C—=MA")Y +cY +cxd —0, (36)
whence

. .._C

fim 2 = 37 @)

Based on the results obtained, you can sketch a schematic graph of dependence of 1]
on the coordinate x of the support (Fig. 4), which allows you to find its optimal position.

x  Fig. 4. Schematic graph of
the dependence of the
square of the fundamental
frequency on the position x
of the movable support

S. Bekshaev
https://doi.org/10.31650/2618-0650-2021-3-2-88-102 99




111, Ne2, 2021
Crop. 88-102 / Page 88-102

MexaHika Ta MaremMaTHuHi meromu /
Mechanics and mathematical methods

If the fundamental mode of EM U has a node, then it is to the left of the center of
mass G . To verify this, consider the first of equations (3). In accordance with Rayleigh’s
theorem (Sec. 4.2.1) A, <A, =C/M = C—-MA, >0. In combination with the condition

S <0 (Sec. 4.2), this means that the fundamental mode of EM U has Y and ® of the same
sign, i.e. that the node is to the left of the center of mass.

The function A;(x) has two extrema: the node of the fundamental mode of EM U , to
which the minimum A . =2, corresponds, and a point with a coordinate x,, determined
from (32), if c<c,, and from (34), if c>c_ (the node of the second mode of EM U ), to
which the maximum A;

Imax

cr?
*
Imax

=Ayr, respectively ;.. =X\, corresponds. According to Sec.

4.2.3, the function A;(x) has no other extrema, and these two extrema separate the areas of
monotonicity. In fig. 4, the solid line corresponds to the case ¢ >c, , and the dashed line —to

the case ¢ <c,. The results obtained make it possible to find the optimal positions of support

under various constraints.
Example. Consider the problem of maximizing the fundamental frequency for the

case N=2, x,=-a, X,=b, S=—(ca—c,b). The optimal position of the third support is
sought taking into account the limitations —a < x<b.

If J <Mab, the node of the second mode falls inside or on the right border of the
allowed range —a < x <D, and the node of the first mode is outside it or on the left border.

If, in this case ¢ < (ca—c,b)/b, the maximum of the function A;(X) according to (32)
occurs at x>b, and A;(x) monotonically increases in the admissible range, whence

Xopt =01 A =21 (D).

1max

If (ca-cb)/b<c<c,=MAi,—(c +¢,), according to (32) x,, =(ca—c,b)/c<b,

7\‘Imax :}\’t/T :(C1+C2 +C)/M )
Finally, if c>c, =MA,—(c, +¢,), the optimal position is a node of the second mode
and Al =X, .

In the case J > Mab, only the node of the first mode, which corresponds to the
minimum of A;(x), falls inside the permissible range —a<x<b, and when the support

moves to both sides from this node, A;(x) monotonically increases within this range. It
follows from this

—a, if A;(-a)>2;(h),
Xot =1 D, If A7 (-2) <1 (b),
—a and b, if A; (-a)=2;(h).
And in this case A}, = max{kj(—a),kj(b)}.
5 RESEARCH RESULTS DISCUSSION
The performed research made it possible to find the position of elastic supports, which
provides the maximum of the fundamental natural frequency of an elastically fixed rigid

body. In particular, the conditions are described under which the maximum of frequency is
achieved with purely translational vibrations of the body. These results greatly facilitate the
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determination of these positions and do not require cumbersome calculations using a formal
mathematical optimization technique. They also make it possible to qualitatively trace the
behavior of the natural frequency with some changes in the parameters of the model. The
approach used allows its optimization taking into account various limitations..

6 CONCLUSIONS

A practically convenient approach for determining the position of elastic supports, which
maximally increases the natural frequency of an elastically supported body, is proposed. It
makes it possible to qualitatively characterize this position depending on the given design
parameters. The results obtained can be used in the design and operation of various
engineering structures in order to create conditions that ensure their reliable operation. They
allow us to outline the directions for further research, including in consideration additional
degrees of freedom of the body and a wider variety of elastic connections.
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