МЕТОДИКА РАСЧЁТА И ОЦЕНКА КАЧЕСТВА ИСХОДНОГО СЫРЬЯ – ТЕОРЕТИЧЕСКАЯ ОСНОВА НАНОТЕХНОЛОГИЙ СТРОИТЕЛЬНОГО МАТЕРИАЛА

Антипов А.А., гр. ПСК-606м Научный руководитель – **Кучеренко А.А.**, д.т.н., профессор (кафедра ПАТСМ, ОГАСА)

Аннотация. Решается проблема резонансных и нанотехнологий, механосборки и механосинтеза, создания строительных материалов новых и специального назначения (с заданными свойствами) отсутствие теоретических основ, дающих знание материаловедам по исходного сырья c учётом его термодинамических характеристик, методам работы с ним: последовательности укладки, способа сближения и синтеза, режимов технологии. Авторы считают, что эта и масса других проблем решаемы, если учитывать ещё и электронную структуру и строение атомов этих веществ и разработать методику расчёта и оценки качества исходного сырья. В статье приведён методологический пример развития науки на атомарном уровне. Это показано на химически сложном строительном материале – линолеуме.

Актуальность. В области строительного материаловедения (СМ) появились нано- и резонансные технологии, механосборка и механосинтез, но проблема создания СМ с наперёд заданными свойствами и тем более новых СМ остаётся не решённой. Всё ещё отсутствуют сколь либо серьёзные теоретические основы, которые могли бы помочь технологу на должном уровне выбрать исходное сырьё; оценить его свойства не только на макро-, но и на атомарном уровне, т.е. изучить термодинамические характеристики атома, оксида и минерала указать последовательность их укладки и сборки чего требуют нанотехнологии. Природа любого атома имеет электрическую основу: положительно заряженное ядро и отрицательно – электроны. То же у оксидов, молекул, кристаллов, минералов и др. Заряд ядра определяет все свойства атома [1], а свойства атома обеспечивают все свойства конечного продукта [2]. Производные зарядов атомов: электрические, магнитные и электромагнитные поля определяют прочность межатомных химических связей - это нервы СМ, чутко реагирующие на условия окружающей среды. Электромагнитные взаимодействия являются фундаментальными силами природы [3]. Но

CM они обеспечивают жёсткость или эластичность, пространственную или слоистую структуру СМ и многое другое, что может заранее решить дисциплина «Электрохимия». Физики ядерщики пишут «В природе нет ничего кроме электричества: плюса и минуса» [4]. Именно электрическую основу атомов, оксидов или минералов технолог не учитывает при создании и эксплуатации СМ. Убедить технологов в необходимости ликвидировать эту проблему, принять её за основу и начать работать в атомарной области – наша задача. В статье приведён методологический пример развития науки на атомарном уровне в области оценки качества исходного сырья на примере линолеума заводского изготовления и состава. Данные исходного сырья в табл. 1, графе 1, химические формулы (графа 2) и расход их в процентах – в графе 3.

Таблица 1 Химический и количественный составы главнейших составляющих линолеума

Характеристика ин	Всего молекул в 1 кг смеси				
Исходное сырьё	формула	%	Масса, m•10 ⁻²⁴ , г	Масса, г	Кол-во, №10 ²⁴ ,
1	2	2	4	-	шт.,
1	2	3	4	5	6
Поливинил	$(C_2H_3Cl)_n$	44,4	103,6	444	4,286
хлорид					
Стеарокс	C_2H_6O	0,5	76,39	5	0,065
Диоктилфталат	$C_{24}H_{38}O_4$	15	647,1	150	0,232
Известняк	CaCO ₃	17	100,1	170	1,7
Пигмент жёлтый железо-окисный	Fe ₂ O ₃	8,1	265,0	81	0,306
Кварцевый песок	SiO ₂	15	99,6	150	1,506
Всего	1000	8,1			

Рассчитываем массу одной формулы, исходя из того, что один атом водорода (Н), согласно таблицы Д.И. Менделеева, молекулярной массы 1,008, весит 1,67•10⁻²⁴ грамма [1]. Величина эта относительная, т.е. относительная атомная масса (о.а.м.), показывает во сколько раз масса атома одного элемента больше другого. Поэтому переходный коэффициент массы атома: $K_M=1,67:1,008=1,657$. В массы качестве примера приводим самого расчёт сложного диоктилфталата, $C_{24}H_{38}O_4$ Менделеева ПО таблице относительную атомную массу каждого атома и умножаем на количество атомов каждого вида в диоктилфталате. Масса молекулы

его сложена из относительной массы атомов углерода С=12,011, их 24 шт., водорода H_{38} =1,008 и кислорода О=16 — их 4 шт. Тогда масса углерода: C_{24} =12,011•24=288,26 о.а.м., водорода: H_{38} =1,008•38=38,3 о.а.м. и кислорода: O_4 =16•4=64 о.а.м. Масса всех атомов полимера: $\sum C_{24}H_{38}O_4$ =288,26+38,3+64 =390,56 о.а.м. Итого масса комплекса всех атомов диоктилфталата: $m_{C24H_{38}O_4}$ = $K_{\rm M}$ • $\sum C_{24}H_{38}O_4$ =1,657•390,56=647,1, что и приведено в табл. 1, графа 4, т.е. масса одной молекулы диоктилфталата равна 647,1•10⁻²⁴ грамма. Аналогично определяем массу каждого исходного сырья графы 1 и 2, табл. 1 и результаты заносим в графу 4.

Расчёт расхода исходного сырья на 1кг продукта, с учётом процентного содержания каждого, находим по интерполяции: М=1000•44,4:100=444 г, что и вносим в графу 5, табл. 1. Аналогично рассчитываем остальные полимеры и оксиды. В итоге складываем все цифры графы 5 и видим, что сумма их равна 1000г, т.е. 1кг, следовательно, расчёт произведён правильно.

Количество компонентов в 1 кг линолеума определяем по формуле: $N = (M: m) \cdot 10^{-24}$, шт. Где: M - масса компонентов в 1 кг линолеума, (графа 5, табл. 1), грамм; $m \cdot 10^{-24} -$ масса одного полимера (графа 4 табл. 1), грамм. Например, определяем количество молекул поливинилхлорида в 1 кг линолеума: $N = (444:103,6) \cdot 10^{-24} = 4,286 \cdot 10^{24}$, шт. Количество в 1 кг продукта остальных компонентов определяем аналогично, а результаты заносим в графу 6.

В технологии СМ, как и в природе, особое значение имеют эффективные электрические заряды атомов, оксидов и полимеров [5]. Зная массу, процентное содержание и эффективные заряды оксидов можно узнать их количество и энергетическую мощность исходного сырья для линолеума (табл. 2). Расчёт их проведён с учётом справочных данных [6, 7]. В качестве примера считаем эффективный заряд $(q_{9\phi})$ твёрдой фазы — оксида $CaCO_3$ с учётом положительно заряженного Ca=+2,8 а углерода C=+3,1 и отрицательно заряженного O=-4,3: $q_{CaCO_3}=q_{Ca}+q_{C}+q_{O}=q^{+2},8+q^{+3},1+q^{-4}.3 \cdot 3=(+5,9)+(-12,9)$

Таблица 2 Энергетический состав исходного сырья для линолеума

Характеристика одного вещества				в 1 кг линолеума	
Вид	Плюс,	Минус,	Эффективный,	Кол-во,	Зарядов, –q _{эф} G•10 ²⁴ , эВ
формулы	+q	- q	$q_{e\phi}$	N•10 ²⁴ , шт,	G•10 ²⁴ , ∋B
1	2	3	4	5	6
$(C_2H_3Cl)_n$	9,2	5,8	+3,4	4,286	+14,6
C ₂ H ₆ O	12,6	4,3	+7,9	0,065	+0,52
$C_{24}H_{38}O_4$	112,4	17,2	+95,2	0,232	+22,07

CaCO ₃	5,9	12,9	-7,0	1,7	-11,2
Fe_2O_3	8,6	12,9	-4,3	0,306	-1,32
SiO ₂	4,0	8,6	-4,6	1,506	-6,93
Всего	91,5	61,7			+40,2/-19,5

Из них положительных зарядов: 2,8+3,1=+5,9эВ. Эту цифру заносим в табл. 2, графа 2. Отрицательных: $q^-=4.3 \cdot 3=-12,99B$, заносим в табл. 2, графа 3. Разность между большим -12,9эВ и меньшим: +5,9эВ и есть эффективный, т.е. избыточный, заряд суммы атомов $CaCO_3$: $q_{3\phi}=-79B$. Результат расчёта заносим в табл. 2, графа 5. Остальные полимеры – по аналогии. В табл. 2, графе 5 приведено для наглядности количество всего исходного сырья для 1 кг линолеума, т.е. их смеси, что мы рассчитали и привели в табл. 1, графе 6. Для примера рассчитаем энергетическую мощность поливинилхлорида, $(C_2H_3Cl)_n$, по формуле: $G \cdot 10^{24} = q_{2\phi} \cdot N \cdot 10^{24} = +3.4 \cdot 4.286 \cdot 10^{24} = +14.69B$

Результат, +14.69В, заносим в табл. 2, графу 6. Остальные полимеры рассчитываем аналогично и данные заносим в соответсвующие ячейки графы 6 и суммируем одинакового знака. По степени заряженности, (графа 6), чётко просматривается две группы веществ исходного сырья: +40,2•10²⁴ положительно заряженные высокомолекулярные соединения (первые 3 графы 1) и –19,5•10²⁴ отрицательно заряженные наполнители (последние 3 графы таблицы). Но положительных зарядов в 2 раза больше, чем отрицательно заряженных. Получить устойчивый электронейтральный СМ можно, когда в исходном сырье присутствует одинаковое количество плюсов и минусов. Нехватка мощности положительных зарядов проведёт к недоиспользованию отрицательных поиску добавки c большим положительных зарядов, потому как задача синтеза + и - создать твёрдое тело электронейтральное и с минимальной энергией.

В представленном исходном сырье для линолеума положительных зарядов в 2 раза больше, чем отрицательных. Округлённо в исходное сырьё надо добавить 20•10²⁴эВ отрицательных зарядов. Считаем необходимым добавить в исходное сырьё золу-уноса ТЭС Украины согласно данным [8]. Её энергетика это позволяет, табл. 3. Согласно расчётам табл. 3 в золе уноса отрицательно заряженных атомов в 2 раза больше, чем положительных. Из -60,2•10²⁴эВ отрицательных половина вступят в химическую реакцию $c + 30 \cdot 10^{24} 3B$ зарядами золы-уноса. положительными оставшиеся неиспользованными -30•10²⁴эВ золы-уноса вступят в реакцию с избыточными положительными зарядами линолеума.

Таблица 3

эпергети теский состав глависиших оксидов золыг упоса							
Характеристика зарядов одного оксида, эВ							
Вид оксида	Положительный,	Отрицательный,	Эффективный,				
	+q	-q	$-q_{9\varphi}$				
CaO	2,8	4,3	1,5				
SiO_2	4,0	8,6	4,6				
Al_2O_3	6,8	12,9	6,1				
Fe_2O_3	8,6	12,9	4,3				
MgO	2,8	4,3	1,5				
SO_3	5,2	12,9	7,7				
Всего	30,2	60,2					

Если продолжить расчёты табл. 3 по аналогии с табл. 2, то теоретически определим точный процент добавки в состав линолеума. Это и есть элемент расчёта состава СМ с наперёд заданными свойствами с одной стороны. А с другой – можно ли предвидеть соотношение + и –, если не учитывать электрическое строение атомов, оксидов и высокомолекулярных соединений? Это соотношение больше влияет на степень использования вяжущего и на скорость отвердевания смесей. Очень важна и энергетическая мощность вяжущего, которая напрямую зависит от величины заряда атомов, т.е. величины + и –. Она определяет силу связей атомов, а, следовательно, прочность СМ, табл. 4. Одни в 3 раза слабее других, т.е. возможен вариант замены слабых связей сильными, что изменит энергетику исходного сырья и свойства СМ. В данном случае энергетика исходного сырья для линолеума равноценна сжиганию 0,22м³ газообразного топлива Мариупольского месторождения [9].

Таблица 4
Энергия межатомных связей сырья для линолеума [6, 7]

Исходное сырьё	Межатомные связи		Энергия связей, кДж/моль		Моль,	Энергетика исходного
сырыс	вид	кол-во,	одной всех		ш1.	сырья, кДж
		шт.	9,1011			
C ₂ H ₃ Cl	C-C	1	347			
	С–Н	3	415	2321	0,712	1653
	C-Cl	1	397			
C ₂ H ₆ O	C-O	1	1076			
	Н-О	1	485	3983	0,011	44
	C-C	1	347			
	С–Н	5	415			
$C_{24}H_{38}O_4$	С–Н	38	415			

	C-O	8	1076	21318	0,064	1364
	C-C	20	347			
CaCO ₃				2860	0,282	807
Fe_2O_3				2373	0,51	1210
SiO ₂				1861	0,25	465
Энергия межатомных связей в 1кг линолеума, кДж/кг					5543	

Выволы результаты. Изложена расчёта И методика атомарной и молекулярной относительной массы химических соединений всех составляющих линолеума из расчёта на одно химическое соединение и на 1кг всего сырья и на 1кг линолеума с учётом процентного содержания каждого химического соединения. Определено количество молекул исходного сырья в 1кг продукта. Изучены энергетические характеристики сырья. Показано, что все высокомолекулярные соединения имеют избыточные положительные заряды. Их в 2 раза больше чем отрицательных. Они могут выполнять роль балласта. Рекомендовано ввести в состав исходного сырья добавку золы-уноса. В ней отрицательных электрически заряженных атомов в 2 раза больше, чем положительных. К тому же зола повысит износостойкость линолеума для пола – патентноспособно. Доказаны преимущества и необходимость учёта электронного строения и структуры атомов, входящих в состав исходного сырья.

Литература:

- 1. Гороновский И.Т., Назаренко Ю.П., Некряч Е.Ф. Краткий справочник по химии. К.: Из-во АН УССР, 1982. 660 с.
 - 2. Алесковский В.Б. Химия твёрдых веществ. И.:В.шк,1978.256 с.
- 3. Каганов М.И., Цукерник В.М. Природа магнетизма. М.: Наука, 1982. 192 с.
 - 4. Иоффе А.Ф. О физике и физиках. Л.: Наука, 1985. 344 с.
- 5. Кучеренко А.А. Энергия межатомных связей определяет свойства бетона. 6-я всеукраинская НТК «Науково-технічні проблеми сучасного залізобетону», Одеса-К.: 2011.
- 6. Бацанов С.С. Структурная химия. Факты и зависимости. М.: Диалог-МГУ, 2000. 292 с.
- 7. Кузнецова Т.В., Кудряшов И.В., Тимашов В.В. Физическая химия вяжущих материалов. М.: В.шк., 1989. 384 с.
- 8. Кучеренко А.А. Выбор исходного сырья на наноуровне и механизм отвердевания смеси. Тр. Всероссийской н.п.к. «Актуальные вопросы современного строительства», 2016, Вып. 1. С.144-150.
- 9. Кучеренко А.А. Тепловые установки заводов сборного железобетона. Проектирование и примеры расчёта. К.: Вища школа, 1977. 280 с.